

A Kövesligethy Radó Szeizmológiai Obszervatórium évkönyve

Epicentrum

2020

A Kövesligethy Radó Szeizmológiai Obszervatórium évkönyve

Kövesligethy Radó Szeizmológiai Obszervatórium Budapest

Közreműködők/Szerzők:

Győri E. (szerk.), Czanik Cs., Czecze B., Czifra T., Fodor Cs., Gribovszki K., Gyarmati A., Kalmár D., Kiszely M., Kovács I. J., Süle B., Szűcs E., Timkó M., Varga P., Wéber Z.

Földfizikai és Űrtudományi Kutatóintézet Sopron 2022

Hivatkozás:

Győri E. (szerk.), Czanik Cs., Czecze B., Czifra T., Fodor Cs., Gribovszki K., Gyarmati A., Kalmár D., Kiszely M., Kovács I.J., Süle B., Szűcs E., Timkó M., Varga P., Wéber Z. 2022: Epicentrum 2020, A Kövesligethy Radó Szeizmológiai Obszervatórium Évkönyve, Földfizikai és Űrtudományi Kutatóintézet, Sopron, 70 o.

Az évkönyv PDF formátumban letölthető a http://www.seismology.hu/index.php/hu/epicentrum oldalról.

A kiadványban szereplő adatok, ábrák, táblázatok a forrásműre való megfelelő hivatkozás mellett szabadon felhasználhatók.

Kiadó: Földfizikai és Űrtudományi Kutatóintézet 9400 Sopron, Csatkai E. u. 6-8.

Felelős kiadó: Dr. Wesztergom Viktor A Földfizikai és Űrtudományi Kutatóintézet igazgatója

Felelős szerkesztő: Dr. Győri Erzsébet Kövesligethy Radó Szeizmológiai Obszervatórium 1112 Budapest, Meredek u. 18.

> ISSN 2939-6085 (nyomtatott) ISSN 2939-6077 (online)

A kiadvány megjelentetését a Petőfi Kulturális Ügynökség Nonprofit Zrt. FIT-SN-2021-0016. számú pályázati támogatása tette lehetővé.

Tartalomjegyzék

Előszó	5
A Magyar Nemzeti Szeizmológiai Hálózat Süle Bálint	7
Infrahangállomás Piszkés-tetőn Czanik Csenge	10
Lokális események Süle Bálint	11
Magyarország területén érezhető földrengések 2020-ban Győri Erzsébet	21
A Földön keletkezett $M \ge 7$ magnitúdójú földrengések 2020-ban Kiszely Márta	23
Földrengés Zágráb térségében – 2020. március 22. Győri Erzsébet, Kovács István János, Szűcs Eszter, Wéber Zoltán	27
A Petrinja földrengéssorozat geológiai háttere és jellemzése Czecze Barbara	38
A 2020. december 29-én bekövetkezett petrinjai földrengés hatásai Győri Erzsébet	47
Amikor Budapest "alszik"… Gyarmati Anett, Győri Erzsébet	57
210 éve történt a móri földrengés Varga Péter, Kiszely Márta	60
Érdekességek Kiszely Márta, Czanik Csenge	64

Előszó

Magyarországon az intézményes földrengéskutatás 1905-ben vette kezdetét, amikor Kövesligethy Radó megalakította a Budapesti Földrengési Obszervatóriumot. Az Obszervatórium már a kezdetektől, 1906-tól kiadta évkönyvét, amiben a Magyar Szent Korona országaiban elhelyezett műszerek paramétereit, az általuk regisztrált hullámok beérkezési időit foglalták össze. Magyarországon ekkor öt helyszínen működtek analóg szeizmométerek (Budapest, Fiume, Ógyalla, Temesvár, Zágráb), és a magyar és francia nyelven kiadott évkönyv terjedelme mindössze 20 oldal volt.

Az azóta eltelt időszak történelmi viharai nem kímélték az állomáshálózatot sem. Az első világháború kitörésekor 10 állomás működött az országban, majd a háborút követő békeszerződések után mindössze négy maradt a jelenlegi határokon belül. Ezek száma nem is változott jelentősen a 90-es évek elejéig, sőt volt olyan időszak, amikor mindössze egy állomás működött. A digitális korszak beköszöntétől kezdve az állomások száma fokozatosan nőtt, és minőségük is jelentős javuláson ment keresztül.

Az Obszervatórium is több szervezeti változáson esett át. Kövesligethy Radó nevét a nagy előd tiszteletére 2012-ben vette fel. Az Obszervatóriumot is magában foglaló Geodéziai és Geofizikai Intézet (GGI) 2021. április 1-ig a Csillagászati és Földtudományi Kutatóközpont (CSFK) része volt. Azóta Földfizikai és Űrtudományi Kutatóintézet (FI) néven önálló intézményként folytatja munkáját.

2020-ban a Kövesligethy Radó Szeizmológiai Obszervatórium (KRSZO) már 41 szélessávú állomást üzemeltetett az ország területén, továbbá 5 ideiglenes állomást telepített a helyi, kis rengések monitorozása céljából. Az állomásszám növekedésével a hálózat érzékenysége, a regisztrált események száma is jelentősen megnőtt, és a földrengések fázisadatait, paramétereit tartalmazó bulletin terjedelme a kezdeti 20 oldalról 2020-ra 879 oldalasra nőtt. A KRSZO a Magyar Nemzeti Szeizmológiai Bulletint minden évben, magyar és angol nyelven egyaránt közzéteszi a honlapján (www.seismology.hu). A Bulletin, aminek célközönsége főként a szakma, tartalmazza a szeizmológiai állomások paramétereit, a feldolgozás menetét, az adott évben bekövetkezett földrengések és más regisztrált események paramétereit, az országban is érezhető rengések intenzitásadatait, valamint az egyes állomásokra beérkező földrengéshullámok összes kimért fázisadatát.

A most első ízben jelentkező évkönyvünk célja, hogy közérthető módon, rövidítve, de mégis szakmai igényességgel bemutassuk az adott évben az intézetünk által működtetett állomáshálózatot, az országban és közvetlen környezetében keletkezett földrengéseket. Beszámolunk arról, hogy ezek közül melyek voltak hazánkban is érezhetők, és hogy hol keletkeztek nagy földrengések a Földön az adott évben. Az adatok közlésén túl néhány cikkben írunk az évhez kötődő eseményekről. A 2020-as év volt a kezdete például a koronavírus világjárványnak, országos figyelmet kaptak a hazánkban is érezhető horvátországi földrengések. Utóbbiaknak három cikket is szentelünk. Visszaemlékezünk a 210 éve kipattant móri földrengésre, és tervezünk egy "Érdekességek" rovatot, amiben a hálózatunk által észlelt egyéb jelenségekről és más történésekről számolunk be. Új évkönyvünknek, amelynek a kiadását évente tervezzük, az "Epicentrum" nevet adtuk, utalva a földrengések forrásának felszíni vetületére.

Kiadványunkat abban a reményben adjuk közre, hogy általa számos hasznos információhoz juttathatjuk a földrengések iránt érdeklődő olvasókat.

A Kövesligethy Radó Szeizmológiai Obszervatórium munkatársai

A Magyar Nemzeti Szeizmológiai Hálózat

Süle Bálint

2020-ban a Kövesligethy Radó Obszervatórium által üzemeltetett Magyar Nemzeti Szeizmológiai Hálózatot 15 állandó és 26 ideiglenes szélessávú állomás alkotta. Utóbbiak a nemzetközi AlpArray és PACASE (Pannonian-Carpathian-Alpine Seismic Experiment) projektek keretében működtek, közülük 15 esetében a németországi DSEBRA (Deutsche Seismologisches Breitband Array) konzorcium biztosította a műszereket.

Az év során további 5 állomás telepí-

tése történt Magyarország két, szeizmikus tekintetben aktívabb területén: 3 rövidperiódusú műszer a Móri-árok környékén, két szélessávú pedig Heves megyében.

Az 1. és 2. táblázat tartalmazza a Magyar Nemzeti Szeizmológiai Hálózat állandó és ideiglenes állomásainak jellemzőit. Elhelyezkedésüket az 1. ábra mutatja. Az állomások egyéb paraméterei (pontos műszerezettség, működési időszak) megtalálható a Magyar Nemzeti Szeizmológiai Bulletin 2020-as kötetében.

	Kód	Helység	Szélesség	Hosszúság	Magasság	Szervezet ^a
	ABAH	Abaújkér	48,2961	21,2397	195	GGI
mások	AMBH	Ambrózfalva	46,3501	20,7258	88	GGI
	BEHE	Becsehely	46,4706	16,7757	289	GGI
	BSZH	Besenyszög	47,2996	20,2670	82	GGI
	BUD	Budapest	47,4831	19,0201	195	GGI
	CSKK	Csókakő	48,3631	18,2605	319	GGI
	EGYH	Egyházaskesző	47,4163	17,3319	129	GGI
lli	KOVH	Kővágótöttös	46,0883	18,0999	270	GGI
, , O	LTVH	Létavértes	47,3849	21,9007	121	GGI
pu	MORH	Mórágy	46,2149	18,6435	135	GGI
VIIa	MPLH	Magyarpolány	47,1712	17,5348	337	GGI
, A	PSZ	Piszkéstető	47,9181	19,8933	940	GEOFON-GGI
	SOP	Sopron	47,6807	16,5567	260	GGI
	TIH	Tihany	46,9001	17,8878	189	MBFSZ-GGI
	TRPA	Tarpa	48,1304	22,5391	113	GGI
	ET1H	Gyöngyösoroszi	47,8791	19,8713	400	RMKI-GGI

1. táblázat. A Magyar	Nemzeti Szeizmoló	giai Hálózat peri	manens állomásainak	jellemzői 2020-ban
-----------------------	-------------------	-------------------	---------------------	--------------------

^aMűködtető szervezet:

GGI - Geodéziai és Geofizikai Intézet, CSFK, Magyarország

GEOFON - GEOFON Global Seismic Network, GFZ, Németország

MBFSZ - Magyar Bányászati és Földtani Szolgálat, Magyarország

RMKI - Részecske- és Magfizikai Intézet, Wigner Fizikai Kutatóközpont, Magyarország

	Kód	Helység	Szélesség	Hosszúság	Magasság	Szervezet ^a
	A260A	Vassurány	47,2834	16,7056	243	DSEBRA-GGI
	A261A	Óhíd	46,9520	17,1486	171	DSEBRA-GGI
	A262A	Szaknyér	46,8642	16,5276	240	DSEBRA-GGI
	A263A	Hollád	46,6408	17,3149	165	DSEBRA-GGI
	A264A	Tarany	46,1597	17,2897	143	DSEBRA-GGI
	A265A	Kaposfüred	46,4245	17,7954	151	DSEBRA-GGI
	A266A	Gyulaj	46,5256	18,2647	219	DSEBRA-GGI
	A267A	Káloz	46,9463	18,4820	116	DSEBRA-GGI
	A271A	Iváncsa	47,1547	18,8341	165	DSEBRA-GGI
ш	A272A	Bölcske	46,7444	18,9654	170	DSEBRA-GGI
AS	A273A	Marócsa	45,9163	17,8161	100	DSEBRA-GGI
AC	HU01A	Pánd	47,3447	19,6203	151	GGI
17	HU02A	Szentlélek	48,1222	20,525	760	GGI
ay	HU03A	Ecseg	47,9039	19,5997	175	GGI
An	HU04A	Ágasegyháza	46,8123	19,4784	116	GGI
Alp	HU05A	Hortobágy	47,5514	21,1376	91	GGI
	HU06A	Eperjes	46,7123	20,5675	79	GGI
	HU07A	Apagy	47,9811	21,9143	118	GGI
	HU08A	Réde	47,6386	18,3824	195	GGI
	HU09A	Baj	47,4313	17,9238	201	GGI
	HU10A	Szokolya	47,8452	19,0186	152	GGI
	HU21A	Pusztamérges	46,3329	19,729	163	DSEBRA-GGI
	HU22A	Érsekhalma	46,3278	19,1311	135	DSEBRA-GGI
	HU23A	Bernáthegy	47,6389	20,2496	158	DSEBRA-GGI
	HU24A	Bélmegyer	46,9099	21,159	120	DSEBRA-GGI
	JOS	Jósvafő	48,4955	20,5374	288	GGI
	ATAN3	Átány	47,6116	20,3561	92	GGI
-di	TENKA	Tenk	47,6543	20,348	100	GGI
gyé	MSW1	Pusztavám	47,3929	18,259	141	GGI
Ш	MSW2	Fehérvárcsurgó	47,3023	18,2109	286	GGI
	MSW3	Tímárpuszta	47,3831	18,1261	199	GGI

2. táblázat. A Magyar Nemzeti Szeizmológiai Hálózat ideiglenes állomásainak jellemzői 2020-ban

^aMűködtető szervezet:

GGI - Geodéziai és Geofizikai Intézet, CSFK, Magyarország DSEBRA - German Seismological Broadband Array

1. ábra. A Magyar Nemzeti Szeizmológiai Hálózat permanens és ideiglenes állomásai 2020-ban

Infrahangállomás Piszkés-tetőn

CZANIK CSENGE

A Kövesligethy Radó Szeizmológiai Obszervatórium a Mátrában található Piszkés-tetőn, egy állandó szeizmológiai állomás (PSZ) mellett egy infrahangállomást (PSZI) is működtet.

Az infrahangot - mint a levegőben terjedő alacsony frekvenciájú nyomásváltozást - mikrobarométerekkel érzékeljük. Egy infrahangállomás mindig több mikrobarométerből áll. Az egyes elemekhez a beérkező jelek időeltolódással érkeznek, ami alapján becsülhető a forrás iránya és a látszólagos sebesség.

A Piszkés-tetőn működő infrahang-

állomás egy közepes, körülbelül 250 méter apertúrájú, négy elemből álló műszercsoport, az egyes elemek elhelyezkedését az 1. ábra mutatja.

Az infrahangállomás fontos szerepet tölt be a robbantások és a földrengések elkülönítésében. A felszíni robbantások (pl. bányarobbantások), a földrengésekkel ellentétben infrahangjelet is keltenek, ezek érzékelése hatékony kiegészítése a szeizmikus megkülönböztető módszereknek. Az infrahangos kutatásokról bővebb információ a www.infrasound.hu oldalon található.

1. ábra. A Piszkés-tetői állomás térképe. A piros háromszögek a négy mikrobarométert, a kék kör a szeizmométert jelölik.

Lokális események

Süle Bálint

A 2020-as évben 1362 eseményt detektált a Magyar Nemzeti Szeizmológiai Hálózat a 45,5-49,0°É szélességi és 16,0-23,0°K hosszúsági körök által határolt területen belül. Ezek közül 373 földrengés, 989 pedig robbantás volt. Paramétereik megtalálhatók a Magyar Nemzeti Szeizmológiai Bulletin 2020-as kötetében. Jelen kiadvány keretein belül csak a földrengéseket mutatjuk be az 1. táblázatban és az 1. ábrán.

Az 1. táblázat *Hely* oszlopában magyarországi földmozgások esetében az epicentrumhoz legközelebb eső település neve, míg külföldi eseményeknél az adott ország elnevezése szerepel.

Az év folyamán az ország határain belül nem keletkezett erősebb földrengés. A detektált események magnitúdója -0,2 és 3,5 között változott. A legerősebb, 3,5-ös erősségű rengés a Zala megyei Beleznán, míg a legkisebb, -0,2-es magnitúdójú esemény a Fejér megyében található Móron fordult elő. Az ilyen gyenge rengések detektálását a Móri-árokban telepített ideiglenes állomáshálózat tette lehetővé.

Az országhatáron kívül márciusban és decemberben Horvátországban keletkezett nagy számú földrengés.

 táblázat. A Magyar Nemzeti Szeizmológiai Hálózat által detektált földrengések paraméterei (φ: szélesség, λ: hosszúság, H: mélység, magnitúdó: lokális magnitúdó (ML).

	Dátum	idő	ϕ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
1	2020.01.02	22:53:02,2	48,404	17,167	4,0	2,3	Szlovákia
2	2020.01.03	22:56:49,0	47,786	18,329	6,6	2,1	Szlovákia
3	2020.01.05	01:13:23,0	46,345	16,956	8,4	3,5	Belezna
4	2020.01.28	11:25:44,2	46,114	21,717	0,0	1,7	Románia
5	2020.01.29	03:41:26,5	47,850	20,952	14,2	1,9	Hejőkürt
6	2020.01.29	13:21:10,7	46,327	21,970	7,8	1,6	Románia
7	2020.01.29	22:20:30,1	46,013	16,070	0,5	2,3	Horvátország
8	2020.02.01	03:47:48,6	47,654	18,047	8,6	2,1	Nagyigmánd
9	2020.02.02	13:10:57,3	46,931	19,220	2,9	2,2	Szabadszállás
10	2020.02.02	13:56:25,0	47,676	18,049	12,2	1,4	Csém
11	2020.02.07	15:54:15,6	45,991	16,062	2,0	1,7	Horvátország
12	2020.02.07	22:28:54,5	45,995	16,050	2,0	1,8	Horvátország
13	2020.02.08	20:42:25,6	48,510	17,270	4,6	2,2	Szlovákia
14	2020.02.11	10:25:34,9	45,987	16,064	2,8	2,3	Horvátország
15	2020.02.20	08:40:32,8	47,982	20,350	3,0	1,5	Szarvaskő
16	2020.02.22	21:01:51,3	47,403	18,282	4,0	1,9	Pusztavám
17	2020.02.24	10:06:17,8	48,173	21,159	0,0	1,5	Legyesbénye
18	2020.02.24	10:06:53,7	48,181	21,148	0,0	1,4	Legyesbénye
19	2020.02.24	10:43:19,7	48,195	21,155	4,7	2,7	Monok
20	2020.02.24	11:15:23,0	48,190	21,138	2,0	1,4	Monok

	Dátum	idő	φ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
21	2020.02.24	11:48:05,9	48,150	21,140	2,0	-	Legyesbénye
22	2020.02.26	08:42:43,3	48,854	21,864	5,0	2,0	Szlovákia
23	2020.02.26	08:46:10,1	48,665	20,795	8,0	1,4	Szlovákia
24	2020.02.26	22:08:46,0	47,418	18,256	2,0	2,0	Pusztavám
25	2020.03.03	07:51:33,4	46,899	21,491	1,5	1,8	Zsadány
26	2020.03.03	10:56:47,2	46,091	22,068	5,0	1,8	Románia
27	2020.03.09	19:44:27,5	47,093	17,370	2,0	-	Nemeshany
28	2020.03.09	20:27:38,9	46,269	22,109	5,0	-	Románia
29	2020.03.10	09:39:51,1	47,169	17,470	5,8	-	Noszlop
30	2020.03.10	12:20:22,4	46,069	22,077	2,0	1,8	Románia
31	2020.03.12	02:37:46,8	46,655	22,123	1,2	2,0	Románia
32	2020.03.14	00:50:56,7	45,997	16,058	5,9	2,8	Horvátország
33	2020.03.14	15:05:35,5	47,113	18,211	4,9	1,9	Jenő
34	2020.03.15	15:06:05,3	45,559	17,655	6,2	2,3	Horvátország
35	2020.03.16	23:44:57,5	48,459	21,183	6,3	1,4	Hernádvécse
36	2020.03.20	17:23:22,1	45,932	16,005	0,4	1,1	Horvátország
37	2020.03.22	05:29:35,4	45,866	16,015	3,7	4,2	Horvátország
38	2020.03.22	05:40:09,9	45,858	16,000	4,9	3,1	Horvátország
39	2020.03.22	08:04:02,0	45,839	16,010	7,3	3,2	Horvátország
40	2020.03.22	08:26:53,8	45,864	16,031	2,0	2,3	Horvátország
41	2020.03.22	08:42:49,0	45,896	16,014	3,4	2,7	Horvátország
42	2020.03.22	08:57:02,0	45,897	16,014	2,8	2,3	Horvátország
43	2020.03.22	09:06:54,1	45,904	16,039	0,3	2,3	Horvátország
44	2020.03.22	09:11:57,6	45,858	16,006	3,8	3,3	Horvátország
45	2020.03.22	09:14:08,9	45,895	16,001	0,4	2,4	Horvátország
46	2020.03.22	10:15:41,4	45,879	16,052	2,0	2,1	Horvátország
47	2020.03.22	11:29:13,5	45,817	16,058	10,8	2,0	Horvátország
48	2020.03.22	11:50:44,0	48,534	22,311	2,7	2,1	Ukrajna
49	2020.03.22	13:34:09,0	45,886	16,018	2,1	2,4	Horvátország
50	2020.03.22	13:59:21,9	45,895	16,030	2,9	2,4	Horvátország
51	2020.03.22	14:04:29,8	45,865	16,028	1,0	2,5	Horvátország
52	2020.03.22	14:16:05,1	45,902	16,008	3,6	2,1	Horvátország
53	2020.03.22	15:15:12,2	45,861	16,013	4,1	3,0	Horvátország
54	2020.03.22	15:45:00,1	45,940	16,116	1,0	2,2	Horvátország
55	2020.03.22	18:21:21,7	45,857	16,017	1,0	2,1	Horvátország
56	2020.03.22	18:43:26,8	45,760	16,040	1,0	2,2	Horvátország
57	2020.03.22	21:01:00,8	45,889	16,023	1,0	2,1	Horvátország
58	2020.03.22	21:41:31,2	45,892	16,002	1,0	1,9	Horvátország
59	2020.03.22	21:43:52,8	45,902	16,004	1,0	2,2	Horvátország
60	2020.03.22	21:55:07,5	45,868	16,043	1,0	2,2	Horvátország
61	2020.03.22	23:01:41,1	45,894	16,009	1,0	1,9	Horvátország
62	2020.03.22	23:44:32,8	45,871	16,012	3,6	2,3	Horvátország
63	2020.03.23	00:04:22,9	45,899	16,009	1,0	1,9	Horvátország
64	2020.03.23	00:46:51,2	45,898	16,018	0,3	2,1	Horvátország
65	2020.03.23	02:00:30,4	45,842	16,014	6,8	3,3	Horvátország
66	2020.03.23	04:15:37,5	45,865	16,039	2,2	2,3	Horvátország

EPICENTRUM

	Dátum	idő	φ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
67	2020.03.23	06:41:57,7	45,903	16,012	1,0	2,1	Horvátország
68	2020.03.23	14:50:35,0	45,895	16,016	1,0	2,0	Horvátország
69	2020.03.23	16:39:18,1	45,893	16,011	1,0	2,0	Horvátország
70	2020.03.23	19:16:49,8	45,884	16,013	1,0	2,2	Horvátország
71	2020.03.23	21:14:10,9	45,890	16,020	1,0	2,1	Horvátország
72	2020.03.23	23:06:25,1	45,884	16,030	1,0	2,0	Horvátország
73	2020.03.24	05:12:40,8	45,904	16,022	0,3	1,9	Horvátország
74	2020.03.24	16:26:17,2	45,898	16,004	1,0	1,8	Horvátország
75	2020.03.24	18:33:18,1	45,867	16,030	2,2	2,4	Horvátország
76	2020.03.24	19:04:48,1	45,884	16,033	2,0	2,1	Horvátország
77	2020.03.24	19:55:40,1	45,873	16,004	3,6	2,7	Horvátország
78	2020.03.25	03:22:22,7	45,874	16,016	2,0	2,9	Horvátország
79	2020.03.25	03:58:29,5	45,894	16,001	2,0	2,3	Horvátország
80	2020.03.25	07:54:29,2	48,270	21,117	0,0	1,2	Pere
81	2020.03.25	14:28:47,7	45,904	16,022	1,0	2,2	Horvátország
82	2020.03.25	22:10:26,2	46,062	21,911	4,7	1,7	Románia
83	2020.03.25	22:21:26,2	45,882	16,004	2,0	2,2	Horvátország
84	2020.03.25	22:30:20,7	45,891	16,043	2,0	2,1	Horvátország
85	2020.03.25	23:59:14,4	45,907	16,021	2,0	2,1	Horvátország
86	2020.03.26	00:17:54,9	45,886	16,019	2,9	2,4	Horvátország
87	2020.03.27	03:09:27,8	45,898	16,001	1,9	2,0	Horvátország
88	2020.03.27	08:58:31,9	46,885	22,806	1,5	2,0	Románia
89	2020.03.27	15:08:00,9	45,904	16,005	1,0	1,9	Horvátország
90	2020.03.27	19:51:17,6	47,389	18,139	2,6	0,8	Nagyveleg
91	2020.03.27	22:04:40,7	45,900	16,021	0,3	1,9	Horvátország
92	2020.03.28	07:42:12,3	45,900	16,041	1,0	1,8	Horvátország
93	2020.03.28	12:48:58,5	45,892	16,034	1,0	2,0	Horvátország
94	2020.03.28	23:34:56,6	47,327	18,167	6,5	0,6	Balinka
95	2020.03.30	04:05:57,5	47,422	19,445	1,8	1,5	Mende
96	2020.03.30	06:01:53,2	47,659	20,293	15,6	2,0	Erdőtelek
97	2020.03.31	09:01:03,1	48,987	20,322	0,0	2,0	Szlovákia
98	2020.04.01	06:41:00,3	45,883	16,015	1,5	2,0	Horvátország
99	2020.04.02	02:32:27,4	45,883	16,010	2,2	1,9	Horvátország
100	2020.04.03	07:58:23,1	45,885	16,014	2,6	2,7	Horvátország
101	2020.04.03	12:47:35,2	45,751	22,795	8,0	1,3	Románia
102	2020.04.03	17:15:45,3	45,898	16,021	0,4	1,9	Horvátország
103	2020.04.03	20:29:46,1	47,390	18,146	1,8	0,6	Nagyveleg
104	2020.04.03	23:26:23,9	45,880	16,024	1,0	1,9	Horvátország
105	2020.04.04	03:42:01,0	45,875	16,060	0,0	1,7	Horvátország
106	2020.04.05	08:05:17,4	45,891	16,030	0,0	2,0	Horvátország
107	2020.04.05	20:30:33,1	45,928	16,068	3,3	2,4	Horvátország
108	2020.04.07	02:12:27,3	45,891	16,043	0,0	1,9	Horvátország
109	2020.04.07	04:57:29,7	45,892	16,027	1,0	1,6	Horvátország
110	2020.04.08	00:54:32,9	45,897	16,030	0,7	2,0	Horvátország
111	2020.04.09	03:30:44,5	45,873	16,017	2,1	1,8	Horvátország
112	2020.04.09	16:19:26,3	45,870	16,028	1,1	2,3	Horvátország

	Dátum	idő	ϕ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
113	2020.04.10	18:33:17,4	47,498	22,291	8,7	1,5	Románia
114	2020.04.11	10:09:57,6	47,382	18,198	5,3	0,2	Mór
115	2020.04.11	18:52:22,3	45,871	16,018	3,0	1,4	Horvátország
116	2020.04.12	22:07:25,5	45,867	16,017	1,0	2,0	Horvátország
117	2020.04.13	03:43:16,3	47,342	18,229	2,8	0,2	Bodajk
118	2020.04.13	07:49:30,9	47,417	18,222	3,4	0,9	Pusztavám
119	2020.04.15	17:28:43,5	45,889	16,014	1,0	1,8	Horvátország
120	2020.04.17	19:40:02,2	45,902	16,017	3,0	1,5	Horvátország
121	2020.04.19	05:45:59,6	48,529	22,418	4,4	3,1	Ukrajna
122	2020.04.23	23:18:27,0	48,761	21,900	5,0	3,7	Szlovákia
123	2020.04.25	00:08:30,2	46,660	22,121	2,4	2,1	Románia
124	2020.04.25	00:15:35,5	46,678	22,157	7,6	1,8	Románia
125	2020.04.25	00:16:36,3	46,612	22,166	2,4	1,5	Románia
126	2020.04.25	22:37:45,6	47,278	21,536	11,3	1,7	Berettyóújfalu
127	2020.04.25	23:28:42,9	46,667	22,112	10,5	2,3	Románia
128	2020.04.27	22:07:08,4	48,533	22,419	5,5	2,9	Ukrajna
129	2020.04.28	08:28:58,7	45,957	22,669	9,1	1,9	Románia
130	2020.04.28	09:34:13,3	46,067	21,900	2,0	1,3	Románia
131	2020.04.30	03:59:04,7	48,820	21,825	7,9	2,8	Szlovákia
132	2020.05.03	20:34:55,0	46,566	21,103	22,6	1,3	Újkígyós
133	2020.05.04	00:26:50,7	47,377	18,263	2,9	-0,0	Csókakő
134	2020.05.04	00:27:38,0	47,376	18,241	7,4	-0,2	Mór
135	2020.05.05	21:51:17,1	47,379	18,244	1,0	-	Mór
136	2020.05.06	17:42:36,9	47,371	18,314	2,0	0,5	Csákberény
137	2020.05.07	13:08:15,1	47,422	18,699	6,2	1,8	Etyek
138	2020.05.07	13:11:25,2	47,370	18,250	2,8	1,5	Csókakő
139	2020.05.07	13:12:28,1	47,390	18,266	6,5	1,1	Csókakő
140	2020.05.07	14:20:53,1	47,391	18,356	1,5	-	Gánt
141	2020.05.07	14:25:54,6	47,377	18,284	3,5	0,6	Csókakő
142	2020.05.07	16:20:02,8	47,383	18,244	5,0	0,7	Mór
143	2020.05.07	18:23:42,4	47,379	18,244	4,0	0,4	Mór
144	2020.05.07	18:58:50,9	47,376	18,256	3,1	0,7	Csókakő
145	2020.05.07	18:59:33,1	47,376	18,252	3,9	0,5	Csókakő
146	2020.05.07	19:03:45,8	47,377	18,243	3,8	1,2	Mór
147	2020.05.07	19:14:22,9	47,378	18,239	4,0	0,1	Mór
148	2020.05.07	19:48:36,6	47,377	18,259	4,0	0,2	Csókakő
149	2020.05.07	21:06:19,6	47,374	18,259	5,8	0,2	Csókakő
150	2020.05.07	21:19:19,3	47,378	18,230	4,0	-0,1	Mór
151	2020.05.13	08:32:30,4	48,576	21,429	10,0	1,6	Szlovákia
152	2020.05.14	05:20:56,5	47,298	18,366	0,1	-	Magyaralmás
153	2020.05.14	18:55:27,7	47,393	18,525	2,0	1,3	Vértesboglár
154	2020.05.16	19:27:30,3	48,677	19,120	7,5	1,8	Szlovákia
155	2020.05.18	14:10:51,9	47,314	18,193	6,8	0,7	Balinka
156	2020.05.20	18:28:19,7	45,891	16,042	4,3	2,2	Horvátország
157	2020.05.20	19:33:10,3	48,084	20,808	3,0	1,0	Miskolc
158	2020.05.22	21:20:07,9	47,366	18,250	3,0	0,6	Csókakő

	Dátum	idő	ϕ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
159	2020.05.23	01:25:39,5	47,363	18,252	2,0	0,2	Csókakő
160	2020.05.23	03:13:55,0	48,518	17,640	3,0	1,0	Szlovákia
161	2020.05.25	22:58:37,7	47,453	18,696	4,0	1,1	Etyek
162	2020.05.25	23:59:21,1	47,373	18,259	1,2	1,6	Csókakő
163	2020.05.26	00:01:24,2	47,357	18,285	2,0	0,2	Csókakő
164	2020.05.26	00:02:05,2	47,362	18,247	1,0	1,1	Csókakő
165	2020.05.26	00:03:03,0	47,364	18,249	1,5	0,2	Csókakő
166	2020.05.26	00:03:21,5	47,358	18,242	2,0	0,5	Csókakő
167	2020.05.26	00:07:31,0	47,358	18,220	3,0	-0,2	Mór
168	2020.05.26	00:12:38,1	47,356	18,304	3,0	-0,3	Csákberény
169	2020.05.26	01:07:24,9	47,356	18,287	1,5	0,5	Csókakő
170	2020.05.27	02:34:01,1	47,359	18,272	2,3	0,5	Csókakő
171	2020.05.27	22:05:34,6	47,358	18,276	2,1	0,5	Csókakő
172	2020.05.30	00:22:08,0	47,357	18,285	1,5	0,5	Csókakő
173	2020.06.01	01:42:31,2	47,436	18,212	6,6	-0,0	Pusztavám
174	2020.06.01	17:24:31,2	47,854	17,246	9,5	2,3	Mosonmagyaróvár
175	2020.06.03	15:51:00,6	46,318	17,309	8,3	3,4	Somogyszob
176	2020.06.03	15:55:43,4	46,310	17,300	14,1	1,3	Somogyszob
177	2020.06.04	22:07:36,8	48,634	22,591	15,8	1,5	Ukrajna
178	2020.06.04	23:44:50,6	47,357	18,275	2,2	0,8	Csókakő
179	2020.06.09	03:31:24,5	47,328	18,168	3,3	1,1	Balinka
180	2020.06.10	02:15:54,1	45,846	16,039	4,6	2,6	Horvátország
181	2020.06.10	22:59:51,0	46,145	16,712	4,0	1,4	Horvátország
182	2020.06.10	23:21:23,3	46,039	16,762	5,0	-	Horvátország
183	2020.06.10	23:26:44,0	46,078	16,709	11,0	-	Horvátország
184	2020.06.10	23:39:45,6	46,043	16,701	11,0	-	Horvátország
185	2020.06.10	23:53:55,4	46,076	16,731	3,9	1,4	Horvátország
186	2020.06.11	00:00:13,0	46,078	16,726	5,0	1,4	Horvátország
187	2020.06.11	00:01:24,1	46,113	16,733	5,0	1,3	Horvátország
188	2020.06.11	01:49:23,8	46,078	16,729	5,0	-	Horvátország
189	2020.06.12	03:49:47,4	47,986	16,512	13,1	1,3	Ausztria
190	2020.06.12	13:35:22,1	46,830	19,128	2,0	1,7	Újsolt
191	2020.06.17	01:37:30,1	47,456	18,241	2,0	0,6	Pusztavám
192	2020.06.19	02:59:34,6	47,672	20,317	11,6	1,1	Erdőtelek
193	2020.06.26	07:12:44,1	45,506	17,338	2,0	-	Horvátország
194	2020.06.26	16:56:12,7	45,544	18,210	5,8	3,7	Horvátország
195	2020.06.29	21:18:12,6	45,890	16,015	2,6	2,1	Horvátország
196	2020.06.30	03:38:01,0	45,890	16,007	0,7	2,3	Horvátország
197	2020.06.30	19:52:05,5	45,906	16,001	0,0	2,0	Horvátország
198	2020.07.01	04:02:58,6	45,887	16,032	2,1	2,5	Horvátország
199	2020.07.04	19:03:35,9	45,576	18,162	15,0	-	Horvátország
200	2020.07.04	23:16:51,9	46,781	19,382	6,0	1,4	Izsák
201	2020.07.05	20:49:03,2	47,605	19,484	13,2	1,0	Bag
202	2020.07.06	09:48:08,8	45,554	17,332	15,7	2,1	Horvátország
203	2020.07.07	02:19:11,6	46,096	16,808	3,0	1,4	Horvátország
204	2020.07.07	02:52:48,0	46,051	16,839	3,0	1,6	Horvátország

205 202.0.7.07 19:12:41,6 47,696 20,381 16,9 1,2 Besenyötelek 206 2020.07.10 04:42:15,7 47,359 18,165 5,1 0,6 Mór 207 2020.07.10 08:31:57,5 46,973 22,379 16,0 2,0 Románia 208 2020.07.11 17:12:36,3 46,214 16,651 0,3 2,0 Horvátország 211 2020.07.18 06:6:00,7 47,669 20,380 13,8 1,5 Tenk 213 2020.07.18 06:6:00,7 47,669 20,380 13,8 1,5 Tenk 214 2020.07.18 10:31:15,7 47,692 20,380 13,8 1,5 Tenk 215 2020.07.25 08:18:29,6 48,588 20,825 0,0 1,7 Szlovákia 216 2020.07.30 13:43:31,2 47,900 16,044 3,1 1,5 Ausztria 212 2020.07.30 13:43:31,2 47,902 16,044		Dátum	idő	φ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
206 2020.07.10 04:42:15,7 47,359 18,165 5,1 0,6 Mór 207 2020.07.10 08:13:57,5 46,973 22,379 16,0 2,0 Románia 208 2020.07.10 17:12:36,3 46,214 16,651 0,3 2,0 Horvátország 210 2020.07.18 17:45:45,1 48,591 17,630 9,1 1,6 Szlovákia 212 2020.07.18 06:06:00,7 47,669 20,380 13,8 1,5 Tenk 213 2020.07.19 18:10:40,8 47,671 20,376 13,9 1,3 Tenk 214 2020.07.25 08:18:29,6 48,588 20,323 1,2 1,1 Erdőtelek 217 2020.07.20 02:10:43,1 48,499 19,258 2,1 1,4 Szlovákia 219 2020.07.30 13:43:31,2 47,000 16,044 3,1 1,5 Austria 210 2020.07.30 13:4:331,4 47,652 20,323	205	2020.07.07	19:12:41,6	47,696	20,381	16,9	1,2	Besenyőtelek
207 2020.07.10 08:13:57,5 46,973 22,379 16,0 2,0 Románia 208 2020.07.11 17:12:36,3 46,214 16,651 0,3 2,0 Horvátország 210 2020.07.16 17:45:45,1 48,591 17,630 9,1 1,6 Szlovákia 211 2020.07.18 06:60:00,7 47,669 20,380 13,8 1,5 Tenk 213 2020.07.18 10:31:15,7 47,692 20,337 6,9 1,4 Erdőtelek 214 2020.07.26 818:29,6 45,588 20,825 0,0 1,7 Szlovákia 216 2020.07.29 01:21:30,3 47,682 20,343 12,2 1,1 Erdőtelek 218 2020.07.30 15:15:51,5 47,664 20,360 12,6 1,3 Tenk 219 2020.07.30 15:15:51,5 47,667 20,323 10,4 1,5 Ausztria 220 2020.07.30 15:15:15,4 47,657 20,323	206	2020.07.10	04:42:15,7	47,359	18,165	5,1	0,6	Mór
208 2020.07.10 08:34:00,1 48,532 17,417 7,0 1,6 Szlovákia 209 2020.07.16 17:45:45,1 48,591 17,630 9,1 1,6 Szlovákia 211 2020.07.18 02:21:53,9 48,417 21,781 0,0 - Szlovákia 212 2020.07.18 00:06:00,7 47,669 20,337 6,9 1,4 Erdőtelek 214 2020.07.19 18:10:40,8 47,671 20,376 13,9 1,3 Tenk 215 2020.07.29 01:22:30,3 47,682 20,343 12,2 1,1 Erdőtelek 218 2020.07.29 02:10:43,1 48,499 19,258 2,1 1,4 Szlovákia 219 2020.07.30 15:15:1,5 47,664 20,360 12,6 1,3 Tenk 221 202.07.30 19:10:03,1 47,055 20,337 10,4 Erdőtelek 223 202.07.30 19:10:03,1 47,655 20,337 1,4	207	2020.07.10	08:13:57,5	46,973	22,379	16,0	2,0	Románia
209 2020.07.11 17:12:36,3 46,214 16,651 0,3 2,0 Horvátország 210 2020.07.18 0:21:15.39 48,417 21.781 0.0 - Szlovákia 212 2020.07.18 0:21:15.39 48,417 21.781 0.0 - Szlovákia 213 2020.07.18 10:31:15.7 47,662 20,330 13,8 1,5 Tenk 214 2020.07.25 08:18:29,6 48,588 20,825 0.0 1,7 Szlovákia 216 2020.07.26 02:28:40,0 45,914 16,020 0.0 1,9 Horvátország 217 2020.07.29 01:22:30,3 47,662 20,343 12,2 1,1 Erdőtelek 218 2020.07.30 15:15:51,5 47,664 20,360 12,6 1,3 Tenk 212 2020.07.30 23:32:34,3 47,672 20,323 10,3 1,4 Erdőtelek 223 2020.08.05 0:7:49:52,3 47,672 20,323 </td <td>208</td> <td>2020.07.10</td> <td>08:34:00,1</td> <td>48,532</td> <td>17,417</td> <td>7,0</td> <td>1,6</td> <td>Szlovákia</td>	208	2020.07.10	08:34:00,1	48,532	17,417	7,0	1,6	Szlovákia
210 2020.07.16 17:45:45,1 48,591 17,630 9,1 1,6 Szlovákia 211 2020.07.18 06:06:00,7 47,669 20,380 13,8 1,5 Tenk 213 2020.07.18 10:31:15,7 47,669 20,337 6,9 1,4 Erdótelek 214 2020.07.19 18:10:40,8 47,671 20,376 13,9 1,3 Tenk 216 2020.07.29 01:22:30,3 47,682 20,343 12,2 1,1 Erdótelek 218 2020.07.29 01:22:30,3 47,682 20,343 12,2 1,1 Erdótelek 219 2020.07.30 15:15:1,5 47,664 20,360 12,6 1,3 Tenk 221 2020.07.30 15:15:1,5 47,672 20,323 10,3 1,4 Erdótelek 223 2020.07.30 15:15:1,5 47,672 20,337 11,4 1,5 Ausztria 224 2020.07.30 03:14:3,6 47,925 21,357 8,4 2,4 Újiráz 223 2020.08.05 01:2:74,9	209	2020.07.11	17:12:36,3	46,214	16,651	0,3	2,0	Horvátország
211 2020.07.18 0:2:1:53.9 48,417 21,781 0,0 - Szlovákia 212 2020.07.18 0:6:0:6:00,7 47,669 20,337 6,9 1,4 Erdőtelek 214 2020.07.18 10:31:15,7 47,692 20,337 6,9 1,4 Erdőtelek 214 2020.07.29 0:13:15,7 48,588 20,325 0,0 1,7 Szlovákia 216 2020.07.29 01:2:2:30,3 47,682 20,343 12,2 1,1 Erdőtelek 218 2020.07.29 01:2:43,1 48,499 19,258 2,1 1,4 Szlovákia 212 2020.07.30 15:15:1,5 47,664 20,30 1,2,6 1,3 Tenk 221 2020.07.30 15:15:1,5 47,655 20,337 11,4 1,5 Kaustria 222 2020.07.30 0:3:3:2:3,4 47,652 20,337 11,4 1,5 Tenk 224 2020.08.05 0:1:27:3,4 46,097 2,061	210	2020.07.16	17:45:45,1	48,591	17,630	9,1	1,6	Szlovákia
212 2020.07.18 06:06:00,7 47,669 20,380 13,8 1,5 Tenk 213 2020.07.18 10:31:15,7 47,692 20,337 6,9 1,4 Erdótelek 214 2020.07.12 18:10:40,8 47,671 20,376 13,9 1,3 Tenk 215 2020.07.26 08:18:29,6 48,588 20,825 0,0 1,7 Szlovákia 216 2020.07.26 20:28:40,0 45,914 16,020 0,0 1,9 Horvátország 217 2020.07.20 01:22:30,3 47,682 20,343 12,2 1,1 Erdőtelek 218 2020.07.30 13:43:31,2 47,900 16,044 3,1 1,5 Ausztria 220 2020.07.30 13:15:15,5 47,664 20,360 12,6 1,3 Tenk 221 2020.07.30 13:127:34,3 47,675 20,323 10,3 1,4 Erdőtelek 223 2020.08.00 07:49:52,3 47,655 20,337 11,4 1,5 Tenk 224 2020.08.06 03:67:39,1<	211	2020.07.18	02:21:53,9	48,417	21,781	0,0	-	Szlovákia
213 2020.07.18 10:31:15,7 47,692 20,337 6,9 1,4 Erdőtelek 214 2020.07.19 18:10:40,8 47,671 20,376 13,9 1,3 Tenk 215 2020.07.25 08:18:29,6 48,588 20,825 0,0 1,7 Szlovákia 216 2020.07.26 20:28:40,0 45,914 16,020 0,0 1,9 Horvátország 217 2020.07.29 01:22:30,3 47,682 20,343 12,2 1,1 Erdőtelek 218 2020.07.30 15:15:51,5 47,664 20,360 12,6 1,3 Tenk 212 2020.07.30 15:15:51,5 47,672 20,323 10,3 1,4 Erdőtelek 23 2020.08.03 09:50:43,6 47,025 21,357 8,4 2,4 Újráz 224 2020.08.06 09:50:43,6 47,025 21,357 8,4 2,4 Újráz 225 2020.08.06 09:50:43,6 47,025 21,357 8,4 2,4 Újráz 226 2020.08.06 09:50:43,6	212	2020.07.18	06:06:00,7	47,669	20,380	13,8	1,5	Tenk
214 2020.07.19 18:10:40,8 47,671 20,376 13,9 1,3 Tenk 215 2020.07.25 08:18:29,6 48,588 20,825 0,0 1,7 Szlovákia 216 2020.07.29 01:22:30,3 47,682 20,343 12,2 1,1 Erdőtelek 218 2020.07.29 02:10:43,1 48,499 19,258 2,1 1,4 Szlovákia 219 2020.07.30 13:43:31,2 47,900 16,044 3,1 1,5 Ausztria 221 2020.07.30 19:10:03,1 47,308 18,340 2,8 1,6 Magyaralmás 222 2020.07.30 23:32:34,3 47,672 20,323 10,3 1,4 Erdőtelek 223 2020.08.02 07:49:52,3 47,672 20,323 10,3 1,4 Erdőtelek 224 2020.08.06 00:47:59,7 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 00:47:59,7 48,554 19,30	213	2020.07.18	10:31:15,7	47,692	20,337	6,9	1,4	Erdőtelek
215 2020.07.25 08:18:29,6 48,588 20,825 0,0 1,7 Szlovákia 216 2020.07.26 20:28:40,0 45,914 16,020 0,0 1,9 Horvátország 217 2020.07.29 01:22:30,3 47,682 20,343 12,2 1,1 Kzlovákia 219 2020.07.30 13:43:31,2 47,900 16,044 3,1 1,5 Ausztria 220 2020.07.30 15:15:51,5 47,662 20,330 12,6 1,3 Tenk 221 2020.07.30 19:10:03,1 47,308 18,340 2,8 1,6 Magyaralmás 222 2020.07.30 19:10:03,1 47,672 20,323 10,3 1,4 Erdőtelek 223 2020.08.02 07:49:52,3 47,655 20,337 11,4 1,5 Remk 224 2020.08.03 09:50:43,6 47,025 21,357 8,4 2,4 Újiráz 227 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 227 2020.08.06 07:41	214	2020.07.19	18:10:40,8	47,671	20,376	13,9	1,3	Tenk
216 2020.07.26 20:28:40,0 45,914 16,020 0,0 1,9 Horvátország 217 2020.07.29 01:22:30,3 47,682 20,343 12,2 1,1 Erdőtelek 218 2020.07.29 02:10:43,1 48,499 19,258 2,1 1,4 Szlovákia 219 2020.07.30 15:15:51,5 47,664 20,360 12,6 1,3 Tenk 220 2020.07.30 19:10:03,1 47,308 18,340 2,8 1,6 Magyaralmás 222 2020.07.30 23:32:34,3 47,672 20,323 10,3 1,4 Erdőtelek 223 2020.07.30 09:50:43,6 47,025 21,357 8,4 2,4 Újíráz 224 2020.08.06 00:47:59,7 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 03:07:39,1 46,098 18,493 0,2 0,5 Kékesd 228 2020.08.06 03:07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.15	215	2020.07.25	08:18:29,6	48,588	20,825	0,0	1,7	Szlovákia
217 2020.07.29 01:22:30,3 47,682 20,343 12,2 1,1 Erdőtelek 218 2020.07.29 02:10:43,1 48,499 19,258 2,1 1,4 Szlovákia 219 2020.07.30 13:43:31,2 47,900 16,044 3,1 1,5 Ausztria 220 2020.07.30 19:10:03,1 47,308 18,340 2,8 1,6 Magyaralmás 221 2020.07.30 19:10:03,1 47,652 20,323 10,3 1,4 Erdőtelek 223 2020.08.02 07:49:52,3 47,655 20,337 11,4 1,5 Tenk 224 2020.08.03 09:50:43,6 47,025 21,357 8,4 2,4 Újiráz 225 2020.08.06 03:07:39,1 46,098 18,493 0,2 0,5 Kékesd 229 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 05:1	216	2020.07.26	20:28:40,0	45,914	16,020	0,0	1,9	Horvátország
218 2020.07.29 02:10:43,1 48,499 19,258 2,1 1,4 Szlovákia 219 2020.07.30 13:43:31,2 47,900 16,044 3,1 1,5 Ausztria 220 2020.07.30 15:15:51,5 47,664 20,360 12,6 1,3 Tenk 221 2020.07.30 23:32:34,3 47,672 20,323 10,3 1,4 Erdőtelek 223 2020.08.02 07:49:52,3 47,655 20,337 11,4 1,5 Tenk 224 2020.08.05 11:27:34,9 46,097 22,061 0,0 1,5 Románia 225 2020.08.06 03:47:59,7 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.08 15:04:51,2 47,878 19,303 12,7 1,1 Legénd 231 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horátország 233 2020.08.15 06:22:35,4	217	2020.07.29	01:22:30,3	47,682	20,343	12,2	1,1	Erdőtelek
219 2020.07.30 13:43:31,2 47,900 16,044 3,1 1,5 Ausztria 220 2020.07.30 15:15:15,5 47,664 20,360 12,6 1,3 Tenk 221 2020.07.30 19:10:03,1 47,308 18,340 2,8 1,6 Magyaralmás 222 2020.07.30 23:32:34,3 47,672 20,337 11,4 1,5 Tenk 223 2020.08.02 07:49:52,3 47,655 20,337 11,4 1,5 Románia 224 2020.08.05 11:27:34,9 46,097 22,061 0,0 1,5 Románia 226 2020.08.06 03:07:39,1 46,098 18,493 0,2 0,5 Kékesd 228 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.08 15:04:51,2 47,878 19,303 12,7 1,1 Legénd 231 2020.08.15 05:14:18,3 46,089 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:2:35,4 <td>218</td> <td>2020.07.29</td> <td>02:10:43,1</td> <td>48,499</td> <td>19,258</td> <td>2,1</td> <td>1,4</td> <td>Szlovákia</td>	218	2020.07.29	02:10:43,1	48,499	19,258	2,1	1,4	Szlovákia
220 2020.07.30 15:15:51,5 47,664 20,360 12,6 1,3 Tenk 221 2020.07.30 19:10:03,1 47,308 18,340 2,8 1,6 Magyaralmás 222 2020.07.30 23:32:34,3 47,672 20,323 10,3 1,4 Erdőtelek 223 2020.08.02 07:49:52,3 47,672 20,337 11,4 1,5 Tenk 224 2020.08.03 09:50:43,6 47,025 21,357 8,4 2,4 Újiráz 225 2020.08.06 03:47:59,7 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 230 2020.08.15 05:14:18,3 46,170 17,152 14,9 - Somogyudvarhely 231 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:22:35,4 47,755 16,22	219	2020.07.30	13:43:31,2	47,900	16,044	3,1	1,5	Ausztria
221 2020.07.30 19:10:03,1 47,308 18,340 2,8 1,6 Magyaralmás 222 2020.07.30 23:32:34,3 47,672 20,323 10,3 1,4 Erdőtelek 223 2020.08.02 07:49:52,3 47,655 20,337 11,4 1,5 Tenk 224 2020.08.03 09:50:43,6 47,025 21,357 8,4 2,4 Újiráz 225 2020.08.05 11:27:34,9 46,097 22,061 0,0 1,5 Románia 226 2020.08.06 00:47:597 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 228 2020.08.08 15:04:51,2 47,878 19,303 12,7 1,1 Legénd 231 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:22:35,4 47,775 18,190 14,5 1,8 Szlovákia 237 2020.08.19 06:58	220	2020.07.30	15:15:51,5	47,664	20,360	12,6	1,3	Tenk
222 2020.07.30 23:32:34,3 47,672 20,323 10,3 1,4 Erdőtelek 223 2020.08.02 07:49:52,3 47,655 20,337 11,4 1,5 Tenk 224 2020.08.03 09:50:43,6 47,025 21,357 8,4 2,4 Újiráz 225 2020.08.05 11:27:34,9 46,097 22,061 0,0 1,5 Románia 226 2020.08.06 03:07:39,1 46,098 18,493 0,2 0,5 Kékesd 228 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 230 2020.08.14 19:23:39,1 46,170 17,152 14,9 - Somogyudvarhely 231 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:58:42,0 47,595 16,222 0,0 1,7 Ausztria 234 2020.08.19 06:5	221	2020.07.30	19:10:03,1	47,308	18,340	2,8	1,6	Magyaralmás
223 2020.08.02 07:49:52,3 47,655 20,337 11,4 1,5 Tenk 224 2020.08.03 09:50:43,6 47,025 21,357 8,4 2,4 Újiráz 225 2020.08.05 11:27:34,9 46,097 22,061 0,0 1,5 Románia 226 2020.08.06 00:47:59,7 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.08 15:04:51,2 47,878 19,303 12,7 1,1 Legénd 230 2020.08.15 05:14:18,3 46,076 22,757 14,8 1,7 Románia 232 2020.08.15 06:22:35,4 47,775 18,190 14,5 1,8 Szlovákia 234 2020.08.19 06:58:42,0 47,595 16,222 0,0 1,7 Ausztria 235 2020.08.19 06:58:42,0 47,432 18,274 4,0 0,3 Pusztavám 238 2020.08.20 03:53:21,8 </td <td>222</td> <td>2020.07.30</td> <td>23:32:34,3</td> <td>47,672</td> <td>20,323</td> <td>10,3</td> <td>1,4</td> <td>Erdőtelek</td>	222	2020.07.30	23:32:34,3	47,672	20,323	10,3	1,4	Erdőtelek
224 2020.08.03 09:50:43,6 47,025 21,357 8,4 2,4 Újiráz 225 2020.08.05 11:27:34,9 46,097 22,061 0,0 1,5 Románia 226 2020.08.06 00:47:59,7 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 03:07:39,1 46,098 18,493 0,2 0,5 Kékesd 228 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.08 15:04:51,2 47,878 19,303 12,7 1,1 Legénd 230 2020.08.15 02:52:14,1 46,170 17,152 14,9 - Somogyudvarhely 231 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:22:35,4 47,775 18,190 14,5 1,8 Szlovákia 234 2020.08.19 06:58:42,0 47,595 16,222 0,0 1,7 Ausztria 235 2020.08.19 06	223	2020.08.02	07:49:52,3	47,655	20,337	11,4	1,5	Tenk
225 2020.08.05 11:27:34,9 46,097 22,061 0,0 1,5 Románia 226 2020.08.06 00:47:59,7 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 03:07:39,1 46,098 18,493 0,2 0,5 Kékesd 228 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.08 15:04:51,2 47,878 19,303 12,7 1,1 Legénd 230 2020.08.15 02:52:14,1 46,376 22,757 14,8 1,7 Románia 232 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:52:35,4 47,775 18,190 14,5 1,8 Szlovákia 234 2020.08.15 16:43:43,7 46,689 18,403 8,3 2,3 Pincehely 235 2020.08.19 08:50:48,8 48,570 20,788 2,0 1,6 Szlovákia 237 2020.08.20 03:5	224	2020.08.03	09:50:43.6	47.025	21.357	8.4	2.4	Úiiráz
226 2020.08.06 00:47:59,7 48,554 19,357 3,9 1,3 Szlovákia 227 2020.08.06 03:07:39,1 46,098 18,493 0,2 0,5 Kékesd 228 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.08 15:04:51,2 47,878 19,303 12,7 1,1 Legénd 230 2020.08.15 02:52:14,1 46,376 22,757 14,8 1,7 Románia 232 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:22:35,4 47,775 18,190 14,5 1,8 Szlovákia 234 2020.08.15 16:43:43,7 46,689 18,403 8,3 2,3 Pincehely 235 2020.08.19 06:58:42,0 47,595 16,222 0,0 1,7 Ausztria 236 2020.08.20 03:53:21,8 48,533 1,45 Szlovákia 239 2020.08.21 14:09:02,5 47,352	225	2020.08.05	11:27:34.9	46.097	22.061	0.0	1.5	Románia
227 2020.08.06 03:07:39,1 46,098 18,493 0,2 0,5 Kékesd 228 2020.08.06 07:41:38,4 48,929 18,255 6,9 1,5 Szlovákia 229 2020.08.08 15:04:51,2 47,878 19,303 12,7 1,1 Legénd 230 2020.08.14 19:23:39,1 46,170 17,152 14,9 - Somogyudvarhely 231 2020.08.15 02:52:14,1 46,376 22,757 14,8 1,7 Románia 232 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:22:35,4 47,775 18,190 14,5 1,8 Szlovákia 234 2020.08.15 06:58:42,0 47,595 16,222 0,0 1,7 Ausztria 235 2020.08.19 08:50:48,8 48,570 20,788 2,0 1,6 Szlovákia 237 2020.08.20 03:53:21,8 48,533 17,535 3,1 1,4 Szlovákia 239 2020.08.21 <t< td=""><td>226</td><td>2020.08.06</td><td>00:47:59.7</td><td>48.554</td><td>19.357</td><td>3.9</td><td>1.3</td><td>Szlovákia</td></t<>	226	2020.08.06	00:47:59.7	48.554	19.357	3.9	1.3	Szlovákia
2282020.08.0607:41:38,448,92918,2556,91,5Szlovákia2292020.08.0815:04:51,247,87819,30312,71,1Legénd2302020.08.1419:23:39,146,17017,15214,9-Somogyudvarhely2312020.08.1502:52:14,146,37622,75714,81,7Románia2322020.08.1505:14:18,346,08817,0793,82,1Horvátország2332020.08.1506:22:35,447,77518,19014,51,8Szlovákia2342020.08.1516:43:43,746,68918,4038,32,3Pincehely2352020.08.1906:58:42,047,59516,2220,01,7Ausztria2362020.08.1908:50:48,848,57020,7882,01,6Szlovákia2372020.08.1922:00:15,447,43218,2744,00,3Pusztavám2382020.08.2003:53:21,848,53317,5353,11,4Szlovákia2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,551 </td <td>227</td> <td>2020.08.06</td> <td>03:07:39.1</td> <td>46.098</td> <td>18,493</td> <td>0.2</td> <td>0.5</td> <td>Kékesd</td>	227	2020.08.06	03:07:39.1	46.098	18,493	0.2	0.5	Kékesd
2292020.08.0815:04:51,247,87819,10312,71,1Legénd2302020.08.1419:23:39,146,17017,15214,9-Somogyudvarhely2312020.08.1502:52:14,146,37622,75714,81,7Románia2322020.08.1505:14:18,346,08817,0793,82,1Horvátország2332020.08.1506:22:35,447,77518,19014,51,8Szlovákia2342020.08.1516:43:43,746,68918,4038,32,3Pincehely2352020.08.1906:58:42,047,59516,2220,01,7Ausztria2362020.08.1908:50:48,848,57020,7882,01,6Szlovákia2372020.08.1908:50:48,848,53317,5353,11,4Szlovákia2382020.08.2003:53:21,848,53317,5353,11,4Szlovákia2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2303:55:48,745,97117,1955,61,8Horvátország2412020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,709<	228	2020.08.06	07:41:38.4	48,929	18.255	6,9	1.5	Szlovákia
230 2020.08.14 19:03:39,1 46,170 17,152 14,9 - Somogyudvarhely 231 2020.08.15 02:52:14,1 46,376 22,757 14,8 1,7 Románia 232 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:22:35,4 47,775 18,190 14,5 1,8 Szlovákia 234 2020.08.15 16:43:43,7 46,689 18,403 8,3 2,3 Pincehely 235 2020.08.19 06:58:42,0 47,595 16,222 0,0 1,7 Ausztria 236 2020.08.19 08:50:48.8 48,570 20,788 2,0 1,6 Szlovákia 237 2020.08.19 28:00:15,4 47,432 18,274 4,0 0,3 Pusztavám 238 2020.08.20 03:53:21,8 48,533 17,535 3,1 1,4 Szlovákia 239 2020.08.21 14:09:02,5 47,352 18,312 5,1 0,8 Csákberény 240 2020.08.23	229	2020.08.08	15:04:51.2	47.878	19.303	12.7	1.1	Legénd
231 2020.08.15 02:52:14,1 46,376 22,757 14,8 1,7 Románia 232 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:22:35,4 47,775 18,190 14,5 1,8 Szlovákia 234 2020.08.15 16:43:43,7 46,689 18,403 8,3 2,3 Pincehely 235 2020.08.19 06:58:42,0 47,595 16,222 0,0 1,7 Ausztria 236 2020.08.19 08:50:48,8 48,570 20,788 2,0 1,6 Szlovákia 237 2020.08.19 08:50:48,8 48,570 20,788 2,0 1,6 Szlovákia 238 2020.08.20 03:53:21,8 48,533 17,535 3,1 1,4 Szlovákia 239 2020.08.21 14:09:02,5 47,352 18,312 5,1 0,8 Csákberény 240 2020.08.23 03:55:48,7 45,971 17,195 5,6 1,8 Horvátország 242 2020.08.23	230	2020.08.14	19:23:39.1	46.170	17.152	14.9		Somogyudvarhely
232 2020.08.15 05:14:18,3 46,088 17,079 3,8 2,1 Horvátország 233 2020.08.15 06:22:35,4 47,775 18,190 14,5 1,8 Szlovákia 234 2020.08.15 16:43:43,7 46,689 18,403 8,3 2,3 Pincehely 235 2020.08.19 06:58:42,0 47,595 16,222 0,0 1,7 Ausztria 236 2020.08.19 08:50:48,8 48,570 20,788 2,0 1,6 Szlovákia 237 2020.08.19 02:00:15,4 47,432 18,274 4,0 0,3 Pusztavám 238 2020.08.20 03:53:21,8 48,533 17,535 3,1 1,4 Szlovákia 239 2020.08.21 14:09:02,5 47,352 18,312 5,1 0,8 Csákberény 240 2020.08.22 02:53:58,1 47,921 16,364 11,8 1,4 Ausztria 241 2020.08.23 03:55:48,7 45,971 17,195 5,6 1,8 Horvátország 242 2020.08.25	231	2020.08.15	02:52:14.1	46.376	22.757	14.8	1.7	Románia
2332020.08.1506:22:35,447,77518,19014,51,8Szlovákia2342020.08.1516:43:43,746,68918,4038,32,3Pincehely2352020.08.1906:58:42,047,59516,2220,01,7Ausztria2362020.08.1908:50:48,848,57020,7882,01,6Szlovákia2372020.08.1922:00:15,447,43218,2744,00,3Pusztavám2382020.08.2003:53:21,848,53317,5353,11,4Szlovákia2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya244202.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország247202.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton248202.0.8.2621:57:44,845,604 </td <td>232</td> <td>2020.08.15</td> <td>05.14.18.3</td> <td>46 088</td> <td>17 079</td> <td>3.8</td> <td>2.1</td> <td>Horvátország</td>	232	2020.08.15	05.14.18.3	46 088	17 079	3.8	2.1	Horvátország
2342020.08.1516:43:43,746,68918,4038,32,3Pincehely2352020.08.1906:58:42,047,59516,2220,01,7Ausztria2362020.08.1908:50:48,848,57020,7882,01,6Szlovákia2372020.08.1922:00:15,447,43218,2744,00,3Pusztavám2382020.08.2003:53:21,848,53317,5353,11,4Szlovákia2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,0	233	2020.08.15	06:22:35.4	47.775	18,190	14.5	1.8	Szlovákia
2352020.08.1906:58:42,047,59516,2220,01,7Ausztria2362020.08.1908:50:48,848,57020,7882,01,6Szlovákia2372020.08.1922:00:15,447,43218,2744,00,3Pusztavám2382020.08.2003:53:21,848,53317,5353,11,4Szlovákia2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,02820,4476,91,2Répáshuta2502020.08.2701:44:10,548,0	234	2020.08.15	16:43:43.7	46.689	18,403	8.3	2.3	Pincehelv
2362020.08.1908:50:48,848,57020,7882,01,6Szlovákia2372020.08.1922:00:15,447,43218,2744,00,3Pusztavám2382020.08.2003:53:21,848,53317,5353,11,4Szlovákia2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,02820,4476,91,2Répáshuta2502020.08.2701:35:59,648,83420,4410,02,0Szlovákia	235	2020.08.19	06:58:42.0	47.595	16.222	0.0	1.7	Ausztria
2372020.08.1922:00:15,447,43218,2744,00,3Pusztavám2382020.08.2003:53:21,848,53317,5353,11,4Szlovákia2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,02820,4476,91,2Répáshuta2502020.08.2701:35:59,648,83420,4410,02,0Szlovákia	236	2020.08.19	08:50:48.8	48.570	20.788	2.0	1.6	Szlovákia
2382020.08.2003:53:21,848,53317,5353,11,4Szlovákia2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,02820,4476,91,2Répáshuta2502020.08.2701:35:59,648,83420,4410,02,0Szlovákia	237	2020.08.19	22:00:15.4	47.432	18.274	4.0	0.3	Pusztavám
2392020.08.2114:09:02,547,35218,3125,10,8Csákberény2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,02820,4476,91,2Répáshuta2502020.08.2702:35:59,648,83420,4410,02,0Szlovákia	238	2020.08.20	03:53:21.8	48.533	17.535	3.1	1.4	Szlovákia
2402020.08.2202:53:58,147,92116,36411,81,4Ausztria2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,02820,4476,91,2Répáshuta2502020.08.2709:35:59,648,83420,4410,02,0Szlovákia	239	2020.08.21	14.09.02.5	47 352	18,312	51	0.8	Csákberény
2412020.08.2303:55:48,745,97117,1955,61,8Horvátország2422020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,02820,4476,91,2Répáshuta2502020.08.2709:35:59.648,83420.4410.02.0Szlovákia	$\frac{-3}{240}$	2020.08.22	02:53:58.1	47.921	16.364	11.8	1.4	Ausztria
2412020.08.2304:37:04,447,76316,1935,52,3Ausztria2432020.08.2500:48:53,647,02418,4701,01,1Soponya2442020.08.2510:01:13,348,55120,7360,01,7Bódvaszilas2452020.08.2515:15:54,847,70918,5545,01,5Bajót2462020.08.2521:30:48,445,88516,0072,02,1Horvátország2472020.08.2607:44:33,446,30717,0836,72,0Csurgónagymarton2482020.08.2621:57:44,845,60418,0885,02,6Horvátország2492020.08.2701:44:10,548,02820,4476,91,2Répáshuta2502020.08.2709:35:59.648.83420.4410.02.0Szlovákia	241	2020.08.23	03:55:48 7	45 971	17 195	5.6	1.8	Horvátország
243 2020.08.25 00:48:53,6 47,024 18,470 1,0 1,1 Soponya 244 2020.08.25 10:01:13,3 48,551 20,736 0,0 1,7 Bódvaszilas 245 2020.08.25 15:15:54,8 47,709 18,554 5,0 1,5 Bajót 246 2020.08.26 07:44:33,4 45,885 16,007 2,0 2,1 Horvátország 247 2020.08.26 07:44:33,4 46,307 17,083 6,7 2,0 Csurgónagymarton 248 2020.08.26 21:57:44,8 45,604 18,088 5,0 2,6 Horvátország 249 2020.08.27 01:44:10,5 48,028 20,447 6,9 1,2 Répáshuta 250 2020.08.27 09:35:59.6 48,834 20.441 0.0 2.0 Szlovákia	242	2020.08.23	04:37:04.4	47.763	16,193	5.5	2.3	Ausztria
244 2020.08.25 10:01:13,3 48,551 20,736 0,0 1,7 Bódvaszilas 245 2020.08.25 15:15:54,8 47,709 18,554 5,0 1,5 Bajót 246 2020.08.25 21:30:48,4 45,885 16,007 2,0 2,1 Horvátország 247 2020.08.26 07:44:33,4 46,307 17,083 6,7 2,0 Csurgónagymarton 248 2020.08.26 21:57:44,8 45,604 18,088 5,0 2,6 Horvátország 249 2020.08.27 01:44:10,5 48,028 20,447 6,9 1,2 Répáshuta 250 2020.08.27 09:35:59.6 48,834 20.441 0.0 2.0 Szlovákia	243	2020.08.25	00:48:53.6	47.024	18,470	1.0	1.1	Soponya
245 2020.08.25 15:15:54,8 47,709 18,554 5,0 1,5 Bajót 246 2020.08.25 21:30:48,4 45,885 16,007 2,0 2,1 Horvátország 247 2020.08.26 07:44:33,4 46,307 17,083 6,7 2,0 Csurgónagymarton 248 2020.08.26 21:57:44,8 45,604 18,088 5,0 2,6 Horvátország 249 2020.08.27 01:44:10,5 48,028 20,447 6,9 1,2 Répáshuta 250 2020.08.27 09:35:59.6 48,834 20.441 0.0 2.0 Szlovákia	244	2020.08.25	10:01:13.3	48.551	20.736	0.0	1.7	Bódvaszilas
246 2020.08.25 21:30:48,4 45,885 16,007 2,0 2,1 Horvátország 247 2020.08.26 07:44:33,4 46,307 17,083 6,7 2,0 Csurgónagymarton 248 2020.08.26 21:57:44,8 45,604 18,088 5,0 2,6 Horvátország 249 2020.08.27 01:44:10,5 48,028 20,447 6,9 1,2 Répáshuta 250 2020.08.27 09:35:59.6 48,834 20.441 0.0 2.0 Szlovákia	245	2020.08.25	15:15:54.8	47 709	18 554	5.0	1.5	Baiót
247 2020.08.26 07:44:33,4 46,307 17,083 6,7 2,0 Csurgónagymarton 248 2020.08.26 21:57:44,8 45,604 18,088 5,0 2,6 Horvátország 249 2020.08.27 01:44:10,5 48,028 20,447 6,9 1,2 Répáshuta 250 2020.08.27 09:35:59.6 48,834 20.441 0.0 2.0 Szlovákia	246	2020.08.25	21:30:48.4	45 885	16,007	2.0	2,1	Horvátország
248 2020.08.26 21:57:44,8 45,604 18,088 5,0 2,6 Horvátország 249 2020.08.27 01:44:10,5 48,028 20,447 6,9 1,2 Répáshuta 250 2020.08.27 09:35:59.6 48,834 20.441 0.0 2.0 Szlovákia	247	2020.08.26	07:44:33 4	46.307	17.083	_,0 6 7	$\frac{-, \cdot}{2, 0}$	Csurgónagymarton
249 2020.08.27 01:44:10,5 48,028 20,447 6,9 1,2 Répáshuta 250 2020.08.27 09:35:59.6 48,834 20.441 0.0 2.0 Szlovákia	248	2020.08.26	21:57:44.8	45.604	18,088	5.0	2.6	Horvátország
250 2020.08.27 09:35:59.6 48.834 20.441 0.0 2.0 Szlovákia	249	2020.08.27	01:44:10.5	48,028	20.447	6.9	<u>-,</u> 1.2	Répáshuta
=	250	2020.08.27	09:35:59.6	48,834	20,441	0.0	2,0	Szlovákia

	Dátum	idő	φ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
251	2020.08.27	11:03:34,3	47,362	18,308	0,1	1,7	Csákberény
252	2020.08.27	11:17:38,1	47,324	18,317	0,7	-	Csákberény
253	2020.08.29	03:11:26,4	47,390	18,141	1,4	0,2	Nagyveleg
254	2020.08.30	05:44:21,2	46,581	21,234	7,1	2,1	Kétegyháza
255	2020.08.31	07:50:24,3	48,725	19,617	10,1	2,0	Szlovákia
256	2020.08.31	07:58:56,8	45,938	22,360	25,9	1,9	Románia
257	2020.09.01	03:59:11,4	48,718	19,614	10,0	1,6	Szlovákia
258	2020.09.01	19:18:58,6	46,941	21,235	8,3	-	Vésztő
259	2020.09.03	01:59:10,6	47,408	19,016	8,9	1,2	Diósd
260	2020.09.03	06:34:53,3	47,670	20,333	11,2	1,6	Tenk
261	2020.09.05	03:54:31,1	47,669	20,342	11,3	-	Tenk
262	2020.09.05	18:51:37,8	48,431	22,661	14,2	2,1	Ukrajna
263	2020.09.08	01:08:12,8	45,929	16,026	9,0	1,6	Horvátország
264	2020.09.08	01:36:25,2	48,745	19,248	10,0	1,3	Szlovákia
265	2020.09.08	11:19:27,0	47,671	20,364	14,5	1,6	Tenk
266	2020.09.08	13:48:21,4	47,696	16,087	0,0	1,9	Ausztria
267	2020.09.10	22:35:31,9	48,784	21,983	10,0	1,6	Szlovákia
268	2020.09.11	18:47:39,7	48,623	20,325	10,0	0,8	Szlovákia
269	2020.09.12	12:46:45,6	45,593	18,048	15,0	-	Horvátország
270	2020.09.13	00:03:51,8	48,571	17,625	5,0	1,8	Szlovákia
271	2020.09.13	02:19:46,3	46,161	16,078	9,4	2,1	Horvátország
272	2020.09.15	01:09:59,8	47,698	16,044	7,9	1,8	Ausztria
273	2020.09.15	20:31:21,3	47,739	16,096	10,3	1,3	Ausztria
274	2020.09.15	23:47:42,4	47,791	16,117	0,0	1,6	Ausztria
275	2020.09.15	23:49:37,1	47,821	16,133	8,7	0,6	Ausztria
276	2020.09.17	11:39:02,7	45,520	17,244	15,0	-	Horvátország
277	2020.09.17	11:40:46,1	46,120	16,729	12,0	1,7	Horvátország
278	2020.09.18	04:44:47,7	47,765	16,121	5,1	1,7	Ausztria
279	2020.09.19	09:22:17,6	47,800	16,119	9,0	1,4	Ausztria
280	2020.09.20	13:01:12,9	45,873	16,033	4,5	2,2	Horvátország
281	2020.09.20	16:37:36,5	47,779	16,078	9,0	1,8	Ausztria
282	2020.09.24	17:07:40,1	46,917	21,116	11,9	1,7	Körösladány
283	2020.09.24	22:16:44,2	46,901	21,202	10,1	2,0	Bélmegyer
284	2020.09.25	09:11:26,2	45,534	17,843	15,0	-	Horvátország
285	2020.09.25	12:23:42,2	47,773	16,097	7,0	1,9	Ausztria
286	2020.09.25	13:10:14,6	47,787	16,025	9,0	-	Ausztria
287	2020.09.25	19:21:07,6	48,579	17,644	5,8	1,9	Szlovákia
288	2020.09.25	20:35:02,5	47,797	16,224	9,3	1,7	Ausztria
289	2020.09.27	04:32:38,6	46,239	16,646	11,0	1,8	Horvátország
290	2020.09.27	05:12:24,2	46,196	16,681	0,0	1,6	Horvátország
291	2020.09.28	11:01:53,6	45,796	21,845	2,0	-	Románia
292	2020.09.29	00:05:28,5	47,678	20,336	13,6	1,2	Erdőtelek
293	2020.09.29	08:01:18,4	45,963	17,795	14,4	1,4	Szentegát
294	2020.09.29	12:54:32,9	45,971	17,789	14,1	1,3	Bürüs
295	2020.09.30	00:42:19,0	45,973	17,797	12,6	1,0	Szentegát
296	2020.10.02	01:11:37,0	47,458	18,876	3,0	1,2	Törökbálint

	Dátum	idő	φ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
297	2020.10.02	16:40:37,2	45,837	16,021	1,9	2,5	Horvátország
298	2020.10.10	02:17:42,7	48,057	20,856	3,0	0,8	Kistokaj
299	2020.10.10	03:55:45,0	48,070	20,856	3,5	2,2	Alsózsolca
300	2020.10.10	04:01:36,7	48,039	20,854	3,0	1,3	Kistokaj
301	2020.10.10	12:37:37,7	47,425	19,770	9,9	2,4	Nagykáta
302	2020.10.11	06:26:41,8	47,436	19,812	8,6	1,6	Nagykáta
303	2020.10.11	14:27:28,9	45,971	17,791	13,7	1,3	Bürüs
304	2020.10.12	03:28:47,3	48,045	20,853	3,0	0,8	Kistokaj
305	2020.10.13	03:49:59,7	45,776	16,894	6,3	2,1	Horvátország
306	2020.10.13	16:10:47,7	48,387	19,654	10,0	1,2	Szlovákia
307	2020.10.14	14:35:30,0	48,165	21,312	12,0	1,1	Bodrogkisfalud
308	2020.10.15	22:22:58,4	47,849	16,222	7,8	2,0	Ausztria
309	2020.10.16	07:26:48,3	47,882	20,476	5,0	-	Szomolya
310	2020.10.17	17:21:44,5	48,089	20,869	10,0	-	Alsózsolca
311	2020.10.19	09:50:05,1	48,075	20,833	5,8	2,9	Alsózsolca
312	2020.10.19	18:43:01,4	47,668	20,332	12,3	1,3	Tenk
313	2020.10.21	15:44:47,4	48,042	20,852	3,0	1,1	Kistokaj
314	2020.10.23	07:51:32,7	46,967	22,306	0,0	1,9	Románia
315	2020.10.23	19:24:44,6	48,385	22,320	14,1	1,5	Ukrajna
316	2020.10.23	23:49:29,9	48,044	20,862	2,0	-	Kistokaj
317	2020.10.24	22:52:33,0	48,049	20,866	5,0	-	Kistokaj
318	2020.10.25	09:28:33,3	47,668	20,323	12,3	1,7	Erdőtelek
319	2020.10.28	09:18:40,4	47,528	19,943	13,9	2,2	Jászjákóhalma
320	2020.10.28	22:58:07,1	46,181	16,642	7,9	1,9	Horvátország
321	2020.11.02	13:31:31,6	46,650	22,064	9,2	2,7	Románia
322	2020.11.08	19:34:26.0	47.632	20.372	14.0	1.2	Átány
323	2020.11.10	19:33:18.1	47.379	18.267	3.2	0.5	Csókakő
324	2020.11.10	20:17:54.8	47.379	18.271	4.4	0.7	Csókakő
325	2020.11.10	21:36:15.5	47.380	18.256	3.0	0.4	Csókakő
326	2020.11.14	00:16:31.6	48,967	21.436	21.4	- , .	Szlovákia
327	2020.11.15	22:35:11.9	46.924	21.218	5.9	2.4	Vésztő
328	2020.11.15	22:38:14.5	46.938	21.052	12.8	1.3	Körösladány
329	2020.11.16	18:31:11.6	46.925	21.200	10.8	2.0	Vésztő
330	2020.11.19	14:51:35.1	48.226	22.074	16.7	2.1	Kisvárda
331	2020.11.20	21:02:11.9	45.630	21.249	12.0	2.0	Románia
332	2020.11.21	12:57:42.7	48.545	22.773	5.0		Ukraina
333	2020.11.21	18:26:41.5	47.791	16,175	9.0	-	Ausztria
334	2020.11.21	21:31:03.8	47,428	18.233	5.0	0.4	Pusztavám
335	2020.11.24	10:54:56.0	48,598	20.645	23.3	0.9	Szlovákia
336	2020.11.30	08:42:31.8	47.864	18,748	12.3	1.8	Szlovákia
337	2020.11.30	12:29:32.7	46.133	16.367	2.0	1.9	Horvátország
338	2020.11.30	19:18:37.4	47,697	18,393	10.5	1.9	Dunaszentmiklós
339	2020.12.02	03:42:50.0	47,379	18,231	8.7	1.2	Mór
340	2020.12.02	04:43:33.9	48,115	19.074	10.0	-	Szlovákia
341	2020.12.02	13:15:33.3	47,650	20,325	10.8	1.5	Tenk
342	2020.12.03	01:51:00,4	47,940	20,221	2,0	0,9	Sirok

	Dátum	idő	ϕ (°É)	λ (°K)	<i>H</i> (km)	ML	Hely
343	2020.12.04	12:46:49,1	48,909	21,562	13,8	2,1	Szlovákia
344	2020.12.06	14:02:18,3	47,349	18,193	3,0	0,9	Mór
345	2020.12.08	04:25:10,6	45,834	17,950	5,0	1,2	Lúzsok
346	2020.12.13	11:03:59,0	48,002	19,999	8,0	2,3	Mátraballa
347	2020.12.13	12:08:59,5	48,006	20,020	4,4	1,9	Mátraballa
348	2020.12.13	19:37:50,0	46,943	21,202	5,1	2,5	Vésztő
349	2020.12.14	01:57:34,0	47,639	16,025	7,0	1,5	Ausztria
350	2020.12.15	02:34:34,2	46,055	17,106	11,1	2,1	Horvátország
351	2020.12.15	03:13:06,4	46,004	17,031	3,0	1,6	Horvátország
352	2020.12.16	00:15:37,4	45,695	18,021	5,0	2,2	Horvátország
353	2020.12.16	05:01:21,5	45,693	21,741	5,0	2,3	Románia
354	2020.12.16	09:39:15,8	45,730	21,648	5,0	2,6	Románia
355	2020.12.19	15:16:36,6	45,730	18,027	5,0	1,9	Horvátország
356	2020.12.20	17:43:35,6	45,739	18,026	15,0	1,3	Horvátország
357	2020.12.23	10:25:52,7	47,834	16,263	12,9	1,6	Ausztria
358	2020.12.23	13:24:03,7	48,808	22,085	5,0	-	Szlovákia
359	2020.12.24	09:57:44,4	47,400	18,192	3,6	2,2	Mór
360	2020.12.24	15:34:00,7	48,730	17,881	1,0	1,9	Szlovákia
361	2020.12.24	16:21:17,6	48,005	20,945	5,0	-	Sajóhídvég
362	2020.12.25	05:22:46,1	47,214	17,581	2,8	1,3	Bakonyjákó
363	2020.12.25	05:42:33,9	47,262	17,525	6,3	2,0	Pápakovácsi
364	2020.12.26	00:59:20,7	45,728	18,020	15,0	1,3	Horvátország
365	2020.12.26	16:47:01,1	47,380	18,235	5,0	0,7	Mór
366	2020.12.28	10:43:29,4	45,689	18,026	3,0	2,1	Horvátország
367	2020.12.29	15:16:33,1	45,527	16,312	10,0	3,1	Horvátország
368	2020.12.29	18:21:08,8	45,503	16,204	15,6	3,7	Horvátország
369	2020.12.31	02:11:21,9	47,373	18,437	2,1	1,7	Csákvár
370	2020.12.31	02:30:46,4	47,358	18,385	1,0	0,4	Gánt
371	2020.12.31	03:31:29,1	47,371	18,451	7,0	0,9	Csákvár
372	2020.12.31	03:33:47,7	47,318	18,516	3,0	1,0	Lovasberény
373	2020.12.31	06:04:32,8	47,368	18,433	3,0	1,2	Csákvár

1. ábra. Magyarországon és közvetlen környezetében keletkezett földrengések 2020-ban

Magyarország területén érezhető földrengések 2020-ban

Győri Erzsébet

A 2020-as év folyamán Magyarország területén 16 földrengést érzékelt a lakosság (1. táblázat), amelyek közül tíz Magyarországon, hat pedig Horvátországban pattant ki. Eloszlásuk az 1. ábra térképén látható.

Márciusban Zágráb, decemberben pedig Petrinja közelében keletkeztek jelentős földrengések Horvátországban, melyeket számos elő- és utórengés is kísért. Ezek nagy része a KRSZO bulletin (a 45,5-49,0°É szélességi és 16,0-23,0°K hosszúsági körök által határolt) területén kívül esett, viszont közülük többet érzékelt a lakosság Magyarországon is. Fészekparamétereiket és a hazánk területére érvényes maximális intenzitást az 1. táblázat mutatja.

A földrengések hatását az érintett településekre az obszervatórium honlapján található internetes kérdőívekkel mértük fel. Az intenzitások meghatározása az Európai Makroszeizmikus Skála (EMS) (Grünthal, 1998) alapján történt. Az egyes településekre meghatározott intenzitás értékek a KRSZO honlapján (http://www. seismology.hu/index.php/hu/szeiz micitas/foeldrengesek-evkoenyve), a Magyar Nemzeti Szeizmológiai Bulletin 2020-as kötetében találhatók meg (Süle et al. 2022).

. . . .

Dátum	ъđ	↓ (°É)	$(\circ \mathbf{V})$	Mélység Magnitúdó		Maximális
Datum	Iuo	φ(E)	Λ(Κ)	(km)	(ML)	intenzitás (EMS)
2020.01.05	01:13:23.0	46,3451	16,9556	8,4	3,5	V
2020.03.22	05:24:03.3	45,8234	15,9888	14,4	5,8	V
2020.06.01	17:24:31.2	47,8541	17,2463	9,5	2,3	III-IV
2020.06.03	15:51:00.6	46,3176	17,3092	8,3	3,4	V
2020.08.15	16:43:43.7	46,6894	18,4030	8,3	2,3	III-IV
2020.10.10	03:55:45.0	48,0696	20,8560	3,5	2,2	IV-V
2020.10.10	12:37:37.7	47,4247	19,7698	9,9	2,4	IV
2020.10.19	09:50:05.1	48,0750	20,8334	5,8	2,9	V
2020.12.13	11:03:59.0	48,0016	19,9991	8,0	2,3	IV
2020.12.25	05:22:46.1	47,2137	17,5813	2,8	1,3	III
2020.12.25	05:42:33.9	47,2619	17,5254	6,3	2,0	IV
2020.12.28	05:28:07.7	45,4103	16,2621	8,9	5,5	IV
2020.12.28	06:49:56.1	45,3828	16,1581	9,4	4,8	IV
2020.12.29	11:19:54.9	45,3548	16,2875	12,4	6,7	V-VI
2020.12.30	05:15:04.5	45,4337	16,2109	3,4	5,2	III-IV
2020.12.30	05:26:40.2	45,3990	16,1515	7,0	5,0	IV

1. táblázat. A magyar lakosság által érzékelt földrengések fészekparaméterei

1. ábra. A 2020-ban Magyarországon érezhető földrengések epicentrumai

A Földön keletkezett $M \ge 7$ magnitúdójú földrengések 2020-ban

Kiszely Márta

Általánosan ismert tény, hogy pusztító erejű földrengések ritkábban, kisebb rengések gyakrabban keletkeznek. A Földön évente erős ($6 \le M < 7$) földrengés átlagosan 120 esetben, míg nagyon erős ($7 \le M < 7,9$) rengés 18-szor fordul elő. Óriási, 8-asnál nagyobb magnitúdójú rengés évente átlagosan egyszer várható, de ilyen erős rengés nem történt a 2020-as év során.

A 2020-as évben 9 nagyon erős $M \ge 7$ földrengés keletkezett a Földön, amelyek paramétereit az 1. táblázat tartalmazza. Ezekről is elmondható, hogy a mintegy 120 év statisztikáját ismerve az átlagosnál kevesebb ilyen erősségű rengés történt az évben. Helyüket az 1. ábrán látható térkép mutatja (Forrás: Egyesült Államok Földtani Intézete (USGS)).

A földrengések méretét jellemző magnitúdóskála logaritmikus léptékű, azaz a skálán 1 fok eltérés kb. 33-szoros energiakülönbséget jelent. A 2. ábra a Földön a 2020-as év során kipattant $M \ge 4$ földrengések számát és a keletkezésük során felszabadult összeg energiát mutatja, 5-naponként összegezve. Látható, hogy a földrengések során felszabadult energia túlnyomó részét a $M \ge 7$ földrengések adják (Lásd az ábra felső részét!).

A hetes és annál nagyobb magnitúdójú földrengések közül hozzánk legközelebb a görögországi, 2020. október 30-án kipattant, M = 7 erősségű földrengés volt, amit az alábbiakban részletesen ismertetünk.

A Számosz szigeten kipattant földrengés az Égei-tenger keleti részén, az Eurázsiai-lemezen belül keletkezett, és jelentős károkat okozott. Izmirben, Törökország harmadik legnagyobb városában a jelentések szerint a földrengést követően legalább 20 épület dőlt össze. Sok út és fal megrepedt.

	Dátum	Idő	₼ (° É)) (°K)	Holy	Mélység	Magnitúdó
	Datum	luo	φ(Ľ)	Λ(Κ)	TICTy	(km)	(Mw)
1	2020-01-28	19:10:23	19,42	-78,76	Jamaica	6	7,7
2	2020-02-13	10:33:44	45,52	148,84	Kuril-szigetek	150	7
3	2020-03-25	02:49:20	48,84	157,75	Kuril-szigetek	490	7,5
4	2020-06-18	12:49:53	-33,29	-177,85	Kermadec-szk.	10	7,4
5	2020-06-23	15:29:04	15,88	-96,0	Mexikó	20	7,4
6	2020-07-17	02:50:22	-7,83	147,77	Új-Guinea	73	7,0
7	2020-07-22	06:12:44	55,07	-158,59	Alaszka	28	7,8
8	2020-10-19	20:54:38	54,6	-159,62	Alaszka	28	7,6
9	2020-10-30	11:51:27	37,89	26,78	Görögország	21	7,0

1. táblázat. A 2020-as évben a Földön kipattant $M \ge 7$ földrengések

1. ábra. A 2020-as évben kipattant $M \ge 7$ földrengések epicentrumai a Földön

A rengést az epicentrumtól 500 kmes távolságban is érezni lehetett. A főrengés utáni 32 órán belül már több, mint 700 utórengést detektáltak, amelyek közül az erősebbek különösen veszélyesek lehettek a már sérült épületekre.

A térképeken általában egyetlen pontként ábrázolják a földrengéseket, azonban egy ilyen méretű földrengés során egy nagyobb vetőfelületen történik az elmozdulás. Egy M = 7 nagyságú által érintett vetőfelület 50 x 20 km kiterjedésű is lehet.

A földrengést szökőár is követte, amely számos közeli, part menti területet sújtott. A közösségi médiában elérhető felvételek alapján a víz először visszavonult a partokról, sok csónakot kirántva a kikötőből a tengerre.

2. ábra. A 2020-as évben kipattant $M \ge 4$ földrengések száma a Földön, és a keletkezésük során felszabadult energia

3. ábra. A Számosz szigeten 2020. október 30-án kipattant nagyerejű földrengés epicentruma a környező litoszféra-lemezek határaival. Az ábrán szereplő nyilak a lemezek mozgási irányát jelölik, a nyilak melletti számok pedig a mozgások éves sebességét mm/s mértékegységben

Nem sokkal később a víz visszatért, és valószínűleg elöntötte az 1-2 méterrel a tenger szint felett található part menti területeket is, így közöttük sok tengerparti várost. A legnagyobb szökőárhullámot mintegy 30 km-re északra az epicentrumtól, Sığacık városban mérték, ahol elérte az 5 m-t. A kár óriási volt (Aksoy, 2021).

Az Égei-tengeren gyakoriak a mérsékelt és erős földrengések. A 2020. október 30-i földrengés 250 km-es körzetében 29 hatos magnitúdójúnál nagyobb rengés keletkezett az elmúlt 100 évben. A terület legnagyobb műszeresen dokumentált földrengése M = 7,7-es erősségű volt, ami 1956 júliusában pattant ki. Ez volt a XX. század legnagyobb földrengése Görögországban. A közelmúltban, 2017. július 20án egy M = 6,6-os erősségű földrengés történt a 2020. október 30-i eseménytől délkeletre, a törökországi Bodrum közelében.

Az Égei-tenger szeizmikusan igen aktív régió, a területet összetett lemeztektonika jellemzi (3. ábra). Számos jelentős lemezhatár húzódik itt. Északról az Északanatóliai-törésvonal határolja, amely Törökország északi részén megy keresztül, ahol az Anatóliai-lemez elcsúszik az Eurázsiai-lemez mellett. Déli peremén pedig az Afrikai-lemez 5-10 mm/év sebességgel észak felé tolódik az Égei-tengerilemez felé és az Égei-tenger alá bukik, időnként hatalmas földrengéseket és szökőárakat okozva, beleértve az i.sz. 365-os krétai földrengést. Az Égei-tengeri-lemez jelenleg körülbelül 37 mm/év sebességgel mozog délnyugati irányba az Afrikailemezzel szemben, ami erős szeizmikus aktivitást okoz Görögország északi és középső részén.

4. ábra. Az ábrán a Kövesligethy Radó Szeizmológiai Obszervatórium piszkés-tetői szeizmogramja látható a görögországi földrengés napján. Az állomás 1170 km-re helyezkedik el az epicentrumtól. Ilyen nagyon erős földrengés átlagosan 18 pattan ki a Földön 1 év alatt. Aznap több nagyobb földrengés is történt, köztük egy M = 5,3 erősségű görögországi utórengés.

Földrengés Zágráb térségében 2020. március 22.

Győri Erzsébet, Kovács István János, Szűcs Eszter, Wéber Zoltán

2020. március 22-én egy 5,4-es magnitúdójú földrengés keletkezett a horvát főváros, Zágráb közelében. A rengést Magyarországon, a Dunántúl nagy részén is érzékelte a lakosság. A cikkben összefoglaljuk a rengés paramétereit, keletkezésének okait, és az okozott hatásokat.

Bevezetés

2020. március 22-én, világidőben (UTC) 5:24-kor, helyi idő szerint 6:24-kor erős földrengés ébresztette a zágrábiakat. A rengést Horvátország mellett Ausztriában, Magyarországon, Szlovéniában és Bosznia-Hercegovinában is több helyen érezték. Az USA Geológiai Szolgálatának (USGS, https://earthquake.usgs.gov/) tájékoztatása szerint a főrengés közel 10 kmes mélységben pattant ki, momentum magnitúdója Mw5, 4 volt.

Zágráb földrengések szempontjából viszonylag veszélyeztetettebb részén található térségünknek. Ennek oka, hogy Zágráb a régiót felépítő 3 kőzetlemez (Alcapa, Tisza és Dinaridák) találkozásánál található (1. ábra).

A horvát főváros közelében találkoznak a főbb szerkezeti zónák, a Periadriai, a Közép-magyarországi és a Pannonmedencét DNY-ról határoló Déli peremi vetőzóna. A földrengések kiváltó oka, hogy az Adriai mikrolemez az óramutató járásával ellentétes irányban forog, miközben É-i irányba mozog és ütközik a tőle É-ÉK-re található kőzetlemezekkel. Ennek következtében a lemezekben folyamatosan jelentős feszültség halmozódik fel, ami esetenként erős földrengések formájában oldódik ki a kéreg középső, felső részében.

Zágráb és tágabb környezetének szeizmicitását az így kialakuló feszültségek határozzák meg (Ivancic et al., 2001). Horvátország Pannon-medencére eső területe kevésbé aktív. Az 1. ábra a régió szeizmicitását is bemutatja a 1964.01.01 és 2019.12.31 közötti időszakban, az International Seismological Centre (ISC, www.isc.ac.uk) bulletinje alapján. Ebben az időszakban a régió kis és közepes méretű földrengésekkel volt jellemezhető. Az események túlnyomórészt sekély fészekmélységű, a felső kéregben kipattant földrengések voltak. Az utóbbi idők legnagyobb földrengése az 1998-ban kipattant szlovéniai Mw5,7 Bovec-Krn földrengés volt, amit több mint 400 utórengés követett (Bajc et al., 2001). Azonban korábban, a történelmi múltban előfordultak a Medvednica-Zágráb térségben nagyobb földrengések is. Erős szeizmikus aktivitás volt tapasztalható a XVII., XIX. és a XX. század elején.

Erős földrengés történt 1775. október 13-án, melynek epicentrális intenzitása a Mercalli-Cancani-Sieberg (MCS) skálán mért VII–es és VIII-as értékek közötti volt. Az 1880-as nagy zágrábi földrengés (Mw6, 3) két ember halálát okozta, de szinte minden épületet megrongált Zágrábban (Atalić et al. 2021). Ennek az 1880. november 9-i Mw6, 3-as földrengésnek az intenzitása VIII-as volt az MCS skálán.

 ábra. Zágráb környezetének tektonikai felépítése és a szeizmicitás 1964 és 2019 között. (Jelölések: PAV - Periadriai vonal, DPV - Déli peremi vetőzóna; törésvonalak: Sumanovac és Dudjak (2016) után)

Az esemény epicentruma a Zágrábtól 17 km-rel ÉK-re található Planina faluban volt, ahol szinte az összes épület megsemmisült. Az akkoriban körülbelül 30.000 lakosú Zágrábban hivatalosan 1758 ház megrongálódását jelentették, amelyek 13%-a teljesen összeomlott (Simović 2000; Herak et al., 2009). A Száva folyó völgyében fekvő falvakban talajfolyósodást és iszapvulkánokat figyeltek meg. A földrengést nagy területen, még a mintegy 400 km-re lévő Dubrovnikban is érezték. A zágrábi térségben két másik, károkat okozó földrengés 1905-ben (Mw5, 6) és 1906ban (Mw6, 1) volt, amelyek során templomok és lakóházak dőltek romba.

A földrengés paraméterei, tektonikai magyarázata

2020. március 22-én, világidőben (UTC) 5:24-kor, helyi idő szerint 6:24-kor keletkezett földrengés epicentruma Zágráb belvárosától 7 km-re északra, a Medvednica hegységben volt (2. ábra).

A főrengést 37 perccel később egy erős (Mw4, 7), majd később számos utórengés követte. A rengést követő egy hónapon belül több mint 1000 utórengést regisztráltak (Atalić et al. 2021).

2. ábra. Az utórengések eloszlása a 2020. március 22-i földrengést követő egy évben

A földrengés keletkezésének mechanizmusáról igen értékes kvantitatív információk nyerhetők az utórengések térbeli (2. ábra) és időbeli eloszlásából, a fészekmechanizmus-megoldásokból és a maradandó felszíni deformációk műholdas megfigyeléséből.

Az ESA Copernicus földmegfigyelő program Sentinel-1 műholdpárja mikrohullámú távérzékelést végez. A különböző időpontokban készített felvételek fázisinformáció-változásai alapján (interferencia elve) a bekövetkezett felszíni deformációk igen nagy pontossággal megfigyelhetők. Ezzel a műholdradarinterferometriás eljárással közel 700 kmes magasságból a nagyerejű földrengések okozta elmozdulások kedvező feltételek mellett akár néhány mm-es pontossággal térképezhetők.

Az É–D-i longitudinális pályán mozgó műholdas radar missziók a haladás irányára merőlegesen, K–Ny-i irányban végzik a megfigyelést, így észleléseikből elsősorban ilyen irányú deformációk határozhatók meg. Az eltérő műhold-geometriájú felvételek alapján a deformációk vertikális illetve horizontális irányú összetevői is meghatározhatók (3. és 4. ábrák). A számításokból kiderül, hogy a domináns irányú elmozdulás emelkedés volt, aminek mértéke a 4 cm-t is elérte. Emellett kisebb mértékű (1-2 cm) nyugati irányú elmozdulás is megfigyelhető volt a területen.

3. ábra. A március 22-i, Zágráb mellett kipattant földrengéshez kapcsolódó Sentinel-1 felvételekből meghatározott vertikális irányú deformációk

4. ábra. A március 22-i, Zágráb mellett kipattant földrengéshez kapcsolódó Sentinel-1 felvételekből meghatározott horizontális (kelet-nyugat, pozitív irányú elmozdulás: kelet) irányú deformációk

A mélyben uralkodó feszültségállapotokról a földrengés fészekmechanizmusa ad információt. Megmutatja a mélyben található törésvonalak térbeli elhelyezkedését és hozzájárul a rengés kinematikájának megismeréséhez, valamint a rengések keletkezéséhez vezető kőzetfeszültségek feltérképezéséhez. A fészekmechanizmus megoldásokról készült ábrákat a szeizmológiai szlengben "strandlabdának" nevezzük. Az egyes vetődési típusokhoz jellegzetes mintázatú strandlabda tartozik, így ezek alapján könnyen meg lehet állapítani a vetődés fő tulajdonságait (5. ábra).

5. ábra Néhány jellegzetes vetőtípus és a hozzájuk tartozó strandlabda

A 2020. március 22-én kipattant zágrábi földrengés fészekmechanizmusát ábrázoló strandlabda (6. ábra) azt mutatja, hogy a rengés során a vetősík egyik oldalán a kőzettömb felfelé tolódott a vetősík másik oldalához képest. A vetősík KÉK-NyDNy irányultságú, dőlése pedig vagy DDK, vagy ÉÉNy. Mindebből arra is következtethetünk, hogy a földrengést okozó kőzetfeszültség kompressziós jellegű és északias irányú.

6. ábra. 2020. március 22-én, Zágráb térségében kipattant földrengés fészekmechanizmusa (forrás: USGS)

A mai modern szeizmológiában a fészekmechanizmust egyre gyakrabban a szeizmológiai állomásokon regisztrált teljes hullámformák (szeizmogramok) felhasználásával határozzuk meg. Ezzel a módszerrel akkor is megbízható megoldáshoz juthatunk, ha a vizsgált földrengést csak viszonvlag kevés műszer regisztrálta. Bármilyen módszert is alkalmazzunk azonban, kizárólag a szeizmogramokra támaszkodva nem tudjuk megállapítani, hogy a strandlabdát átszelő két sík közül aktuálisan melvik a törési sík. Ennek eldöntésére további független adatokra is szükség van. Ilven független információ lehet például az utórengések hipocentrum-eloszlásának vagy a műholdas megfigyelések alapján meghatározott felszíni deformációk ismerete.

A rendelkezésre álló felszíni elmozdulás adatok (vertikális és kelet-nyugat irányú) és a fészekmechanizmus meghatározások alapján a rengés feltehetően egy meredek DDK irányba dőlő sík menti feltolódásos elmozdulás során következett be (7. ábra). Az adatok alapján jelentős volt a felfelé és a nyugat felé történő elmozdulás a Medvednica-hegység területén, Zágrábtól északra. Természetesen geometriai okokból jelen kellett legyen egy É-i vagy Di elmozdulási komponens is, azonban ennek abszolút meghatározását az alkalmazott InSAR technológia a műholdak jellemzően É-D irányú pályáiból kifolyólag nem vagy csak korlátozottan teszi lehetővé.

A fészekmechanizmusból elméletileg nem csak DDK-i, hanem ÉÉNy-i irányú dőlési sík mentén történő feltolódás is adódhat. Mivel az alkalmazott űrgeodéziai módszer az É-i és D-i irányú mozgásokra kevésbé érzékeny, így a földtani jellemzők segíthetnek a feltolódás jellegének meghatározásában. Az adatok arra utalnak, hogy a Medvednica-hegység déli előterében számottevő transzpressziós mozgások zajlanak, melyek során a Zágrábtól északra elhelyezkedő Medvednica-hegység emelkedik, és jelentősebb földrengések alkalmával nyugatias irányban mozdul el jobbos vetődések mentén. A helyi geológiai térképezések alapján a Medvednica-hegység területén jellemzően ÉÉNy-i vergenciájú takarókat találunk. Ez azt jelenti, hogy nagyobb kőzettestek tolódnak rá a tőlük ÉÉNY-ra elhelyezkedő aljzatra DDK-re dőlő meredek síkok mentén (Šostaric et al., 2012). Így a lokális geológiai adottságok a 7. ábrán bemutatott sematikus földtani modellt valószínűsítik inkább.

7. ábra. Egy lehetséges sematikus földtani modell a 2020-as évi Zágráb mellett kipattant földrengés-sorozathoz.

A földrengés hatásai Horvátországban

A rengés időpontjában az epicentrum 20 km-es környezetében 2 szeizmológiai állomás és 4 gyorsulásmérő működött. A főrengés közepes magnitúdója ellenére a maximális gyorsulás (PGA) meghaladta a 0,2 g-t, amit a ShakeMap-modellező programmal (Worden and Wald, 2016) készített térkép is jól mutat (8. ábra). (A modellezés során meghatározhatjuk a földrengések által okozott talajgyorsulások térbeli eloszlását, amihez gyorsulás-gyengülési összefüggéseket használunk fel, és kalibráljuk a szeizmológiai állomások méréseivel és a területen meghatározott intenzitásokkal.) Azonban a feltételezések szerint a város egyes részein a helyi geológiai felépítés miatt ez a maximális gyorsulásérték akár a kétszeresére is megnőhetett.

A földrengés által keltett talajmozgás maximális intenzitását az epicentrumban az Európai Makroszeizmikus Skálán (EMS) VII-re becsülték.

8. ábra. A maximális vízszintes talajgyorsulás (PGA) eloszlásának becslésére készített ShakeMap térkép

Az első órákban a lakosság körében pánik alakult ki, az emberek a Covid-19zárlat ellenére az utcára menekültek. 27 ember sérült meg súlyosan, akik közül az egyik később meg is halt.

A mérsékelt intenzitás ellenére a főrengés és az azt követő erősebb utórengések súlyos károkat okoztak Zágrábban és a környező településeken. A rengés energiája a 2–10 Hz közötti nagyfrekvenciás tartományban koncentrálódott, ami egybeesett az épületek jelentős részének rezonanciafrekvenciájával. Jelentős károk keletkeztek Zágráb történelmi belvárosában, a régebbi épületek falai és háztetői jelentős károkat szenvedtek. Közöttük volt a XIII. századból származó híres zágrábi székesegyház, amelynek a mennyezete a hajó közel egyharmad részén beszakadt (9. ábra).

Az utcákat helyenként a kéményekről lehulló törmelékek és homlokzati falak szórták tele, amelyek következtében több tucat parkoló autó károsult. Egyes kerületekben részleges áramkimaradás volt, és a fűtés is akadozott a hőerőmű leállása miatt. Megsérült több kórház épülete, és néhány közülük már nem is volt javítható.

A legtöbb kárt a lakóépületek szenvedték el. Jellemzőek voltak a kémények, oromfalak sérülései, fa tetőszerkezetek károsodása, díszítőelemek és építészeti felületek leesése, födémek és válaszfalak repedései, áthidalók és boltozatok beomlása, falak megrepedése, lépcsőházak és a födémek károsodásai a szerkezeti elemek eltérő mozgása miatt. A becsült gazdasági kár meghaladta a 10 milliárd eurót.

Hazai szempontból fontos tanulság, hogy a súlyos károk Zágrábban a régi városközpont három-öt emeletes, nem megerősített falazatú, az Osztrák-Magyar Monarchia idejéből származó, 1920-ig készült épületeiben voltak, amelyek hasonlóak a budapesti belváros épületeihez.

9. ábra. A Jézus Szíve Bazilika Zágrábban a március 22-ei földrengés után (forrás: https://moc.media/en/2879)
Hazai megfigyelések

A földrengés hullámai közelítőleg 10 másodperccel a rengés kipattanása után elérték a horvát határhoz legközelebbi, becsehelyi szeizmológiai állomást (10. ábra), és alig több mint egy perc múlva a legtávolabbi, tarpai állomást is. A Kövesligethy Radó Szeizmológiai Obszervatóriumban működő automatikus helymeghatározó rendszer két percen belül e-mailben értesítette az Obszervatórium munkatársait és az Országos Katasztrófavédelmi Főigazgatóság (OKF) központi főügyeletét a rengés helyéről és erősségéről.

A helyi időben 6:24-kor bekövetkező főrengést Magyarországon, a Dunántúl nagy részén is érezték, de sokan beszámoltak a 7:01-kor kipattanó utórengés érzékeléséről is. Néhányan felébredtek, gyenge rázkódásról, hullámzásról számoltak be. Épületeken belül csillárok lengése, tárgyak zörgése, falak recsegése volt megfigyelhető.

A Kövesligethy Radó Szeizmológiai Obszervatóriumba 51 településről érkezett be összesen 109 kérdőív. A délnyugati határ közelében fekvő három településen, Homokkomáromban, Nagyatádon és Rinyaújlakban a rengés intenzitása elérte az EMS skálán az V-ös fokozatot. A beérkezett kérdőívek alapján meghatározott intenzitások eloszlását a 11. ábra mutatja, a konkrét intenzitás értékek a Magyar Nemzeti Szeizmológiai Bulletin (Hungarian National Seismological Bulletin) 2020as kötetében (Süle et al., 2021) találhatók meg.

10. ábra. A becsehelyi szeizmológiai állomás felvétele a főrengésről, és a fél órával későbbi erős utórengésről

11. ábra. A 2022. március 22. helyi idő szerint 06:24-kor, Zágráb mellett keletkezett földrengés intenzitásai Magyarország területén.

Hivatkozások

- Atalić, J., Uroš, M., Šavor Novak, M., Demšić, M., & Nastev, M. (2021). The Mw5.4 Zagreb (Croatia) earthquake of March 22, 2020: impacts and response. Bulletin of Earthquake Engineering, 19(9), 3461-3489.
- Bajc, J., A. Aoudia, A. Sarao, and P. Suhadolc (2001): The 1998 Bovec-Krn mountain (Slovenia) earthquake sequence, Geophys. Res. Let., 28, 1839-1842.
- Borojević, Š.S., Franz, N. and Robert, H., 2012. Tectonothermal history of the basement rocks within the NW Dinarides: New40 Ar/39 Ar ages and synthesis. Geologica Carpathica, 63(6), pp.441-452.
- Csontos, L., & Nagymarosy, A. (1998). The Mid-Hungarian line: a zone of repeated tectonic inversions. Tectonophysics, 297(1-4), 51-71.
- Herak, D., Herak, M., & Tomljenović, B. (2009). Seismicity and earthquake focal mechanisms in North-Western Croatia. Tectonophysics, 465(1-4), 212-220.
- International Seismological Centre (2020), On-line Bulletin, https://doi.org/10.31905/D808B830, last accessed 2020.03.29.
- Ivancic, I., D. Herak, S. Markušić, I. Sović, M. Herak (2001). Seismicity of Croatia in the period 1997-2001. Geofizika, 18, 17-29.

- Markušić, S.; Stanko, D.; Korbar, T.; Belić, N.; Penava, D.; Kordić, B. The Zagreb (Croatia) M5.5 Earthquake on 22 March 2020. Geosciences 2020, 10, 252.
- So, E., Babić, A., Majetic, H., Putrino, V., Verrucci, E., Contreras Mojica, D., ... & D'Ayala, D. (2020). The Zagreb Earthquake of 22 March 2020.
- Simović, V. (2000). Earthquakes in Zagreb area. Građevinar, 52(11.), 637-645. (horvátul)
- Šoštarić, S. B., Neubauer, F., Handler, R., & Palinkaš, L. A. (2012). Tectonothermal history of the basement rocks within the NW Dinarides: new 40 Ar/39 Ar ages and synthesis. Geologica Carpathica, 63(6), 441-452.
- Süle, B., Bondár, I., Czanik, C., Czecze, B., Czifra, T., Fodor, C., ... Wéber, Z. (2021). Hungarian National Seismological Bulletin 2020. (B. Süle, Ed.). Budapest: ELKH FI Kövesligethy Radó Szeizmológiai Obszervatórium.
- Šumanovac, F., & Dudjak, D. (2016): Descending lithosphere slab beneath the Northwest Dinarides from teleseismic tomography. Journal of Geodynamics, 102, 171-184.
- Worden, C.B. and D.J. Wald (2016). ShakeMap Manual Online: technical manual, user's guide, and software guide, U. S. Geological Survey. usgs.github.io/shakemap.

A petrinjai földrengéssorozat geológiai háttere és jellemzése

Czecze Barbara

2020. december 29-én délben szinte a teljes hazai lakosság különös dolgot tapasztalhatott. A szomszédos Horvátország területén kipattant 6,2-es magnitúdóval egy igen nagy energiájú földrengés, melyet az ország bármely pontján érezhettek az olvasók valamilyen formában. A jelen tanulmány igyekszik összefoglalni ennek a rendkívüli eseménynek a mozgatórugóját, hogy minek is köszönhető egy ekkora földrengés a közvetlen szomszédságunkban, valamint bemutatja az utórengések főbb tulajdonságait. Az eset rávilágít arra, hogy hazánk igen változatos geodinamikai környezetben helyezkedik el, ahol a mai napig aktív lemezmozgások mennek végbe. A horvátországi események felhívták a lakosság figyelmét arra, hogy a térség aktív geológiai fejlődése okán bármikor előfordulhatnak nagyobb károkat okozó földrengések Magyarország területén is.

Bevezetés

2020. december 28-án egy erős földrengéssorozat vette kezdetét Horvátországban, Petrinja város közelében. Az első előrengés 5,1-es magnitúdóval pattant ki, mely csak Közép-Horvátországban volt érezhető, majd 4,6-os, 3,8-as, és egyre gyengébb rengések követték.

A következő napon, december 29-én 12 óra 19 perckor egy szignifikánsan erősebb, 6,2-es magnitúdójú földrengés rázta meg a térséget, melyet már a környező országok – köztük Magyarország szinte teljes lakossága – is érzékelt. Így világossá vált, hogy az előző napok eseményei csak az előrengések voltak. A földrengésben tragikus módon hét ember veszítette életét az összedőlő házaknak köszönhetően. Az alábbi összefoglalás egy kicsit részletesebben bemutatja az olvasónak a földrengéssorozat hátterét, és annak közvetlen hatásait.

Szeizmotektonikai háttér

Ahhoz, hogy megértsük a horvátországi események mozgatórugóját, mindenképp szükség van némi lemeztektonikai, geodinamikai áttekintésre, hiszen ezek az események egy igen bonyolult, hazánkat is érintő folyamat eredményei.

A Föld szilárd burkát (más néven litoszférát) kőzetlemezek építik fel, melyek egymáshoz képest folyamatos mozgásban vannak. A lemezek szegélyeik mentén összeütközhetnek, távolodhatnak egymástól, illetve egymás mellett is elcsúszhatnak. Ezen mozgások hatalmas mennyiségű energiát, feszültséget szabadítanak fel mozgásuk során, melynek számos jelét ismerhetjük. Az energia felszabadulhat hatalmas földrengések formájában, de gyűrt hegyvonulatok, széthúzásos medencék is születhetnek. Éppen ezért a kutatók jelentős energiát fordítanak a jelenkori feszültségterek vizsgálatára. Az ún. feszültségprovinciák nem csak a jelenlegi szerkezeteket tudják megmagyarázni, de a jövőben

várható eseményekről is képet adhatnak. A feszültségtér vizsgálata az elmúlt pár évtizedben egy nagyon jól fejlődő terület volt, így egyre jobban megismerhetjük a környezetünkben végbemenő folyamatokat.

Amikor két kőzetlemez ütközik egymással, akkor egész egyszerűen összenvomás, térrövidülés (kompresszió) következik be, ha pedig távolodnak egymástól, akkor tágulást, széthúzást figyelhetünk meg, melyek mind nagyon egyedi és különleges felszínformákkal, geológiai- és geodinamikai folyamatokkal járnak, így a feszültségtér ismerete nagyon értékes számunkra. Különösen fontosak ezen tanulmányok a Pannon-medencében, ugyanis hazánk és a vizsgált terület ritka bonyolult felépítésű geodinamikai környezetben található, éppen ezért a medence kutatásában a külföldi kutatók is már hosszú évtizedek óta részt vesznek.

A feszültségtér vizsgálata alapján Európa két nagy területre osztható, ezek a Stabil- és Mobil-Európa. Nem meglepő, hogy a horvátországi események a MobilEurópai régióhoz tartoznak, így a mostani áttekintésben csak erről a területről esik szó. Ide tartozik az Alpok, a mediterrán régió (Égei-tenger és Nyugat-Anatólia, Appennin-félsziget), a Pireneusi-félsziget (1. ábra).

Ahhoz, hogy megértsük a jelenleg folyó geodinamikai folyamatokat, elengedhetetlen a nagyobb képet vizsgálva betekinteni a múltba. A hazánknak is bölcsőt adó Pannon-medence egy széthúzásos eredetű medence, mely valamikor 23 millió évvel ezelőtt kezdett kialakulni. Kialakulása több tényező együttes jelenlétének köszönhető, de nagy részben a Kárpátok külső keleti íve mentén végbemenő alábukásnak (ún. szubdukciónak). Az alábukó zóna folyamatos hátrálásának köszönhetően a medence aljzata északkeleti irányban elmozdult, miközben a 2. ábrán látható ALCAPA nevezetű egység az óramutató járásával ellentétesen, a Tisza-egység pedig azzal megegyező irányban forgott. Ekkor alakult ki a ma is aktívnak mondható törésvonal-rendszer ÉK-DNY iránvban.

1. ábra. Áttekintő térkép a vizsgált területről, Mobil-Európáról. A piros kör jelzi a Petrinja földrengéssorozat környezetét.

 ábra. A térség fő szerkezeti egységei, valamint az Adriai mikrolemez lemeztektonikai hatásai (Horváth, 2004) – A szaggatott vonalak a jelenkori feszültségteret jelölik, vagyis a maximális horizontális feszültségek irányait (Bada et al, 2004).

Az ALCAPA mozgásának mozgatórugója délen az Adriai-mikrolemez óramutató járásával ellentétes mozgása, és folyamatos észak felé nyomulása okozza. A nagyobb fő kőzetlemezek egymáshoz való közeledése következtében az Adria, az Alpok, a Dinaridák térségében folyamatos összeütközés zajlik, ennek köszönhető az ALCA-PA egység folyamatos kipréselődése. Miután a korábban említett alábukási zóna működése megállt, megszűnt a medence folyamatos tágulása, és az akkori széthúzásos, tágulásos feszültségtér kompresszióssá vált, így ma főleg eltolódásos, vagy feltolódásos deformációkat figyelhetünk meg. Ma a Pannon-térséget igen változatos feszültségtér jellemzi. A Dinaridák, valamint az Alpok déli részénél aktív feltolódásos, illetve ún. transzpressziós deformációknak lehetünk szemtanúi. A tér viszont nem homogén, míg Zágráb környékén eltolódásokat láthatunk, addig a tengerparti területeken összenyomódás figyelhető meg. Dél felől a medence belseje felé haladva szintén változatos kép fogad minket – a tengerparti területekről északkelet felé haladva oldaleltolódások figyelhetők meg. Az Alpok keleti részén zajlik az Adria és Európa közötti összeütközés, de az Alpok keleti irányú kilökődésének is nagy szerepe van, így itt is szintén eltolódásos tér van jelen több nagyobb nyírási zónával karöltve.

Horvátország, ami Alpiaz Mediterrán szeizmikus régió része, több geotektonikai egységből épül fel. A legfontosabbak északon a Pannon-medence (mely medencében található hazánk is), a Keleti-Alpok, a Dinaridák, a Dinári-Adriai platform átmeneti zóna és az Adriai platform önmagában. Horvátországban a szeizmicitás egyenlőtlenül oszlik el, a legtöbb földrengés a Dinaridákhoz kapcsolódik. A 2. ábrán a jelen tanulmányban bemutatott eseményeket színes pöttyök jelölik. Ezek a földrengések jól láthatóan két fő geológiai provincia között pattantak ki, a Pannon-medence és a Dinaridák között. A Dinaridák egy széles, északnyugatdélkelet irányítottságú öv, mely Délnyugat-Szlovéniától Montenegróig húzódik Horvátország Adriai-tengerpartja mentén. Dióhéjban tehát, a jelenleg is zajló tektonikai folyamatok egyik mozgatórugója az Afrikai- és Európai-lemez közeledése miatt folyamatosan zajló kollózió az Adria és az Alpok-Dinaridák határzónájában, mely következménye az Alcapa-egység eredeti helyéről történő, keleti irányba való kipréselődése.

A Pannon-medence legfőképpen lemezen belüli szeizmicitással jellemezhető, ahol nagyobb események ritkán ismétlődnek. Így nem meglepő, hogy a vizsgált térségben korábban is pattantak ki nagyobb események. Egyrészt, a jelen tanulmányban tárgyalt földrengéssorozat előtt 9 hónappal Zágrábban is egy helyi viszonylatban jelentősnek mondható eseményt tapasztalhattak meg a horvát lakosok. A főrengés 5,5-ös magnitúdóval pattant ki, melyet 4,9-es utórengés követte 2020. március 22-én. Másrészt, ha megfigyeljük az elmúlt két évszázad adatait, láthatjuk, hogy 1861. december 18-án (M = 5, 4), 1883. február 11-én (M = 5, 1), és 1909. október 8-án (M = 5, 7) is nagy energiájú földrengések pattantak ki ebben a térségben. Geológiai időskálán ezen események ismétlődése gyakorinak mondható, és egyértelműen jelzi a területen végbemenő folyamatok aktivitását.

Utórengések

A főrengést rengeteg utórengés követte egy nagyon rövid időintervallumon belül. A kipattanás utáni 40 percben annyira sűrű jelek érkeztek a szeizmológiai állomásokra, hogy a jelek elkülönítése is nehézséget okozott. A 3. ábrán a 2020. december 30-án regisztrált hullámformák látszódnak a becsehelyi szeizmológiai állomásunkon. Még szabad szemmel is rengeteg utórengés látható kevesebb, mint 24 óra leforgása alatt. Ezen regisztrátumokat tovább szűrve természetesen sokkal több utórengést rejt az ábra.

A szeizmológiában léteznek különböző fizikai törvények az utórengések számára és méretére vonatkozóan. Általában az utórengések száma nagyon gyorsan csökken, a kipattanás gyakorisága a főrengéstől számított idővel fordítottan arányos. Ez azt jelenti, hogy a főrengés másnapján máris csak feleannyi rengés várható, mint előző napon, de ennek ellenére még 2021 augusztusában is regisztráltunk utórengést. Észrevehető, hogy minél mélyebben van a főrengés hipocentruma, annál több utórengés detektálható. Természetes, hogy ezek az utórengések a főrengés közelében pattannak ki, és elegendően pontos helymeghatározással még az elvetődött kőzetblokkok törésvonalát is ki tudják rajzolni.

A horvát kutatók publikációi alapján 9350 db földrengés pattant ki 2020. december 28. és 2021. március 29. között. Ebből közel 6400 db földrengés helvét tudták nagy pontossággal meghatározni. Fontos megjegyezni, hogy a főrengés után a horvát szeizmológusok rengeteg ideiglenes állomást telepítettek a térségbe, így a legkisebb eseményeket is regisztrálni tudták. A legtöbb epicentrum egy nagyon keskeny területre koncentrálódik a már jól ismert ÉNY-DK irányú Petrinja-törés mentén. Az események egy kisebb csoportja a fő csapástól keletre koncentrálódik Petrinia és az attól 6 km-re keletre levő Mošćenica között, illetve egy harmadik kisebb főcsoport nyugatra, Velika Solina környékén is felismerhető. Az utórengésekre jellemző átlagos mélység mindössze 6-10 km közötti.

3. ábra. Becsehely szeizmológiai állomás regisztrátuma 2020. 12. 29-én. A hatalmas amplitúdóval megjelenő kék kilengés a főrengést jelöli, majd jól látható a rengeteg utórengés a főrengést követő órákban.

A Magyar Nemzeti Szeizmológiai Hálózat által detektált földrengések

A földrengéseket természetesen nem csak a lakosság érezte, hanem a műszereink is regisztrálták országszerte. A műszerek érzékenységének köszönhetően jóval a lakosság által érezhető szint alatt látjuk a kipattanó utórengéseket. A 3. ábra azt mutatja be, hogy a különböző szeizmológiai állomások egymáshoz képest mennyi fázist regisztráltak az utórengésekből a bulletinben publikált adatok alapján. Jól látszik, hogy a határmenti állomások (KOVH, MORH) tudták regisztrálni a legtöbb eseményt – szinte a zágrábi állomással megegyező számban - , de szinte minden dunántúli állomás nagyon jól szerepelt.

Obszervatóriumunkban a rutinszerű helvmeghatározásokhoz az általunk kimért fázisok első beérkezési idejét használjuk fel. Természetes, hogy minél több ilyen fázis (azaz állomás) a rendelkezésünkre áll, annál pontosabbak lehetünk a földrengés helyét illetően. Éppen ezért a horvátországi adatok az elsődlegesek az ideiglenesen telepített megannyi állomás következtében, de ezen adatokhoz nem fértünk hozzá a helymeghatározásunk pillanatában. Összességében viszont elmondható, hogy az utórengések jelentős részét regisztráltuk. Mivel a szeizmológia nem ismer országhatárokat, ezért az adataink nyilvánosak, így a horvátországi kutatók felhasználhatják a kiméréseinket, mely lehetőséget ad a klaszter pontosabb analízisére.

4. ábra. A horvátországi földrengéssorozat eseményeit regisztráló állomások. A feltüntetett szimbólumok mérete az adott állomáson kimért fázisok számának arányait mutatja meg.

Az utórengések energiája

A földrengésekkor felszabaduló energiát a szeizmológia a magnitúdóként méri. A petrinjai földrengéssorozat főrengésének a magnitúdója 6,2 volt. A köztudatban nagyon gyakran használjuk a Richter-skála szerinti kifejezést, mivel a ma használatos magnitúdóskálák alapjainak a megteremtője Charles F. Richter. A magnitúdóskála logaritmikus, ami azt jelenti, hogy egy magnitúdófokozat növekedése harminckétszeres különbséget takar. A földrengések magnitúdó szerinti osztályozásakor a 6-os magnitúdójú földrengéseket erős földrengésekként csoportosítjuk, míg a 7-es magnitúdójú eseményeket már nagyon nagynak, ennél is nagyobbakat óriási földrengéseknek. Természetesen minél nagyobb egy földrengés energiája, annál kisebb a kipattanás gyakorisága is. A Petrinja főrengés során felszabaduló energia nagysága viszont közel azonos a Hirosimai atombomba felrobbanásakor felszabaduló energiával, így igen jelentős méretű földrengésnek számít, évente mintegy 120 ehhez hasonló földrengés pattan ki az egész világon.

Az utórengések során felszabaduló energia, így a magnitúdó is folyamatosan csökken, de az utórengések között még így is találhatunk közepesnek mondható földrengéseket (1. táblázat). A legerősebb utórengés Župić közelében pattant ki 2021. január 6-án 18:01 perckor 4,9-es magnitúdóval. A földrengéssorozat első 13 napjában összesen 10 db olyan földrengés volt, mely magnitúdója meghaladta az M =4,0-t, és 76 db ami a M = 3,0 erősségnél volt nagyobb.

Dátum	Magnitúdó	Mélység
2020. december 29.	4,4	10 km
2020. december 30.	4,8	10 km
2020. december 30.	4,7	10 km
2020. december 31.	3,7	10 km
2021. január 2.	3,4	9,3 km
2021. január 4.	4,4	10 km
2021. január 5.	3,3	10 km
2021. január 6.	4,9	10 km
2021. január 7.	4,0	9,9 km
2021. január 9.	4,8	8,7 km
2021. január 10.	3,8	9,6 km
2021. január 15.	4,4	10 km
2021. február 24.	3,9	10 km
2021. március 3.	4,2	10,9 km
2021. április 6.	4,6	10 km
2021. augusztus 1.	4,1	10 km
2021. augusztus 16.	4.6	10 km

 táblázat. A petrinjai földrengéssorozat legnagyobb energiájú utórengései 2020. december 29. és 2021. augusztus 16. között a Horvát Szeizmológiai Szolgálat adatai alapján

Az események fészekmechanizmusa

A földrengés kipattanásának az okát a földtudományok már nagyon jól tudják vizsgálni. A földrengések túlnyomó többsége lemeztektonikai eredetű, vagyis a földrengést kiváltó, felhalmozódó feszültség a földkéregben gyűlt össze. A feszültség folyamatos felhalmozódása következtében a kőzettömb eltörik, majd vetősík, törésvonal mentén két szomszédos kőzetblokk egymáshoz képest elmozdul.

Ezek az elmozdulások többfélék lehetnek attól függően, hogy a kőzetlemezek hogyan mozdultak el horizontális, illetve vertikális irányban. Megkülönböztetünk egyszerű oldaleltolódást, normál vetőt, feltolódást egyaránt.

A földrengés fészekmechanizmusa tulajdonképpen azt árulja el, hogy ezek a kőzetblokkok egymáshoz képest hogyan mozdultak el a hipocentrumban, hogyan helyezkedik el a vetősík, merre történt elmozdulás.

A szeizmológiában egy ún. strandlabda szemlélteti a földrengéshez tartozó fészekmechanizmust. A hipocentrum köré rajzolt fokális gömböt két sík – a vetősík maga, és az erre merőleges segédsík (mely geológiai értelemmel nem rendelkezik) négy negyedre osztja. A négy térnegyedben felváltva tágulást és összehúzódást figyelhetünk meg. Ezek a térnegyedek ideális esetben az műszereink regisztrátumain megjelenő hullámforma első beérkezésének iránya (polaritása) alapján ismerhető meg, de más módszerek is rendelkezésünkre állnak. A földrengés hipocentrumából kiinduló földrengéshullámok amplitúdója függ attól, hogy a hullám által megtett út hol metszi ezt a fokális gömböt. A különböző térnegyedekben a szeizmológiai állomásokra beérkező elsődleges primer hullám elmozdulása pozitív, máshol negatív. A fokális gömb vetületét ábrázolva különböző színekkel jelöljük a negatív és pozitív amplitúdóval történő beérkezéseket.

A szeizmológia az ilyen strandlab-

5. ábra. A főrengés közvetlen környezetének aktuális földtani képe – A kék vonalak a jelenleg is aktív töréseket jelölik, a szaggatott vonal egy eltemetett, de aktív törést mutat (Tondi et al, 2021). A főrengés piros csillag formájában jelenik meg a hozzá tartozó fészekmechanizmus megoldással. A földrengések fészekparamétereinek forrása az ISC (International Seismological Center) nyilvános, még nem ellenőrzött adatbázisa.

dák (5. ábra) segítségével világított rá arra, hogy a kéregben kipattanó földrengések különböző típusú vetődéseket produkálnak, így oldaleltolódásos, normál vetős, feltolódásos régiók ismerhetők fel.

A Petrinja földrengéssorozat főrengésének a fészekmechanizmusa megoldása szerint ebben az esetben egy függőleges törés menti jobbos oldaleltolódás történt az ÉNY-DK vető felszínén.

Ez azt jelenti, hogy a délnyugati vetőszárny elcsúszott északnyugat felé, az északkeleti pedig délkelet felé. Ez a fészekmechanizmus megoldás jó egyezést mutat a nemzetközi szeizmológiai központok megoldásaival, valamint a földrengéssorozat térbeli eloszlásával (Stipčević et al. 2021). A 10 legerősebb, M > 4, 2 földrengés fészekmechanizmusai függőleges törés menti horizontális elmozdulások, főleg a legerősebb utórengés és előrengés esetén. Viszont van három olyan esemény, mely eltérő mechanizmust, úgynevezett fordított töréseket mutatnak.

Összességében tehát az eddig publikált 25 db földrengés fészekmechanizmusa legtöbb esetben oldalelmozdulás, mely jól korrelál a térségről elérhető információkkal, de a földrengéssorozat fő csoportján kívül ezek eltérőek lehetnek. A fészekmechanizmusból meghatározható a legnagyobb nyomás iránya a feszültségtérben, ezen megoldások alapján a föld kérgének DDNY-ÉÉK irányú összenyomódása, kompressziója történik.

Összefoglalás

Bár Magyarországot, és annak környezetét nyugodt területként tartjuk számon, a petrinjai földrengéssorozat felhívta a figyelmünket arra, hogy ez a térség is érintett lehet a nagyobb energiájú földrengések által. A földrengést szinte a teljes hazai lakosság érezhette, és a délnyugati megyékben károk is keletkeztek. Ez felhívta a figyelmünket arra, hogy az országunk földrengésveszélyeztetettsége valós. A fenti geodinamikai ábrán jól látszik a terület összetettsége, aktivitása, ezért érdemes szem előtt tartani, hogy térségünkben bárhol, bármikor előfordulhat földrengés, mely akár súlyos következményekkel is járhat.

A térségünk aktív geológiai, tektonikai fejlődése jelenleg is zajlik, geológiai időskálán vizsgálva igen változatos képet láthatunk. Magyarország az igen aktív mediterrán térség, és a stabil Kelet-Európai platform között helyezkedik el. Felhasználva az eddigi ismert történelmi földrengéseket, levonhatjuk azt a következtetést, hogy M = 5,0 magnitúdónál nagyobb földrengések átlagosan 40–50 évente fordulnak elő Magyarország területén.

Irodalomjegyzék

- Bada G, Windhoffer G, Szafián P, Dövényi P (2004): Feszültségtér Európában és a Pannon-medence térségében: adatok, modellek és geodinamikai alkalmazások. ELTE Geofizika Tsz.
- Bada, G., Cloetingh, S., Gerner, P. és Horváth, F., 1998. Sources of recent tectonic stress in the Pannonian region: inferences from finite element modelling. Geophys. J. Int., 134: 87-101.
- Bada, G., Horváth, F., Fejes, I. és Gerner, P., 1999. Review of the present-day geodynamics of the Pannonian basin: progress

and problems. J. Geodynamics, 27: 501-527.

- Bada, G., Horváth, F., Cloetingh, S., Coblentz, D.D. és Tóth, T., 2001. The role of topography induced gravitational stresses in basin inversion: The case study of the Pannonian basin. Tectonics, 20: 343-363.
- Bada, G. és Horváth, F., 2001. On the structure and tectonic evolution of the Pannonian basin and surrounding orogens. Acta Geol. Hung., 44: 301-327.
- Dasović, I., Herak, D., Herak, M., Stipčević, J. (2021): Niz potresa na Baniji, Vijesti Hrvatskog geološkog društva, 57/2, 4–7.
- Horváth F (2004): A Pannon-medence jelenkori geodinamikájának atlasza
- Horváth, F, Cloetingh, S., (1996): Stressinduced late-stage subsidence anomalies in the Pan-nonian basin. Tectonophysics, 266: 287-300.
- Josip Stipčević*, Iva Dasović*, Davorka Herak*, Marijan Herak*, Helena Latečki*, Marin Sečanj* and Bruno Tomljenović -The great Petrinja earthquake – a year after /https://www.chem.pmf.hr/
- International Seismological Centre (2020), On-line Bulletin, https://doi.org/10.31905/D808B830
- The European-Mediterranean Seismological Centre (2021): M6.4 CROATIA on December 29th 2020 at 11:19 UTC, Special report, https://www.emsccsem.org/Earthquake/264/M6-4-CROATIA-on-December-29th-2020-at-11-19-UTC. [4. ožujka 2021.]
- Tondi, E., Blumetti, A.M., Čičak, M. et al. 'Conjugate' coseismic surface faulting related with the 29 December 2020, Mw 6.4, Petrinja earthquake (Sisak-Moslavina, Croatia). Sci Rep 11, 9150 (2021). https://doi.org/10.1038/s41598-021-88378-2
- Az ábrák a feltüntetett adatforrások alapján a QGIS szoftverrel készültek (QGIS v. 3.10.2 (https://qgis.org/))

A 2020. december 29-én bekövetkezett petrinjai földrengés hatásai

Győri Erzsébet

A 2020. december 29-én délben egy erős, 6,2-es magnitúdójú földrengés keletkezett a horvátországi Petrinja környezetében. A következőkben a rengés epicentrumának környezetében tapasztalt károkat és a rengés során és azt követően tapasztalt különös földtani jelenségeket foglaljuk össze. A főrengést nem csak Horvátországban, hanem a környező országokban, így Magyarország nagy részén is érezték, a délnyugati országrészben károkat is okozott. Az obszervatóriumba beküldött lakossági kérdőívek elemzésével képet kaphattunk az országban tapasztalt intenzitásokról, vagyis hogy hol és mennyire volt érezhető a földrengés.

Bevezetés

A 2020-as év emlékezetes marad Horvátország lakosságának. Ennek az okai nem csak a COVID-19 világjárvány, hanem az először márciusban, majd az év végén bekövetkezett, súlyos károkat okozó földrengések voltak. Ebben az összeállításban a karácsony és újév között, december 29én délben, a Zágrábtól kb. 45 km-re délre elhelyezkedő Petrinjában kipattant, 6,2es magnitúdójú földrengés hatásait foglaljuk össze. Petrinja térsége Horvátország kevésbé sűrűn lakott, és az egyik legkevésbé fejlett területe, ahol a lakosság főként a mezőgazdaságból él. Az épületek nagy része régebben, nem földrengésbiztonsági szabványok szerint épült. Ráadásul a régiót az 1990-es évek elején súlyosan érintette a délszláv háború, és azóta sem gazdaságilag, sem infrastrukturálisan nem tudott teljesen talpra állni. A 29-i főrengést egy nappal korábban megelőzte két nagyobb előrengés, amelyek néhány régi épületben már okoztak károkat, ezért a szakemberek elkezdték azok átvizsgálását. A másnap bekövetkezett főrengés miatt néhányan közülük meg is sérültek. Szerencsére a szerkezetükben meggyengült házak ekkorra már többnyire elhagyatottak voltak, így a 29-én bekövetkezett főrengés összesen hét ember halálát okozta, és 26an sérültek meg, akik közül hatnak a sérülése volt súlyos.

Épületkárok

A földrengés súlyos károkat okozott Horvátországban. A legnagyobb károk Petrinja városában keletkeztek, ahol a későbbi felmérések szerint az épületek közelítőleg 15%-a omlott össze, vagy szenvedett nagyon súlyos károkat (1. ábra). Az épületek 20%-ánál keletkeztek súlyos, míg 65%-nál kisebb-közepes károk. A különleges vagy a kiemelkedő történelmi, kulturális örökség részét képező épületek többnyire összedőltek vagy használhatatlanná váltak.

1. ábra. Súlyosan károsodott épület Petrinjában (forrás:https://www.dw.com/en/a-dw-reporterexperiences-croatia-earthquakes-firsthand/a-56104971 (2022.04.12))

Jelentős károk keletkeztek a szomszédos Sisak városában is, ahol a kórház vált használhatatlanná, és emiatt onnan a betegeket evakuálni kellett. A károk egészen Horvátország legészakibb részéig terjedtek, ahonnan kémény ledőléseket, falrepedéseket jelentettek. A Petrinjától mintegy 40 km-re északra fekvő Zágrábban áramkimaradások voltak, a kormányzati épületekben keletkezett károkon kívül egy gyermekkórházat is evakuálni kellett, és az ugyanezen év márciusában kipattant földrengés után evakuált szülészeti klinika is további károkat szenvedett. A szomszédos Szlovéniában található Krško atomerőműben károk ugyan nem keletkeztek, de az biztonsági okokból ideiglenesen leállította működését.

Petrinjában az épületkárok alapján a rengés intenzitását az Európai Makroszeizmikus Skálán (EMS) VIII-IX-re becsülték.

A rengés során keletkezett súlyos épületkárok egyik meghatározó okának az tudható be, hogy az egykori Jugoszláviában 1964 előtt egyáltalán nem volt földrengésbiztonsági szabvány, ezért a legtöbb súlyos kár az 1964 előtt épült 2-3 szintes, nem merevített falazatú, fafödémes épületeknél következett be. Az első szabványt az 1963-as, 6,9-es magnitúdójú szkopjei földrengés után léptették életbe, majd azt az 1979-es montenegrói M = 7, 1-es rengés után szigorították. Ezek a skálák még intenzitás alapúak voltak, előírásaik szerint ezen a területen az épületeknek az MCS (Mercalli-Cancani-Sieberg) skálán a VII, majd a VIII fokozatú rengést kellett kibírniuk. Azonban a későbbi, vasbeton koszorúval is ellátott házak közül is sok szenvedett súlyos károkat, aminek oka a gyenge kivitelezés volt (Markušić et al., 2021). A megerősített, zárt falazott épületek csak kisebb károkat szenvedtek.

A jelenlegi Eurocode 8 szabvány 2013-tól van érvényben Horvátországban. A szabvány szerint számított földrengésveszélyeztetettségi térkép szerint Petrinja környezetében 50 év alatt a maximális vízszintes talajgyorsulás a felszínen (PGA, peak ground acceleration) 10% valószínűséggel haladja meg a 0,16 g-t (475 éves visszatérési idő). A gyorsulásokat gyakran a gravitációs gyorsulás tört részekent adják meg, ahol $1g = 9,81m/s^2$.

A földrengés kipattanásának idején az epicentrum közelében nem volt szeizmológiai állomás, a legközelebbinek a távolsága a kipattanás helyétől közelítőleg 70 km volt. Viszont a Petrinjától kb. 45 kmre elhelyezkedő Zágrábban a földrengés idején 6 gyorsulásmérő működött. Ezek közül a négy, üledéken elhelyezkedő állomás hasonló maximális talajgyorsulásokat mért, a maximális vízszintes gyorsulás (PGA, Peak Ground Acceleration) átlagosan a 4 állomáson 0,1 g, a függőleges 0,05 g volt. A Medvednica-hegység lábánál található QKAS jelű állomásnál 0,25 g vízszintes, és 0,12 g vertikális gyorsulást mértek, míg a hatodik, kőzetkibúváson elhelyezkedő műszer mindössze 0,04 g vízszintes, és 0,02 g vertikális gyorsulást mért. A jelentős különbségek oka a helyi talajviszonyoknak és a topográfiának volt köszönhető (Perić and Herak, 2021).

Az epicentrális területen fellépő talajgyorsulások mértékére csak becslések tehetők. Az USGS Shakemap modellezés eredményei, a megfigyelések és a Horvátországban alkalmazott gyorsulás gyengülési összefüggések alapján kemény kőzeten a PGA 0,3 g lehetett, üledékes területeken pedig – az üledék nagyító hatása miatt – meg is haladhatta ezt az értéket.

Környezeti hatások

Az epicentrális területen kiterjedt talajkárosodási jelenségeket is megfigyeltek, mint például talajfolyósodást, látható felszíni talajrepedéseket, földcsuszamlásokat, valamint karsztos víznyelők keletkezését (Pollak et al., 2021).

Talajfolyósodás, földcsuszamlások

A december 29-i főrengés a Petrinja, Sisak és Glina környéki tágabb epicentrális területen okozott talajfolyósodást. A jelenség oka, hogy erős rázkódás hatására a vízzel telített homokos üledékek elveszítik a szilárdságukat és úgy viselkednek, mint egy viszkózus folyadék. A talajfolyósodás a felszínen rendszerint úgy nyilvánul meg, hogy a talajon repedések keletkeznek, amelyekből homokos víz lökődik ki a felszínre. Az így keletkezett, ún. iszapvulkánokat közel 100 helyszínen, a Kupa és a Száva folyót és mellékfolyóit körülvevő, túlnyomórészt lapos völgyekben, mezőgazdasági területeken figyelték meg (2. ábra).

2. ábra. Homokkúpok Brest Pokupski közelében. A lyukak azokat a helyeket jelölik, ahol a repedés mentén a homok kilökődik. (forrás: https://www.novilist.hr)

3. ábra. Talajfolyósodás miatt bekövetkező talajszétcsúszás a Száva folyó töltésén (Tomac et al. 2021)

Beépített területeken a talajfolyósodás a felszín süllyedése és az altalaj oldalirányú szétcsúszása miatt az utakban és épületekben okozott károkat (Stipčević et al., 2021). A Száva és a Kupa folyók töltésein és azok környezetében oldalirányú szétcsúszás következtében több méter mélységű, közel vertikális repedések keletkeztek (3. ábra).

A talajfolyósodás mellett számos új és újraaktiválódott földcsuszamlást is feljegyeztek, amelyek számos utat károsítottak a tágabb epicentrális területen. Márgás, agyagos talaj csuszamlása következett be például Prnjavor Čuntićki faluban (Arbanas et al., 2021), körülbelül 10 km-re délre Petrinjától, aminek a következtében szükségessé vált a lakók evakuálása a földcsuszamláson és annak közelében található otthonaikból. Közvetlenül a főrengést követően, a földcsuszamlásokon kívül meredek lejtőkről vagy szikla bevágásokból származó kisebb kőomlásokat is regisztráltak.

Víznyelők

Még belegondolni is ijesztő abba, hogy egyszer csak hirtelen beomlik a föld a lá-

bunk vagy a házunk alatt, és egy víznyelő, egy nagy lyuk tátong alattunk. A jelenség a lakosságot, de a mérnököket is váratlanul érte annak ellenére, hogy Mečenčani és Borojevići falvak környezetében korábban is keletkeztek víznyelők, de nem ilyen mennyiségben és sűrűségben, mint most a földrengés hatására. A két településen ezek a víznyelők jelentették a legnagyobb veszélyt, amelyek több nappal a főrengés után, valamint az erősebb utórengéseket követően is sorozatosan nyíltak meg (Arbanas et al. 2021). A főrengés utáni 3 hónapon belül összesen 91, ún. beomlásos víznyelő keletkezett, a legnagyobb közülük 26 m átmérőjű és 12 m mély volt (4. ábra). A víznyelők egy korlátozott, kb. 10 km2es területen fordultak elő, ahol a karsztosodott karbonátos kőzetekre a Sunja folyó rakta rá agyagos hordalékát 5-15 m vastagságban (Tomac et al. 2021). Legtöbbjük kinn a mezőn, de néhány közülük épületek közelében keletkezett.

A víznyelőknek többféle típusa van, de közülük az itt tömegesen előforduló beomlásos típusú a legveszélyesebb, mivel nagyon hirtelen omlanak be, és létrejöttüket nem előzi meg semmilyen felszíni deformáció.

4. ábra. Nagy, 26 m átmérőjű, 12 m mély víznyelő Mečenčani településen (Tomac et al. 2021)

5. ábra. A beomlásos víznyelők keletkezési mechanizmusa (forrás: USGS)

Keletkezésük mechanizmusát az 5. ábra mutatja be. Kialakulásuk valójában egy hosszadalmas folyamat, amelynek során a felső rétegben lévő finomszemcsés talajt és üledékeket a talajvíz a karsztban kialakult hasadékokba és földalatti üregekbe mossa, ami végül a fedőrétegek hirtelen összeomlásához vezet. Ezt a folyamatot jelentősen felgyorsította a petrinjai földrengéssorozat, amelynek következtében a beomló víznyelők több lakóépületet is megrongáltak.

Hazai megfigyelések

Az epicentrum Magyarország határától közelítőleg 100 km távolságban volt, ennek

ellenére a földrengés hazánkban is nagy ijedtséget okozott.

A Magyar Nemzeti Szeizmológiai Hálózat állomásai észlelték a beérkező, szokatlanul nagy amplitúdójú szeizmikus hullámokat, és az automatikus helymeghatározó rendszer két percen belül elküldte e-mailben az értesítést a rengés paramétereiről az Obszervatórium munkatársainak és a BM Országos Katasztrófavédelmi Főigazgatóság Központi Főügyeletének.

Az ország délnyugati részén már a december 28-i két előrengést is többen érezték, de ijedtséget ezek még nem okoztak. A lakosság enyhe rázkódásról, felfüggesztett tárgyak enyhe lengéséről számolt be. A december 29-én bekövetkezett főrengés azonban sokkal nagyobb ijedtséget okozott. A közösségi médiát ellepték a személyes beszámolók, a Szeizmológiai Obszervatórium honlapja a túlterheltség miatt nagyon nehezen volt elérhető. Az első információkat a közösségi oldalakon tudtuk szolgáltatni, ahol kértük a lakosságot a földrengési kérdőívek kitöltésére. Ilyen módon az ország 638 településéről, több mint 3000 kérdőív érkezett az Obszervatóriumba, amelyek közül 828-at a fővárosban töltöttek ki.

A kérdőívben és a Facebookon sokan a személyes élményeiket is leírták, ezekből idézünk néhányat:

"Elég ijesztő volt, féltem, hogy leomlik a ház. Úgy mozgott, mintha lágy anyagból lenne és hullámozna." (egy kaposvári lakos)

"Először azt hittem csak szédülök, fáradt vagyok. Aztán láttam, hogy mozog minden. Azonnal beálltam az ajtószárfa alá, de miután láttam, hogy nem hagy alább a rengés, hanem erősödik, azonnal futottam ki az épületből. Addigra már sokan mások is futottak ki." (egy kaposvári lakos)

"Félelmetes volt. Mintha az egész házat rángatnák. Mozogtak a falak, az ágy." (egy kaposvári lakos)

"Legijesztőbb a mély, néhány másodpercig tartó morgás volt!" (egy kaposvári lakos)

"A 8. emeleten voltam és a 10 emeletes panelház kb. 10 cm-t imbolygott ideoda 20-30 másodpercig. Először azt hittem, csak szédülést érzek, aztán felálltam és éreztem, hogy mozog alattam a padló. Ez volt a legerősebb földrengés, amit valaha éreztem." (egy kaposvári lakos)

"Olyan érzés volt mikor a Balatonon csónakban ringatózom, kilengett az épület,félelmetes volt, és az volt a legfélelmetesebb, hogy nem lehetett tudni meddig tart." (egy kaposvári lakos)

"A barcsi határátkelőhelyen voltam, amikor a rengés volt és látszott, hogy jönnek ki az emberek. Repedés keletkezett az épület falán." (egy barcsi lakos)

"Nagyon ijesztően belengett a téglaépítésű családi ház. Olyan érzés volt mintha ringana vagy hintázna az egész épület" (egy barcsi lakos)

"A macskák felriadtak, recsegett az ablak, mozgott a csillár, a karácsonyfa, érezhetően mozgott az egész épület. Szüleim Harkányban is érezték, ott a nagyobb bútorok is mozogtak." (egy pécsi lakos)

"Nagyon erős volt a rengés érzete, viszonylag sokáig tartott. Az épület rázkódott, recsegett, nyikorgott, a felső szekrény ajtajai kinyíltak." (egy pécsi lakos)

"Állattartó vagyok. Kimentem itatni. A nyulak az ól aljára tapadtak. Teljesen ledermedt, merev állapotba. El se tudtam képzelni mi a bajuk. Zeusz kutyánk mereven az eget kémlelte. Beérve a lakásba 12:18 körül. Morajlást hallottunk és elindult a föld alattunk. A cicánk fejvesztve menekült. A rengés kb. 20-25 mp-ig tartott. A csillárok kilengtek, a hatalmas nagy bútorok úgy mozogtak, mint valami játékszer." (egy pécsi lakos)

"Felébredtem arra, hogy az egész ágy ugrál és mozognak a szekrényajtók. Kinéztem az ablakon és a fák, a többi épület is imbolygott, kimenekültem az épületből, annyira recsegett-morajlott minden." (egy pécsi lakos)

"Nagyon rossz érzés volt. Ültem és hirtelen nagyon remegni kezdett minden. Azt hittem, itt a vég, annyira szédültem, vagy legalábbis úgy gondoltam, hogy szédülők. Ennyire rosszul még sosem éreztem magam. Aztán megláttam, hogy a nyitott ajtó erőteljesen mozog. Akkor gondoltam földrengésre. Felálltam és nagyon erőteljes remegést éreztem a 4. emeleten. A rémülethez képest sokáig tartott, kb. 1-1,5 percig." (egy budapesti lakos)

"10. emeleti panel, szélső lépcsőház. A legjobb szó a "lengés" az érzésre. Hasonlót éreztem (kisebb frekvenciával) felhőkarcolóban, nagy szélben. A nyitott ajtók mozogtak, a felakasztott ruhák a szekrényben mozogtak. Valószínűleg az ablakok mentén és fal illesztéseknél a festés és vakolat megrepedt." (egy budapesti lakos)

"Olyan volt állni, mint csónakban az enyhén hullámzó vízen, ezt a hullámzást látni is lehetett a padlón. Épp ekkor álltam fel (előtte a padlón ülve dolgoztam), így kifejezetten nehéz volt állva maradni. Leginkább a növényeken és a függönyökön látszott a mozgás, közel fél percig jelentősen kilengve mozogtak. Kicsit olyan érzésem volt, mintha két hullámzás lett volna. Az egyik ajtó fél perc után is nyikorogva lengett." (egy budapesti lakos)

"Észlelés helye: Budapest XIII. kerület, 15 emeletes üveg irodaház 13. emelete. A földrengés észlelése szédüléshez hasonló érzéssel indult, fülcsengéssel, majd nyomással a nyaktájékon és a fejben. Ezt követte néhány perc múlva a vízszintes irányú imbolygó mozgás, amelyet a széken ülve is lehetett érezni. Az imbolygás néhány másodpercig tartott, majd pár másodperces szünet után periodikusan ismétlődött, körülbelül 4-5 alkalommal. A függönyök és egyes, falon

függő tárgyak mozogtak, a nyitott ajtók bezáródtak." (egy budapesti lakos)

Az ijedtségen kívül a délnyugati megyékben károk is keletkeztek. A lakosság jellemzően arról számolt be, hogy levált a vakolat, repedések keletkeztek a fő- és melléképületek falain, a födémen, az ablaküveg megrepedt vagy betört, súlyosabb esetekben megdőlt a kémény vagy éppen burkolatok repedtek meg. Károk keletkeztek például a pécsi Lyceum templomban is, amit a rengés után a statikai vizsgálatok lezártáig be is kellett zárni.

A beérkezett kérdőívek alapján 90 településen érte el a rengés intenzitása az V-ös fokozatot az EMS skálán (Grünthal, 1998), amitől kezdve károk bekövetkezésére lehet számítani. A beérkezett kérdőívek alapján meghatározott intenzitások eloszlását a 6. ábra térképe mutatja, a konkrét intenzitásértékek a Nemzeti Szeizmológiai Bulletin 2020-as kötetében (Süle et al., 2021) találhatók.

6. ábra. Az intenzitások eloszlása az ország területén

Mérnöki tervezés szempontjából nem az intenzitások, hanem a fellépő talajgyorsulások ismerete a fontosabb. Magyarország szeizmikus veszélyeztetettségi térképe alapján, az ország területén az 50 év alatt, 10%-os meghaladási valószínűséggel várható maximális vízszintes talajgyorsulások (PGA) értékei 0,07 g és 0,15 g között vannak (Tóth et al., 2006). Az Eurocode 8 földrengés-biztonsági szabvány magyarországi életbelépése óta ilyen gyorsulások elviselésére kell a hazai civil épületeket tervezni.

Egy földrengés által okozott talajgyorsulások térbeli eloszlását a gyorsulásgyengülési összefüggések felhasználásával - a szeizmológiai állomások méréseivel, valamint a meghatározott intenzitásokkal kalibrálva - a ShakeMap modellező programmal (Worden and Wald, 2016) tudjuk becsülni. A petrinjai főrengés esetén a maximális vízszintes gyorsulások ilyen módon számított eloszlását a 7. ábra mutatja. Előállításához a magyarországi állandó és ideiglenes állomások adatait, a meghatározott intenzitásokat, és mindössze néhány határon kívüli állandó szeizmológiai állomás adatát tudtuk felhasználni. Ezért a megbízhatósága is Magyarország területén belül a legnagyobb, de a szintvonalak összhangban vannak a Zágrábban mért átlagos 0,1 g értékkel is. Magyarországon a legnagyobb gyorsulások a délnyugati megyékben voltak megfigyelhetők, a 0,05 g gyorsulást jelölő izovonal a horvát-magyar határ mentén húzódik. A becsült PGA értékek ezek alapján mindenhol a veszélyeztetettségi térkép gyorsulás-értékei alatt voltak. Fontos azonban megjegyezni, hogy a

7. ábra ShakeMap térképe egy simított eloszlást mutat be, a helyi talajviszonyok miatt lehettek helyenként a térképen láthatónál nagyobb, és annál kisebb PGA értékek is.

Konklúzió

A becslések alapján Horvátországban a földrengéssorozat során keletkezett károk értéke 5—5,5 milliárd euróra tehető (forrás: https://en.wikipedia.org/w iki/2020_Petrinja_earthquake). A megfigyelt súlyos épületkárok, a földrengés következtében a környezetben keletkezett károk, és a rengés során a szabványban szereplő értékeket meghaladó gyorsulások szükségessé teszik, hogy a szakemberek a jövőben újraértékeljék a terület szeizmikus veszélyeztetettségét és felülvizsgálják a meglévő földrengés-biztonsági szabványokat.

Ugyanakkor nagyon fontos azt is megjegyezni, hogy ilyen, súlyos károkat okozó földrengések Magyarország határaihoz közelebb is előfordulhatnak. Hasonló erősségűek voltak például az 1763-as komáromi, és az 1834-es érmelléki földrengések, amelyek az epicentrumhoz közeli területeken a petrinjaihoz hasonló gyorsulásokat okozhattak. Az ilyen erős földrengések ritkán fordulnak elő, ezért hajlamosak vagyunk elfeledkezni róluk. Ennek ellenére felkészültnek kell lennünk, hogy egy esetlegesen kipattanó földrengés ne veszélyeztessen emberéleteket, és az épületekben, infrastruktúrában keletkezett kár is a lehető legkisebb legyen.

7. ábra. A petrinjai főrengés által okozott maximális vízszintes talajgyorsulások eloszlása. A szintvonalakon látható értékek a g gravitációs gyorsulás (9,81 m/s2) százalékában vannak megadva.

Hivatkozások

- Bačić, M., Kovačević, M. S., Librić, L., & Žužul, P. (2021) Sinkholes induced by the Petrinja M6. 2 earthquake and guidelines for their remediation. 1st Croatian Conference on Earthquake Engineering, 1Cro-CEE 22-24 March 2021 Zagreb, Croatia
- Grünthal, G. (1998). European macroseismic scale 1998. European Seismological Commission (ESC).
- Markušić, S., Stanko, D., Penava, D., Ivančić,
 I., Bjelotomić Oršulić, O., Korbar, T.,
 & Sarhosis, V. (2021). Destructive M6.
 2 petrinja earthquake (Croatia) in

2020—Preliminary multidisciplinary research. Remote Sensing, 13(6), 1095.

- Perić, D., Herak, M. (2021). 4. Recorded Ground Motions (Tomac, I., Zlatović S. Geotechnical Reconnaissance and Engineering Effects of the December 29, 2020, M6. 4 Petrinja, Croatia Earthquake, and Associated Seismic Sequence, A report to the NSF-Sponsored Geotechnical Extreme Event Reconnaissance (GE-ER) Association, p. 196.
- Pollak, D., Gulam, V., Novosel, T., Avanić, R., Tomljenović, B., Hećej, N., ... & Librić, L. (2021). The preliminary inventory of coseismic ground failures related to December 2020–January 2021 Petrin-

ja earthquake series. Geologia Croatica, 74(2), 189-208.

- Arbanas S.M., Arbanas Ž., Krkač M., Gazibara S.B., Damjanović V., Sinčić M., Jagodnik P., Jagodnik V. (2021) Potres u Petrinji M6,2 od 29.12.2020: izvješće o inženjerskogeološkoj i geotehničkoj prospekciji. https://www.rgn.unizg.hr/image s/izdvojeno/UNIZR-RGNF_UNIRI-GF_ potes_Petrinja_M6.2_ig_i_gt_pros pekcija.pdf
- Stipčević J, Dasović I, Herak D, Herak M, Latečki H, Sečanj M, Tomljenović B (2021) The great Petrinja earthquake - a year after https://www.chem.pmf.hr/geof/e n/popularization_of_geophysics/t he_petrinja_2020_mw6.4_earthquak e_series
- Süle, B., Bondár, I., Czanik, C., Czecze, B., Czifra, T., Fodor, C., ... Wéber, Z. (2021): Hungarian National Seismological Bulletin 2020. (Szerk.: Süle B.). Budapest: ELKH FI Kövesligethy Radó Szeizmológi-

ai Obszervatórium.

- Tomac, I., Vlahović, I., Parlov, J., Matoš, B., Matešić, D., Kosović, I., Pavičić, I., Frangen, T., Terzić, J., Pavelić, D., Pham, N. (2021). 6. Cover-Collapse Sinkholes (Tomac, I., Zlatović S. Geotechnical Reconnaissance and Engineering Effects of the December 29, 2020, M6. 4 Petrinja, Croatia Earthquake, and Associated Seismic Sequence, A report to the NSF-Sponsored Geotechnical Extreme Event Reconnaissance (GEER) Association), p. 196.
- Tóth, L., Győri, E., Mónus, P., & Zsíros, T. (2006). Seismic hazard in the Pannonian region. In The Adria Microplate: GPS Geodesy, Tectonics and Hazards (pp. 369-384). Springer, Dordrecht.
- Worden, C.B. and D.J. Wald (2016). ShakeMap Manual Online: technical manual, user's guide, and software guide, U. S. Geological Survey. usgs.github.io/shakemap.

Amikor Budapest "alszik"...

Gyarmati Anett, Győri Erzsébet

2020. március 11-e után a COVID járvány következményeként a kormány jelentős korlátozó intézkedéseket vezetett be az országban. Az iskolák bezártak, az emberek egy része otthoni munkavégzésre állt át, majd kijárási korlátozásokat is bevezettek. A közlekedésben jelentkező változások a budapesti szeizmológiai állomás felvételein is jól megfigyelhetők voltak. Ezen változások jellegzetességeit foglaljuk most össze.

2020. március 11-én olyan egészségügyi veszélyhelyzet lépett életbe Magyarországon - a mindenki által ismert COVID járvány miatt - ami megkövetelte, hogy az intézményeknek (vendéglátók, kávézók, iskolák) be kellett zárni, a közösségi rendezvények tartása is tilos volt, valamint az államhatárokat is le kell zárni. Néhány nappal később, március 28-ától pedig kijárási korlátozást rendelt el a kormány az ország egész területére.

"Hogyan kapcsolódik ez a szeizmológia tudományához?" - kérdezhetné bárki. Ahhoz, hogy ezt megértsük, nézzük meg, mi is az a "szeizmikus háttérzaj".

A földrengéskutatásban használt mérőműszerek (szeizmométerek vagy más néven szeizmográfok) nem csak a rengések okozta talajmozgást képesek detektálni, hanem a Földön mindenhol jelenlevő, nem földrengés eredetű talajmozgást, az úgynevezett szeizmikus zajt is. Ennek nagysága függ a frekvenciától, de az idő függvényében és helyről-helyre is nagymértékben változhat. Forrásai a szeizmológiai állomás környezetében, vagy akár nagyobb távolságban végbemenő, rugalmas hullámokat generáló fizikai folyamatok, de lehet akár maga a mérőműszer is. Szeizmológiai szempontból legnagyobb jelentősége a 0,05 és 1 Hz közötti frekvenciatartományba eső óceáni (illetve tengeri) eredetű szeizmikus zajnak van, ami a tenger hullámzása következtében jön létre. Ez a zajtípus a tengerpartok közelében a legerősebb, a kontinensek belseje felé haladva nagysága csökken, azonban bizonyos esetekben még a keletkezési helyétől több ezer kilométerre is nagymértékű talajmozgást hozhat létre, megnehezítve a földrengések jó minőségű regisztrálását.

Lakott területeken az ipari tevékenység és a közlekedés úgynevezett "kultúrzajt" hoz létre. Frekvenciája 1 Hz-nél nagyobb (míg az előbb említett, természetes eredetű szeizmikus zajok tartománya 1 Hz-nél kisebb), erőssége pedig függ attól, hogy éppen nappal vagy éjszaka, illetve hétköznap vagy hétvége van.

A járványügyi intézkedések nagymértékben befolyásolták a város életét. Annak a vizsgálatára, hogy ez okozott-e kimutatható változást a háttérzaj szintjében, a budapesti Sas-hegy gyomrában elhelyezkedő BUD nevű szeizmológiai állomás regisztrátumai voltak a segítségünkre.

1. ábra. A talajelmozdulás mértéke az idő függvényében. A változás nagyságát a hétköznapok vonatkozásában a piros szaggatott vonal és a piros folytonos vonalak közötti eltérések jelzik, míg a hétvégére vonatkozó csökkenést a zöld folytonos vonalak, és a zöld szaggatott vonal közötti eltérések mutatják.

A vizsgálat során különböző frekvencia értékek környezetében szűrtük meg a BUD állomáson 2020. március 9. és április 1. között regisztrált, a talajelmozdulás függőleges komponensét tartalmazó adatsort. Ezeket tanulmányozva azt találtuk, hogy a 20 Hz körüli frekvenciáknál volt a legjobban kivehetők a "kultúrzajjal" összefüggésben megjelenő jelek (1. ábra).

Az ábrán egyrészt megfigyelhetünk egy napi periódusú amplitúdóváltozást. Az éjszakai órákban alacsony, míg napközben jóval magasabb a talajmozgás amplitúdója. Ez a megfigyelés érvényes mind a munkanapokra, mind a hétvégékre, azonban a hétvégi napokon a maximális amplitúdó jóval kisebb, mint munkanapokon.

Ezután megvizsgáltuk, hogyan változtak a zajgörbe jellemzői a járvány kapcsán bevezetett intézkedések következtében. Ehhez három fontos rendelkezést vettünk figyelembe. Március 11-én érvénybe lépett a 40/2020. (III. 11.) Korm. rendelet a veszélyhelyzet kihirdetéséről. Március 16-tól kezdve bezártak az iskolák, másnaptól pedig lezárták a határokat, betiltották a rendezvényeket, valamint korlátozták az éttermek és a kávézók nyitvatartását (ennek a szakasznak a kezdetét ábránkon egységesen március 16-i dátummal jelenítettük meg). Március 28-ától pedig kijárási korlátozások léptek életbe az ország egész területén.

A március 11. előtti napokhoz tartozó görbén jól látszik, hogy munkanapokon a reggeli csúcsforgalom következtében milyen határozott "tüskék" alakultak ki. Ezek nagysága március 16-tól, az iskolabezárások időpontjától kezdve jelentősen lecsökkent, illetve számos esetben teljesen el is tűnt. Érdekes megfigyelni, hogy a délután csúcs nem produkált ilyen határozott jelalakot, ami arra utal, hogy az ehhez tartozó időszak sokkal jobban széthúzódik, mint a reggeli munkakezdéshez köthető csúcs.

Az idő múlásával végigkövetve a napközbeni jelszintet (a tüskéktől most tekintsünk el), akkor azt látjuk, hogy ez hétről hétre egyre alacsonyabb lesz, összhangban az egyre csökkenő emberi tevékenységgel.

Ha a hétvégéket tekintjük, az látható, hogy a jelszint napközben is sokkal alacsonyabb, mint munkanapokon és március végére a hétvégék és munkanapok jelszintje sokkal kevésbé különbözött egymástól, mint a korábbi időszakban. Figyelemre méltó még, hogy március elején, a szombati napokon a vasárnapinál magasabb aktivitás volt megfigyelhető, később viszont ez kiegyenlítődött, a szombati zaj a vasárnapi szintre csökkent. Elmondható továbbá, hogy a március végi munkanapokon a zajszint a március eleji szombatihoz vált hasonlóvá.

Felmerülhet a kérdés, hogy mi a bizonyítékunk rá, hogy a zaj amplitúdójának napi változása tényleg az emberi tevékenységgel van szoros összefüggésben. Erre szerencsére könnyen meg lehet adni a választ a tavaszi (vagy őszi) óraátállítások segítségével.

Ezért kiszámoltuk a 2019. március 31-i óraátállítás előtti és utáni két hét munkanapjaihoz tartozó, a 20 Hz-es frekvencia környezetére vonatkozó, napi zajamplitúdó menetek átlagát (2. ábra). A vízszintes tengely az időt koordinált világidőben (UTC) mutatja. Az ábrán az óraátállítás előtti görbét kékkel, az azutáni időszakhoz tartozót sárgával jelöltük. Jól látható, hogy a két görbe kb. egy órával el van tolódva egymáshoz képest. Az eltolódás iránya is helyes, hiszen tavasszal az órákat egy órával előre állítjuk, azaz az átállítás után egy órával korábban kell kelnünk, tehát az emberi tevékenység világidőben egy órával korábban kezdődik.

A szeizmikus zaj amplitúdóinak változásában, tekintve a napszakot, és hogy éppen hétköznap vagy hétvége volt, ki lehetett mutatni, hogy a zaj a járvány miatt hozott intézkedések hatására lecsökkent, Budapest szeizmikusan elcsöndesedett.

Összefoglalva tehát megállapíthatjuk, hogy a világszinten, jelen esetben Budapesten az emberi tevékenységekben bekövetkezett hirtelen változások szeizmológiai műszerekkel is mérhetők és kimutathatók.

2. ábra. Az átlagos zajgörbe az óraátállítás előtt és után

210 éve történt a móri földrengés

VARGA PÉTER, KISZELY MÁRTA

A Fejér megyei Mór település térségében 210 évvel ezelőtt, 1810-ben pattant ki az egyik legnagyobb magyarországi földrengés. A földrengés hatását és vélhető okait összefoglaló kutatás akkoriban úttörő munkának bizonyult. Az eredményeket bemutató könyv, Kitaibel Pál és Tomcsányi Ádám munkája "Dissertatio de terrae motu in genere, ac in specie Mórensi anno 1810. die 14. Januarii orto" a magyar tudomány történetének egyik büszkesége.

A hazai földrengéskutatás jelentős kiindulópontja a 210 évvel ezelőtt Mór és Csókakő térségében 1810. január 14-én kipattant földrengés. A rengés magnitúdója a Richter-skálán M = 5, 4 körüli lehetett. A rengést megelőző évtizedekben több nagy földrengés rázta meg Európát, amelyeket követően a kormányok kárfelmérést rendeltek el. A móri földrengés esetében is a Helytartótanács utasítására megalakult egy Tudós Bizottság, aminek tagjai a pesti Királyi Magyar Egyetem professzorai, Kitaibel Pál botanikus és kémikus, Tomcsányi Ádám, valamint Novák József Fejér megyei főorvos lettek.

Az egyetem tanácsa által jóváhagyott kutatási terv alapján a tudósok alapos felderítő és elemző munkát végeztek a rengést követően a Vértesben. Kérdőíveket küldtek szét, hogy tanulmányozzák a jelenséget, és megvizsgálják annak okait. Felmerültek a rengés lehetséges okai között az őszi nagy esőzések, esetleg a földalatti robbanások vagy az éghető ásványok jelenléte.

Kiadványuk 1814-ben jelent meg latin nyelven, ami az első tudományos munka, amely egy rengés okait, hatását tudományos módszerekkel vizsgálta. A természettudományokban és ezen belül a földtudományokban is jártas tudósok következtetéseiket az általuk végzett földmérési, földtani, hidrológiai, vegytani és fizikai kísérletek eredményeire is alapozták. Kutatásaik eredménye 1814-ben jelent meg (1. ábra). Íme egy részlet a közgyűlés számára készült hivatalos jelentésből:

"Folyó év januárius 14-én a természet legszomorúbb tüneménye, a földrengés Magyarország nagy részében, de különösen Fejér megyében és legkivált Csóka-hegy tájékán mutatta pusztító erejét, mely a fentebb jelzett hegy közelében lévő helységekben és városokban úgy a régebbi, mint a legszilárdabb újabb építményeket is annyira elpusztították, hogy azok a legrettenetesebb iszonyat nélkül nem is szemlélhetők. A nép a földrengés szokatlan hatásai miatt éjjel-nappal fél, mivel hogy a földrengés oka el van rejtve és már annyi idő óta alig számbavehető megszakítással ezen a vidéken minden pillanatban kénytelenek tapasztalni, hogy életük a legnagyobb veszélyben forog."

A rengés pillanatában éppen Mór legmagasabb pontján tartózkodó bodajki jegyző így beszélte el az átélt földrengést:

"Elsőbben is maga körül és alatta mindent egyik oldalról a másikra hullámos mozgásban rémülten látott inogni, majd ezen mozgás ismét függőleges mozgássá változott, minek folytán minden, amit látott, föl alá mozgott. Mindez még semmi kárt nem okozott, de azután a rögtön erősödő földmozgásra az épületek előtte összeroskadtak."

A lakosság által észlelt jelenségeket a következőképpen tudjuk röviden összefoglalni. A móri Lamberg-ház órája 6 óra 10 perckor megállt. Riadalmat keltő módon érezték a földmozgást Pesten, Pozsonyban és még Bécsben is. Az első rengés 8-10 másodpercig tartott, majd 7 órakor újabb rengések rázkódtatták meg a környéket. Morajlás, zúgás, földből feltörő recsegés hallatszott. Sokan megesküdtek rá, hogy az előző évi győri csata ágyúdörgését hallották újra. Fényjelenségek is kísérték az eseményeket. A Csóka-hegyről hazatérő jobbágyok riadalmát az okozta, hogy hirtelen feltűnő zúgást hallottak, mire ösztönszerűen hátranézve úgy látták, hogy "a mozgásban levő hegy jött utánuk", szinte földbe gyökerezett a lábuk ijedtükben.

E leírások azért is értékesek, mert általuk tudunk következtetni a földrengés méretére, fészekmélységére, és a leírásoknak az is tanúsága lehet, hogy mi is hasonló riadalommal élnénk át egy ehhez hasonló földrengést.

A rengés által az építményekben és a természeti környezetben okozott károkról a következőket állapították meg a Tudós Társaság tagjai.

A döngölt, vastag agyagfalú, alacsony házakon csak repedések mutatkoztak. A téglából épült, mészhabarccsal kötött házfalak azonban csaknem mind beomoltak. A boltívek különösen rosszul viselték a rengést. A kapucinusok cellafalai bedőltek (de ők épp az ebédlőben vacsoráztak, így megmenekültek). Fagyok után tavasszal a megrepedt falú házak is összedőltek. Csókakő akkor 500 éves vár romjai erősen inogtak, de semmi káruk nem esett.

Velegen 113 méter hosszú, 40-50 cm széles repedés keletkezett a földben. Mecséren is repedések keletkeztek és a vadászlakban egy nehéz szekrényt a fal mellől a szoba közepére dobott a rengés. Az erdőben a kis patakok megáradtak és homokot vetettek. Bakonycsernyén egy forrás megakadt. Bakonysárkányban olyan gyorsan mozgott a templomtorony, hogy ledőlése bármely percben várható volt. A nagy rengést több mint ezer kis utórengés követte. Ez a szakirodalomba "móri földrengés raj" elnevezéssel vonult be, amihez foghatót Magyarországon azóta sem észleltek. A csákvári kertésznek jutott eszébe, hogy a rengések észlelése céljából csengőt állítson fel, amit állandóan figyelt valaki. Február 17-én már túl voltak az ezredik jelzésen...

A Tudós Bizottság tagjai a megfigyelt épületkárokat osztályozták, értékelték, és térképet készítettek a földrengés okozta hatások eloszlásáról. Ismereteink szerint ez a világon a legrégebbi izoszeiszta térkép (2. ábra). A térképen azokat a helyeket, ahol a földrengés a legjobban pusztított, pontozott vonallal, úgynevezett izoszeiszta-vonallal vették körül. A főbb vízforrásokat A, B, C, D jelek mutatják. Feltüntették a felszínen megfigyelt, rengés keltette nagyobb talajelmozdulásokat, hasadékokat, sérült templomtornvokat, A pontozott területen belül találhatók azok a helyek, ahol a földfelszínen repedések keletkeztek, alátámasztva az izoszeisztavonal meghatározását.

A rengés során sokan beszámoltak arról, hogy az első lökés után hullámzó mozgás vagy "reszketés" következett be. A lökés irányáról is számot ad a munka, amit a térképen nyilakkal tüntettek fel. Megnézve a térképen, ezek az irányok mind arra vallanak, hogy Mór - Csóka-hegy vidékéről indulhatott ki a földrengés.

A kiadvány végén a Tudós Bizottság tagjai négy oldalban összefoglalták az ókortól napjainkig azokat a módszereket, amelyekkel a földrengés hatását csökkenteni vélték.

A móri földrengés korabeli adatait összegyűjtve – támaszkodva Kitaibel Pál, Tomcsányi Ádám és Novák József adataira is – Szeidovitz Győző (1990) a rengés fészekmélységét 18±5 km-re becsülte. A móri 1810-es földrengéshez kapcsolódóan további érdekességek és részletek olvashatók az irodalomjegyzékben felsorolt cikkekben.

DISSERTATIO

DE

TERRAE MOTU

IN GENERE, AC IN SPECIE

MÓRENSI

ANNO 1810. DIE 14 JANUARII ORTO.

CONSCRIPTA

А

PAULO KITAIBEL

MEDICINAE DOCTORE, CHEMIAE FT BOTANICAE PROFESSORE PUBL. ORD.

ЕТ

ADAMO TOMTSÁNYI

PHYSICAE, ET MECHANICAE PROFESSORE PUBL. Q.

PER REGIAM SCIENTIARUM UNIVERSITATEM PESTI-NENSEM JUSSU ALTIORI PRO INVESTIGATIONE DICTI TERRAE MOTUS AD LOCI FACIEM EXMISSIS.

 $\begin{array}{c} B \ U \ D \ A \ E, \\ \\ \text{TYPIS REGIAE UNIVERSITATIS HUNGARICAE} \\ \hline \end{array}$

Werkensterhanden werden der der der

1. ábra. A móri földrengésről 1814-ben megjelent átfogó tanulmány címlapja

2. ábra. Az 1810-es móri földrengés hatásairól készült térkép

A Móri-árokban és térségében napjainkban is élénk földrengés-aktivitás figyelhető meg. A 2011. január 29-én 18 óra 41 perckor (majdnem pont 200 évvel a móri 1810-es rengés után) M = 4,5 erősségű, 9 km mélyen kipattant földrengés rázta meg a Vértest. Az epicentrum a Vértes északnyugati részén, Oroszlányhoz volt a legközelebb és több mint 280 utórengés követte.

A Móri-árok területén 2020-as évben közel 100 kis rengést sikerült detektálni a területre telepített ideiglenes mérőállomások segítségével. A rengések 83%ának a mérete $M \leq 1$ volt, ezek a kis események nem kerültek volna be a 2020-as rengés listába, ha nem működtek volna az ideiglenes állomások.

Hivatkozások

Kitaibel Paulo [Pál]-Tomtsányi Adamo [Ádám] (1814 [1960]): Dissertatio de terrae motu in genere, ac in specie Mórensi, anno 1810 die 14. januarii orto. Typis Regiae Universitatis Hungaricae, 110 p. Editio ad veriformam speciemque descripta Commentation extremo addita ab Réthly, Antal. 168 old., Akadémiai Kiadó, Budapest

- Kiszely Márta (2015): A Vértes földrengései: mi történik a lábunk alatt? Magyar Tudomány 176, 1, 298-310.
- Réthly Antal (1910): Az 1810 Januarios 14iki móri földrengés. Földtani Közlöny 40, 133-155.
- Timár Gábor (2015): Kitaibel és Tomcsányi 1810-es móri földrengéstérképének topográfiai alapja és georeferálása. Magyar Tudomány 176, 1, 289-297.
- Szeidovitz Győző (1990): Komárom és Mór környezetében keletkezett történelmi rengések epicentrális intenzitásának és fészekmélységének meghatározása. Kandidátusi értekezés, 137 old., Budapest
- Varga Péter (2015): A magyar tudomány történetének büszkesége: 200 éve jelent meg Kitaibel Pál és Tomcsányi Ádám könyve az 1810. évi móri földrengésről. Magyar Tudomány 176, 1, 275–288

Érdekességek

Kiszely Márta, Czanik Csenge

Az utóbbi években örvendetesen megnőtt hazánkban a szeizmológia állomások száma és ezzel párhuzamosan a műszerek is egyre érzékenyebbek lettek. A hálózat nappali detekciós küszöbe 1,25 és 0,75 magnitúdó között mozgott hazánk területén. Ez azt jelenti, hogy a hálózat napszaktól függetlenül egy 5 km mélyen keletkezett 1,5 magnitúdójú földrengést bárhol az országban érzékelni tud. Ennek köszönhetően egyre több olyan antropogén és egyéb természetes eredetű szeizmikus jelet rögzítenek a szeizmométereink, amelyek nem tektonikus eredetű földrengések. A szeizmológiai hálózatok érzékenységének növekedésével az elmúlt évtizedekben a szeizmológiában egy új feladat a természetes eredetű és az emberi tevékenységhez kötődő események, legtöbbször a bányarobbantások elkülönítése. Megfigyelhetők még a szeizmogramokon villámok, viharok hatása, a közlekedés zaja, a légkörben felrobbanó tűzgömbök, de pl. a balatoni jég rianását is detektáltuk már. Az alábbiakban néhány ilyen esetet mutatunk he.

Tűzgömb - 2020.02.28

A tűzgömbökkel kapcsolatban általánosságban elmondható, hogy a Kövesligethy Radó Szeizmológiai Obszervatórium által működtetett állomásokon sokszor találhatunk olyan jeleket, amik eltérnek a földrengéshullámok viselkedésétől. Ezek a jelek "végigfutnak" sok állomáson, azonban ezek a jelek nem a földrengéshullámok szokásos sebességével terjednek.

Ilyen eset történt 2020. február 28án délelőtt, UTC időben körülbelül 9 óra 30 perckor is, amikor Horvátország és Szlovénia felett egy meteor lépett a légkörbe, majd néhány másodperccel később látványos robbanással darabokra hullott. Az ekkor bekövetkezett látványos égi jelenségről hazánkban is számos szemtanú beszámolt.

A légkörben felizzó meteorok, többnyire szuperszonikus sebességgel érik el a légkört, és amennyiben a fényességük eléri vagy meghaladja a Vénusz fényességét, akkor őket tűzgömbnek szokás nevezni. Ha a légkörben felrobbanó tűzgömb hangrobbanást is kelt, akkor az ilyen meteor neve bolida. A szóban forgó esetben a szem- és fültanúk erős hangrobbanásról is beszámoltak, tehát ez a légkörben felrobbant meteor egyben bolida is volt. A szeizmológiai állomás-hálózatban a bolidák által keltett jeleket tudjuk detektálni.

A földrengések esetében az elsőként beérkező szeizmikus hullámok kb. 5-6 km/s sebességgel haladnak, a bolidák esetében viszont hangsebességhez közeli értéket kapunk, ami kb. 20-szor kisebb a rengéshullámok sebességénél. A szeizmológiai mérőállomások tulajdonképpen a robbanás által keltett lökéshullámot észlelik. Erre utal az, hogy a talajmozgások maximumának megjelenési ideje hozzávetőlegesen a hangsebességnek felel meg. A lökéshullám látszólagos sebessége ebben az esetben 312 m/s.

 ábra. A tűzgömb szétrobbanásának hozzávetőleges helye (kék pont a térképen) és a regisztráló szeizmológiai állomások (barna pontok). Az ábra alsó részén időrendben (és egyben növekvő távolsággal) láthatók, hogy a különböző mérőállomásokra mikor ért el a robbanás hatása.

A tűzgömb által keltett hangrobbanás helye (ami a Föld légkörében kb. 40 km-es magasságban volt), és a hatását regisztráló állomások az 1. ábrán láthatók. A legtávolabbi állomás, ami regisztrálta a bolidát a Piszkéstetői (PSZ) volt, ami kb. 400 km-re volt a robbanástól.

A tűzgömb felrobbanását nemcsak a szeizmológiai állomások észlelték, hanem a Mátra egyik legmagasabb csúcsán, Piszkés-tetőn, a Kövesligethy Radó Szeizmológiai Obszervatórium által működtetett infrahangállomás (PSZI) is (2. ábra).

Infrahangnak nevezzük azon alacsony frekvenciájú hullámokat, amelyek frekvenciája a 20 Hz alatti tartományban van. Emberi füllel ezek a hullámok már nem hallhatók. Az infrahang-hullámot nagyon érzékeny légnyomásmérőkkel, mikrobarométerekkel érzékeljük. Maga az infrahang állomás egy több műszerből álló csoportot jelent, ahol a csoport egyes elemei között jellemzően a néhány tíz métertől az 1-2 kilométerig terjedő távolság szokott lenni.

A Piszkés-tetőn működő infrahangállomás egy közepes, körülbelül 250 méter apertúrájú, négy elemből álló műszercsoport. Több elemre azért van szükség, mivel egyrészt a zajból így könnyebb kiszűrni a négy műszer által mért, koherens jeleket, másrészt az egyes műszereken mért beérkezések idő-különbségeiből megadható a jel forrásának az iránya és a terjedési sebességének vízszintes komponense (például magasabbról, tehát nem vízszintesen érkező jel esetén ez a hangsebességnél jóval nagyobb értéket jelent).

2. ábra. A PSZI2, PSZI3, PSZI4 infrahang detektorok regisztrátumai, amelyek közvetlenül az akusztikus, azaz a légkörben terjedő jeleket mutatják (alul). A felső rész a feldolgozás eredményét mutatja, ahol az észlelt jelek a forrás iránya szerint lettek kiszínezve.

A Piszkés-tetőn mért infrahang jelek feldolgozása után jól látszik (a 2. ábra felső része), hogy az észlelt jel éppen a robbanás irányából (kb. 230° azimutról) érkezett.

Hazánkban az infrahang detektá-

lásával kapcsolatos kutatások az NKFI K 128152 projekt keretében folynak. Bővebbet ezen a weboldalon olvashatnak a kutatási eredményekről (www.infrasound.hu)

Az egykori Borsodi Ércelőkészítő Művek kéményének lerobbantása - 2020.03.06

A Miskolctól néhány kilométerre lévő Sajókeresztúr határában az egykori Borsodi Ércelőkészítő Művek (BÉM) kéményét 2020. március 06-án 14 órakor lerobbantották. A kémény a maga 106 méteres magasságával hazánk 6. legmagasabb építménye volt. A kémény lebontása egyik fontos lépése annak, hogy rekultiválják a területet, ahol egy modern ipari parkot kívánnak majd létrehozni.

A robbantás hatását kb. M = 1, 3erősségű földrengésként négy magyarországi (HU02A, ABAH, JOS, PSZ) és egy szlovákiai (KECS) szeizmológiai állomás is észlelte. A robbantás során a kémény alapját robbantották fel, és annak hatására a hatalmas vasbeton kémény, aminek az oldalán egy megkopott BÉM felirat díszelgett, egyben dőlt le. Ezt követően, a becsapódás hatására a kémény a földön tört három nagyobb darabra. A tervezett robbantásokra jellemző a "kerek" időpont (egész óra), ami most is így történt. Az alábbi linken az esemény meg is nézhető : https: //www.youtube.com/watch?v=-snom8ux -SI&t=2s.

A kémény lerobbantásának helyét és időpontját a detektált beérkezési jelekből 2–3 km-es pontossággal meg lehetett határozni. A 2. ábrán a kémény robbantásával járó talajrázkódás szeizmogramjai láthatók. A 73 km-re elhelyezkedő Piszkéstetői szeizmológiai mérőállomáson is látszott a ledőlt kémény talajt megrázó hatása (legalsó szeizmogram).

3. ábra. A Szentléleken (HU02A), Jósvafőn (JOS) és Piszkés-tetőn (PSZ) található szeizmológiai állomások regisztrátumai a robbantás beérkező hullámairól

Robbanás Bejrútban - 2020.08.04

2020. augusztus 4-én este, helyi idő szerint 18:08-kor egy extrém erős robbanás történt Libanon fővárosában, Bejrútban. A detonációkor legalább 2750 tonna ammónium-nitrát robbant fel, melynek robbanóereje 1,1 kilotonna TNT erejével egyezett meg. Ez közelítőleg megegyezett egy kb. M = 3,5 és M = 4,5 közötti erősségű földrengés erejével, amit a Bejrúttól 200 kilométernyire lévő Cipruson is lehetett érezni.

A robbanás okozta rengést a magyarországi szeizmológiai mérőállomások nem regisztrálták, de a Piszkés-tetői infrahang (PSZI) állomás detektálta a robbanást követő lökéshullámot. A 2. ábra alján látható a PSZI négy detektorának regisztrátuma (PSZI1, PSZI2, PSZI3 és PSZI4), felül pedig a detekciók mind látszólagos sebesség, mind azimut szerint színezve.

Direkt hullám esetén a Piszkés-tető és Bejrút közötti közel 2100 km távolságon – 340 m/s-os hangsebességgel számolva – a menetidő körülbelül 1 óra 42 perc, így a beérkezés 16:50 (UTC) körül lenne várható. PSZI-ről nézve Bejrút nagyjából 134°os azimutnál található. A várakozásoknak megfelelően 134° \pm 4°-os irányból az említett időpontban megjelentek a detekciók, ami az ábra felső részén zöld színnel látható.

4. ábra. A Piszkés-tetői infrahang állomás regisztrátuma a bejrúti robbanásról

Hadgyakorlat a Bakonyban - 2020.09.16-25

"Ne ijedjen meg, ha háborúra emlékeztető zajokat hall!" olvashattuk 2020 szeptemberében több hírportál oldalán is (https://168.hu/itthon/honvedseg-h adgyakorlat-191075).

Nemzetközi hadgyakorlatokat tartottak ugyanis Magyarországon, szeptember 7-e és szeptember 27-e között a Magyar Honvédség Központi Gyakorló- és Lőterének (Újmajor, Hajmáskér, Körös-hegy, Bakonykút és Újdörögd) térségében.

A Honvédelmi Minisztérium közleménye szerint, a gyakorlatok miatt a megszokottnál nagyobb hanghatásokra lehetett számítani a szeptember 14-e és 25-e közötti időszakban.

A Kövesligethy Radó Szeizmológiai Obszervatórium csókakői (CSKK) és a Móri-árok mellett telepített ideiglenes (MSW1, MSW2, MSW3) állomásai is regisztrálták a hadgyakorlat lövéseit kísérő jeleket (5. ábra), Csókakőn pedig mennydörgéshez hasonló dübörgések is hallatszottak kb. 30 km-re a hadgyakorlattól. A szeptember 18-i regisztrátumokon látható (5. ábra), hogy mindegyik állomáson hasonló ütemben érkeznek a hadgyakorlat jelei.

5. ábra. A csókakői (CSKK) és a Móri-árok mellett telepített ideiglenes (MSW1, MSW2, MSW3) állomások által regisztrált jelek 2020. szeptember 18-án a délelőtti órákban

A Vituki székház lebontása robbantással - 2020.12.10

2020-ban indult el a Budapesti Atlétikai Stadion építése. A projekt során 2020.12.10-én Észak-Csepelen szükségessé vált az egykori Vituki-székház lebontása, amelynek helyén kerül megrendezésre terv szerint a 2024-es atlétikai világbajnokság.

A Vituki 1976-ban épült 57 méter magas toronyháza 420 négyzetméternyi területet foglalt el. A hierarchikus bontási technológia helyett a jelentős időmegtakarítást eredményező robbantásos technológiát választották, melynek engedélyeztetése lezajlott, és a 44 éves irodaház néhány másodperc alatt összeomlott.

Az obszervatórium budapesti (BUD) mérőállomása kisebb földrengésként regisztrálta a tőle 7,2 km-re történt robbantást, amely helyi idő szerint 14:00-kor történt. A robbantást a 6. ábra szeizmogramján nyíllal jelöltük meg.

A toronyház lerobbantását követően

a Sas-hegyen működő szeizmológiai állomás (BUD) alatt a talaj rázkódása mintegy 30 másodpercig tartott. A kinagyított felvételen (6. ábra) piros nyíl mutatja az először beérkezett jeleket . A robbantásról videó is készült, ami ezen a linken megnézhető: https://youtu.be/Mtop0Pya2r8. A tervezett robbantásokra jellemző a "kerek" időpont, ami most is így történt.

Hivatkozás

Süle B., Bondár I., Czanik Cs., Gráczer Z., Győri E., Szanyi Gy., Wéber Z., Kovács I. J. (2020): ÍGY FIGYELJÜK HA-ZÁNK FÖLDJÉNEK MINDEN REZDÜ-LÉSÉT, A Csillagászati és Földtudományi Kutatóközpont Geodéziai és Geofizikai Intézet Kövesligethy Radó Szeizmológiai Obszervatórium fejlődése és küldetése 2013-tól napjainkig. Magyar Tudomány 181(9), 1202–1215, DOI: 10.1556/2065.181.2020.9.7

6. ábra. A Vituki székház lerobbantásának jelei a budapesti szeizmológiai állomáson
