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Heat shock proteins and cardiovascular disease
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The development of stress drives a host of biological responses that include the overproduction of a family of proteins
named heat shock proteins (HSPs), because they were initially studied after heat exposure. HSPs are evolutionarily
preserved proteins with a high degree of interspecies homology. HSPs are intracellular proteins that also have
extracellular expression. The primary role of HSPs is to protect cell function by preventing irreversible protein
damage and facilitating molecular traffic through intracellular pathways. However, in addition to their chaperone
role, HSPs are immunodominant molecules that stimulate natural as well as disease-related immune reactivity. The
latter may be a consequence of molecular mimicry, generating cross-reactivity between human HSPs and the HSPs of
infectious agents. Autoimmune reactivity driven by HSPs could also be the result of enhancement of the immune
response to peptides generated during cellular injury and of their role in the delivery of peptides to the major
histocompatibility complex in antigen-presenting cells. In humans, HSPs have been found to participate in the
pathogenesis of a large number of diseases. This review is focused on the role of HSPs in atherosclerosis and essential
hypertension.
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Biology of Heat Shock Proteins (HSPs)

In 1962, Feruccio Ritossa (94) described puffiness in Drosophila salivary chromosomes and
changes in gene expression in response to heat. This serendipitous finding was followed
12 years later by the identification of the proteins overproduced by the increase in temperature
that were named HSPs (113). Subsequent studies demonstrated that the upregulation of HSP
was not restricted to hyperthermia but was also induced by hypoxia, ischemia-reperfusion,
energy depletion, physical stretching, acidosis, generation of reactive oxygen radicals, and
in fact by just about every condition generating cellular stress (55). At present, more than
60,000 references on HSP are listed in PubMed archives.

The HSPs represent one of the most ancient and conserved proteins in prokaryotic and
eukaryotic cells. They have a high interspecies homology and are constitutionally expressed
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in most cells. Their overexpression during stress has been demonstrated in every species that
has been investigated, including aquatic corals, desert ants, plants, bacteria, and mammals.
The HSP response to stress is so universal that it has been used as a non-specific bioindicator
of pollutant contamination of the environment (116).

The transcription of the HSP gene is mediated by the interaction of heat shock elements
in the gene promoter regions with the activated (phosphorylated) trimers of heat shock factors
(HSFs). These HSFs are normally present in the cytoplasm as inactive monomers and when
activated translocate to the nucleus. The hyperphosphorylation of inactive HSFs is induced
by stressful conditions in a ras-dependent manner by mitogen-activated protein kinases. The
family of HSFs independently or in concert regulates HSP activity driving or repressing gene
activation and transcription. The human genome encodes six HSF proteins. In vertebrates,
HSF1 and HSF2 are the most widely expressed HSFs. HSF1 plays the central role in the
response to stress and cell survival. In contrast, HSF2 is inactivated by hyperthermia and
sequestered in the cytoplasm thus avoiding interaction with the HSF1 transferred to the
nucleus and may function as cancer suppressor (31).

HSPs are cytoprotective by acting as chaperones in the folding, intracellular transport,
and repair of degraded proteins. In their chaperone functions, HSPs promiscuously interact
with peptides (“clients”) and dissociate from them once their goal is completed. The
upregulation of HSPs is activated and inactivated by a fine-tuned network of transcriptional
and post-transcriptional pathways and by interaction with co-chaperones that can bind
simultaneously and are integrated in the management of the client peptide (31, 105).

HSPs constitute 5%–10% of the total protein content of the cells under physiological
conditions and may increase up to 15% under stress (74). They are distributed in the
cytoplasm, nucleus, endoplasmic reticulum, and mitochondria and because of the large
number of their client molecules, the function of HSPs is not restricted to situations of
cellular stress. They are critical participants in cellular homeostasis and signal transduction.
In the immune response, they are involved in preservation and intracellular trafficking of
antigenic peptides to the major histocompatibility complex (MHC), expression of toll-like
receptors (TLRs), adhesion molecules, and production of pro-inflammatory cytokines
(4, 28, 54, 81, 83, 90, 92, 105, 115). While the results of many studies have given support
to the roles of HSPs stimulating immunity and inflammation, it is impossible at times to
separate the effects of the HSP itself from its association with contaminating agents, in
particular, endotoxin originated in the bacteria used for HSP extraction. As will be
discussed later, the findings of HSP70-induced production of cytokines and its binding
to the MHC in antigen-presenting cells (APCs) are abrogated when endotoxin-free HSPs
are used (9, 29).

HSPs are classified by their molecular weight and are grouped in families (45, 134). The
most important HSPs in human diseases are:

– Small HSP (sHSP) group. These HSPs have a small size (16–40 kDa) and are present in
the cytoplasm and the nucleus. They include HSP27 (HSPB1), heme oxygenase
(HSP32), αB-crystallin (HSPB5), and αA-crystallin (HSPB4). sHSPs function as
cytoskeleton stabilizers and some have antioxidant properties (HSP32) of central
importance in some disease states. sHSPs prevent the irreversible aggregation of
damaged proteins in an ATP-independent manner and transfer damaged proteins to
ATP-dependent chaperones, for example, HSP70. Members of this family inhibit
specific stages of some apoptotic pathways. Numerous studies have uncovered protec-
tive role of HSP27 in atherosclerosis.
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– HSP40. HSP40 is a member of the DnaJ family that comprises the largest number of
HSPs in humans. This family presents a J-domain responsible for recruitment of
members of the HSPA family (includes HSP70) and stimulation of ATPase activity and
thus regulates the activity of other co-chaperones. HSP40 promotes rearrangement of
proteins by successive folding and refolding of protein aggregates and facilitates
collagen preservation and transport of collagen.

– HSP60. This chaperonin family includes HSP60 in mammals and mycobacterial
HSP65, chlamydial HSP60, and Escherichia coliGroEL homologues. HSP60 is present
in the cytoplasm, mitochondria, endoplasmic reticulum, and nucleus. HSP60 binds to
partially folded polypeptides, prevents their aggregation, and assists the development of
correct refolding. HSP60 is released from cells after necrosis and is an important signal
of cell death. The role of HSP60 in atherosclerosis, rheumatoid arthritis, diabetes
mellitus, and neurological diseases has extensively been studied.

– HSP70. HSP70 and other members of the HSPA family have an N-terminal ATPase
domain and a C-terminal domain that bind hydrophobic regions in polypeptides and by
repeated folding and refolding avoids the exposure and aggregation of polypeptide
clients. The chaperone function of HSP70 involves the participation of co-chaperones
and is involved in a multitude of protein interactions. HSP70 family members may
facilitate DNA repair and play a role in the transfer of the client peptides across
membranes. HSP70 has been implicated in the pathogenesis of atherosclerosis and as an
autoantigen in the pathogenesis of hypertension.

– HSP90. HSP90 is a member of the HSPC family. It has an ATP-binding amino terminal
domain, a middle domain for binding with clients and a carboxyterminal domain,
responsible for dimerization and interaction with co-chaperones. Humans have two
HSP90 genes: HSPα that is constitutively expressed and HSPβ that is heat-induced (105).
HSP90 recognizes and binds denatured proteins preventing irreversible aggregation and
cooperates with members of the HSPA family facilitating nucleotide exchange. In
addition, HSP90 binds to specific glucocorticoid receptors. Deletion of HSP90 allows
the expression of normally suppressed phenotypes, which raises the possibility of HSP90
could play a role in suppressing detrimental spontaneous mutations (43, 102). It plays a
role in the pathogenesis of atherosclerosis and systemic lupus erythematosus.

Characteristics of HSPs relevant to autoimmune disease

While HSPs are primarily cytoprotective as described earlier, they are immunodominant
molecules with several characteristics that may stimulate autoimmune reactivity. One of these
characteristics is the highly preserved interspecies homology. The similarity of HSPs across
species carries the potential of cross-immune reactivity between the HSPs in invading
microorganisms and the corresponding HSPs in the host and thereby may cause unintentional
autoimmune responses directed to human HSPs. A number of investigations have made use
of the homologies between human HSP60 and E. coli GroEL, Mycobacterium tuberculosis
HSP65, Chlamydia trachomatis HSP60 GroEL-like and HSP60 of Candida, Aspergillus, and
Histoplasma (47, 69, 104, 108, 117, 128). Similar homologies between human HSP70 and
the HSP70 in M. tuberculosis and Mycobacterium leprae, Candida, Aspergillus, and
Histoplasma, and DnaK-like HSP70 of C. trachomatis have been the bases of important
investigations (42, 69, 104, 107, 119, 125). In fact, molecular mimicry is used in the design of
therapeutic strategies that induce regulatory T cell (Treg) responses in the host by adminis-
tration of specific peptide sequences of bacterial HSPs (120).
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In addition to molecular mimicry, it has been postulated that HSPs can stimulate
immunity against peptides generated during cellular injury because of their capacity to
enhance immune reactivity directed to other antigens. This characteristic is the reason to
incorporate HSP to vaccines directed against specific cancers (17). Finally, HSPs have also
been assigned a critical role in facilitating the traffic of extracellular and intracellular peptides
to MHC types I and II in APCs by canonical and cross-presentation pathways (39, 40, 138).
However, some studies have questioned the direct stimulatory effects of HSPs on immune
reactivity to other peptides. Careful studies have demonstrated that HSP70 contamination
with endotoxin is responsible for the generation of tumor necrosis factor from macrophages
(29) and endotoxin contamination is also responsible for HSP70 activation of APCs (9).
Furthermore, it has been reported that the immunostimulatory properties of HSP70-antigen
fusions are lost after endotoxin depletion (66). Therefore, some pro-inflammatory and
immune stimulatory functions of HSPs may require the association with other components;
in fact, HSP vaccines prepared with therapeutic purposes are prepared in association with
other peptides (32, 50).

In addition to the role of HSPs in stimulating autoimmunity in disease conditions, HSPs
are emerging as a central player in natural autoimmunity. Antibodies against HSPs,
particularly HSP60, are detected in the umbilical cord blood, maintain long-term stable
levels, and are independent of infection (121). Therefore, natural autoantibodies of HSPs are
part of a normal immune system (72, 118). The role of natural autoantibodies is a subject of
debate and it has been proposed that they have a protective function. Disease-related HSP
immune reactivity would result from changes in phenotypes of natural autoantibodies or by
increase above a certain threshold as a consequence of environmental (repeated infections) or
genetic factors (20).

Another aspect relevant to the autoantigenic potential of HSPs is their possible
extracellular localization. Although HSPs are intracellular proteins, their extracellular
location is critical for their capacity to trigger HSP-directed autoimmune reactivity. HSPs
or HSP-protein complexes may escape to extracellular locations by passive leakage
during necrosis as well as by several mechanisms unrelated to cell damage. HSPs may be
engulfed inside cell membranes and released in ectosomes and exosomes from cells in the
peripheral circulation. The ectosomal location of HSPs has been demonstrated for HSP27,
HSP70, HSP60, and HSP90 (8, 16, 34, 57). In addition, HSPs may be extruded from the
cells in association with lysosomes. In support of this mechanism is the finding that
HSP70 has been identified in association with lysosomal proteins (65). Finally, it is
possible but presently unproven that direct protein translocation of HSPs may take place
through interaction with lipids in cell membranes, as has been shown to occur for
fibroblast growth factor-2 (79). In specific circumstances, both passive leakage and active
secretion may be responsible for the extracellular presence of HSPs (64). Any of these
mechanisms may be responsible for the existence of circulating levels of HSP and anti-
HSP70 in normal individuals (84, 86, 110).

In humans, the role of HSP has been studied in a large number of unrelated
conditions and diseases, including aging, cancer, transplantation, atherosclerosis, hyper-
tension, Alzheimer’s disease, diabetes, arthritis, multiple sclerosis, asthma, neurodegen-
eration (Huntington’s chorea and Parkinson’s disease), cerebral and myocardial ischemia,
heat-stress associated nephropathy, and immunity to infectious agents. The present review
will focus on the role played by HSP in the pathogenesis of atherosclerosis and essential
hypertension.
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HSPs and Atherosclerosis

Atherosclerosis is a disease characterized by deposition of lipids, particularly low-density
lipoproteins (LDLs) in the intimal layer of large- and medium-sized arteries in association
with infiltration of immune cells and remodeling of arterial walls. The lipid composition of
the plaques and the infiltration of mononuclear cells were described almost two centuries ago
(71), but the important role of inflammation in the pathogenesis of the disease has been
recognized only in the past three to four decades (100).

The critical role of immune reactivity in atherosclerosis was originally elucidated by
studies that examined the results of treatment with immunosuppressive agents. Using a
model of high fat diet-induced atherosclerosis in rabbits, our group (99) and others (33,
123) showed that treatment with the immunosuppressive agent, mycophenolate mofetil,
markedly prevented plaque formation, infiltration of inflammatory cells, and the prolif-
eration of vascular smooth muscle cells in the aorta (Fig. 1). Importantly, the reduction of
the infiltration of immune cells was also associated with a reduction in the lipid
(cholesterol) content in the vessel walls, thereby underlining a role of local inflammation
in the formation of the atherosclerotic plaque. The notion that atherosclerosis is an
autoimmune disease was advanced by Wick et al. (129) and the knowledge that oxidized
LDL is toxic for endothelial cells prompted research on the nature of the immune
reactivity induced by oxidized LDL and the proliferation of smooth muscle cells in
arterial walls (78). In recent years, significant insight has been gained on the involvement
of the innate and adaptive immune reactivity in atherosclerosis and on the role played by
HSPs in the pathogenesis of the disease (129).

Fig. 1. Effect of immune suppression with mycophenolate mofetil (MMF, 30 mg/kg daily) on atherosclerosis induced
in rabbits by the ingestion of 1% cholesterol diet (CHO) for 12 weeks. (A) No difference was detected in the plasma
cholesterol between the CHO and CHO+MMF groups (n= 10 in each group). However, there was a reduction of
more than 50% atherosclerosis in the aorta (B and C) and an eightfold reduction in macrophage infiltration (D).
Abdominal aortic in CHO group (E) shows extensive atherosclerosis plaques that were not present in the CHO+

MMF groups (F). Figure made using data from (99). **p< 0.01. ***p< 0.001

HSP, atherosclerosis, and hypertension 23

Physiology International (Acta Physiologica Hungarica) 105, 2018

Unauthenticated | Downloaded 04/22/20 10:26 AM UTC



The atherosclerosis lesion
The initial lesions in atherosclerosis are fatty streaks in the intima (Fig. 2). Oxidized LDLs
(oxLDL) act as danger-associated molecular patterns (DAMPs) that stimulate innate immu-
nity, generating autoantigens that engage the adaptive immune response. Local inflammation
is modulated by participation of Treg responses (111). Even in the early stages of fatty
deposition, there is a cellular component in the lesion, consisting of foam cells, macrophages,
and T cells. B lymphocytes are more prominent in the adventitial layer of the arteries. The
lesion evolves to the formation of plaques that may be stable and covered by a fibrous cap.
Growth and rupture of the plaque and remodeling of the arterial wall result from active
inflammation driven by the production of pro-inflammatory cytokines and prothrombotic
mediators.

The immune system in atherosclerosis
Innate and adaptive immunity triggered by the generation of lipid peroxidation products
drives the inflammatory lesion in atherosclerosis (11, 38). The critical role of the innate
immune response in the pathogenesis of atherosclerosis has been underlined by the studies of
Ridker et al. (93) who showed a reduction in the recurrent cardiovascular-related death,

Fig. 2. The role of HSP in the pathogenesis of atherosclerosis. Available evidence suggests that overexpression of
HSP27 is protective, whereas overexpression of HSP60 is atherogenic. The effects of HSP70 are inconclusive and
HSP90 aggravates and complicates atheroma. Conflicting evidence exists in relation to associations between HSP
levels and severity of atherosclerosis (Table I). Induction of regulatory T cell responses with HSP60 and derived
peptides improves experimental atherosclerosis. The stages of atherosclerosis were modified from images in

Dreamsite.com. Numbers in parenthesis indicate the corresponding references
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myocardial infarction and stroke, independent of lipid lowering, with the treatment with a
monoclonal antibody targeting interleukin (IL)-1β. Strong evidence also supports the
participation of adaptive immunity in the progression of atherosclerosis as oxidized lipo-
proteins generate the production of Th1 cytokines, a process that is suppressed by the Th2
cytokine IL-5 (12).

In human plaques, 70% of T cells are CD4+ T cells and almost all remaining cells are
CD8+ T cells (44). Tregs, Th17 cells, and natural killer cells are also present, but in lesser
numbers, in atherosclerotic lesions (48, 49). In later stages, tertiary lymphoid organs
containing a variety of T-cell types and B cells are formed in the arterial adventitia (76).
The role of T-cell subtypes has extensively been studied. CD4+ T cells aggravate athero-
sclerosis (139, 140). The Th1 subtype of CD4+ T cells is pro-inflammatory and proathero-
genic (15, 35), whereas the Th2 subtype has been found both to protect (12) as well as to
aggravate (23, 51) atherosclerosis. Tregs are atheroprotective (1). Conflicting reports indicate
that IL-17 may attenuate (22, 112) or worsen (26, 30, 109) atherosclerosis. Infiltrating
CD8+ cytotoxic T cells favors plaque instability and rupture (56) and natural killer T cells
have been found to be proatherogenic in early stages of the disease (5).

The role of B cells in atherosclerosis remains controversial, with some studies indicating
protection, whereas others suggesting acceleration of the disease (49).

HSPs in atherosclerosis
The most extensively studied HSPs in atherosclerosis are HSP27, HSP60, HSP70, and
HSP90. Specific findings and the experimental models used in several investigations are
shown in Table I. The protective and atherogenic potential of overexpression of these HSPs
are summarized in Fig. 2.
HSP27. The intracellular chaperone function of HSP27 is regulated by phosphorylation and
dephosphorylation in large aggregates that modulate the assembly of an ATP-independent
network (6). As a chaperone, HSP27 plays a role in RNA stabilization, supports antioxidant
responses, and is antiapoptotic (8). Extracellular release from atherosclerotic tissue may result
from cellular injury or occur in association with secretory lysosomes or exosomes. In the
extracellular location, HSP27 binds to a number of cell membrane receptors in endothelial
cells and immune cells, including CD91, CD40, CD36, CD14, scavenger receptor A (SR-A),
and TLRs: including TLR2, TLR3, and TLR4 (11). Recombinant HSP27 induces TLR-
mediated activation of NFκB with the secretion of pro-inflammatory as well as the anti-
inflammatory (IL-10 cytokines) (103). In atherosclerosis, available evidence supports the
notion that HSP27 offers protection against the progression of the disease. In fact, the
identification of HSP27 as an estrogen receptor-associated protein is likely the reason for
the apparently protective role of estrogens in atherosclerosis (75, 91). Atherosclerotic plaques
have lower HSP27 content (67), lower circulating levels of HSP27 are associated with more
severe atherosclerotic disease (106), and HSP27 overexpression protects mice from athero-
sclerosis (21). Potential mechanisms involved in the anti-atherogenic activity of HSP27
include the suppression of NFκB activation by intracellular HSP27 (8) and the possible
participation of HSP27 in lipid homeostasis, since it competes with LDL binding to SR-A,
attenuates foam cell formation (8), and reduces the cholesterol content in the serum and
atherosclerotic plaques (21).
HSP60. Endothelial cells express HSP60 under a variety of stressful conditions. In addition,
the cross-reactivity between bacterial and human HSP60 may be responsible for the
development of a harmful autoimmune reactivity that may be an undesirable consequence
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of a preexisting protective immunity to an infectious agent (54, 127, 128). HSP60 has a direct
atherogenic potential and the accumulated evidence supports the notion that HSP60-reactive
T cells initiate atherosclerosis and the antibodies directed to HSP60 drive the chronicity of the
disease (Fig. 2). In human atherosclerosis, several HSP60 epitopes have been found to have T
and B cell cross-reactivity with bacterial HSP60 (128). Experimental studies have shown that
upregulation of HSP60 expression precedes the development of atherosclerotic lesions (46)
and genetically normocholesterolemic mice develop atherosclerotic lesions if immunized
with HSP60; furthermore, adoptive transfer of HSP60 reactive T cells induces early (fatty
streaks) atherosclerosis (127). In humans, high-circulating levels of HSP60 and anti-HSP60
are correlated with atherosclerotic cardiovascular disease (87, 133, 135), carotid artery wall
thickness (131, 133), and atherosclerosis-related morbidity and mortality (136). Specific
T-cell immunity to HSP60 exists in the early stages of atherosclerosis (53) and T cells
obtained from human atherosclerotic lesions show cross-reactivity with bacterial (mycobac-
terium and chlamydia) HSP sequences (2).

While contamination with endotoxin was not rigorously excluded in all studies, it has
been shown that HSP60 administration could promote or suppress atherosclerosis depending
on route of administration, the type of APCs, and the co-stimulatory molecules involved. The
parenteral route of HSP60 administration induces adhesion molecules and infiltration of
HSP60-specific T cells that are followed by secretion of pro-inflammatory mediators and
anti-HSP60 antibodies, invasion of macrophages, lipid deposition, and the formation of
atherosclerotic plaques. The oral or nasal route of administration of HSP60 (or HPS60-
derived peptide sequences cross-reactive with M. tuberculosis) induces tolerance. Tolerance
develops as a consequence of the generation of Tregs and anti-inflammatory mediators (IL-10
and transforming growth factor beta) and results in reduced atherosclerotic lesions (127). The
induction of oxLDL-reactive Tregs also reduces plaque formation and when peptide
sequences of human apolipoprotein B, human HSP60, and Chlamydophila pneumoniae
were used in combination, a synergistic atheroprotection was found (61). As noted by Wick
(127), the tolerization strategies are based on the use of peptide sequences with high
homology to self that, nevertheless, are immunogenic. Protective vaccines against athero-
sclerosis using peptides derived from ApoB100, HSP60, and a combination of their epitopes
are being actively investigated at present (32).
HSP70. HSP70 is found in the atherosclerotic plaques and is overexpressed in advanced
lesions. HSP70 attenuates the activation of NFκB, which would suggest anti-inflammatory
activity (134); however, there are conflicting reports that preclude assigning HSP70 a definite
role in atherosclerosis at present (Fig. 2). Plasma levels of HSP70 have been found to have an
inverse (68, 141) as well as a direct (130, 132) association with the severity of atherosclerosis.
HSP70 administration has been found to induce production of IL-6 (pro-inflammatory) (4) as
well as Treg (anti-inflammatory) response (125). A high-cholesterol diet has been shown to
increase HSP70 plasma levels and exogenous HSP70 induced overexpression of adhesion
molecules in peripheral blood mononuclear cells. These results suggest that HSP70 favors
infiltration of mononuclear cells and atherosclerosis (132). In contrast, studies investigating
the inhibition of HSP90 activity (62) have found that the observed reduction of inflammation
and oxidative stress in arterial walls was associated with increased expression of HSP70 and
suggested protective effects of HSP70 stimulation. The pro- and anti-atherogenic effects of
HSP70 are presently a matter of debate (10).
HSP90.Work on HSP90 has principally centered in cancer. Several studies have explored its
role in atherosclerosis, where overexpression of HSP90 is associated with features of plaque
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instability. Inhibition of HSP90 has resulted in a reduction in inflammation and in oxidative
stress resulting from reduced activation of transcription factors (signal transducers and
activators of transcription and NFκB) and suppression of pro-inflammatory cytokines.
Interestingly, the beneficial effects of suppressing HSP90 activation are associated with
overexpression of HSP70 that is assumed to contribute to an overall anti-inflammatory and
atheroprotective activity of HSP90 inhibition (62).

HSPs in hypertension

The hypertensive condition
Blood pressure is a biological variable with normal distribution and the definition of hypertension
is arbitrary and related to the risk that is attributed to progressively higher values. Hypertension
(blood pressure ≥140/90 mmHg) is the most important contributor to the global burden of
disease and causes 9.4 million deaths every year; furthermore, the worldwide prevalence of
hypertension is predicted to increase 10% between 2000 and 2025 (60). Hypertension is
classified as secondary when there is a clear etiologic factor and primary (essential) when a
well-defined cause of high blood pressure is not apparent and hereditary and environmental
influences play a pathogenic role. More than 65 genetic loci have been found in association with
high blood pressure, yet, most of them correspond to genes not usually related to blood pressure
homeostasis and the combination of genetic characteristics has been estimated to explain nomore
than 3% of the hereditability of hypertension (77). Putative causes of essential hypertension
include lower birth weight resulting from maternal malnutrition (137) and epigenetic modifica-
tion of genes (59). The importance of the ambulatory blood pressure determinations, the risks
apparently imposed by blood pressure variability, the recommended treatment approaches, and
the guidelines for blood pressure control have recently been reviewed (89).

The ability of a high salt diet to increase blood pressure has been recognized for many
years (13, 36) and the concept of salt sensitivity refers to an increase in blood pressure
resulting from changes in standardized low and high salt administration that exceed “normal”
variation (124). Salt sensitivity increases with age and arterial rigidity. While hypertension
was classically viewed as strictly a hemodynamic disorder, increasing evidence has showed
that hypertension is driven, at least in part, by inflammation in the kidneys (suppressing
pressure natriuresis), in the arterial walls (impairing endothelial vasodilatation), and in the
central nervous system (stimulating the sympathetic outflow) (96, 97).

Autoimmunity in the pathogenesis of hypertension
The immune cell infiltration in the kidney in salt-sensitive hypertension consists of both T
cells and macrophages. Evidence that these cells have a role in hypertension has been shown
in experimental models that evaluated the changes in blood pressure resulting from depleting
specific cell populations. Using this approach, there is evidence for a prohypertensive role
of macrophage infiltration (18, 24, 126), CD4 and CD8 T cells (37, 70, 101, 114), T17 cells
(3, 80), and B cells (19), as well as the anti-hypertensive role of Tregs (7, 63, 73).

It has been postulated that the inflammatory response may be initiated by local injury
induced by renal vasoconstriction, resulting in ischemia that stimulates release of DAMPs
that activate the innate immune response, followed by the exposure of specific endogenous
antigens that trigger an adaptive immune response (95–97).

In hypertension, HSP70 as well as isoketal-modified proteins may represent endogenous
antigens of importance in the pathogenesis of high blood pressure (Fig. 3).
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Isoketal-modified proteins. Studies in several experimental models by David Harrison and
co-workers indicate that γ-ketoaldehydes (isolevuglandins or isoketals) resulting from
oxidation of lipoproteins bind to lysine residues in proteins and generate protein adducts
that represent autoantigens of pathogenic relevance in hypertension. These isoketal-modified
proteins have been found to stimulate T-cell activation (52), and to participate in the co-
stimulatory process of antigen recognition (122) and in the generation of memory cells (41).

In humans with hypertension, the isoketal-protein adduct content of mononuclear cells,
CD14+ cells and CD18+ dendritic cells in peripheral blood is several-fold higher than in
normotensive controls and the number of isoketal-positive CD14+ and CD83+ cells correlate
with the degree of hypertension (52).
HSP70. Another autoantigen with potential participation in the pathogenesis of hypertension
is HSP70 (98). In support of this possibility, we found that renal overabundance of HSP70
(but not other HSPs), circulating anti-HSP70 antibody titers and T-cells reactive to HSP70
were present in several experimental models of hypertension (14, 82, 95). Subsequent studies
were conducted in the model of salt-induced hypertension that follows transient inhibition of
nitric oxide synthase. In this model, T cells present a clonal CD4 response to HSP70 and the
intraperitoneal injection of a highly preserved amino acid sequence ofM. tuberculosisHSP70
resulted in the generation of IL-10-producing Tregs and prevention of hypertension. In
addition, adoptive transfer of T cells isolated from the spleen of tolerized rats reversed
hypertension. Furthermore, HSP70 gene delivery to the kidney of rats sensitized to HSP70
was associated with increment in blood pressure in response to a high salt diet (88). Several
groups, including ourselves, have reported increased circulating anti-HSP70 antibody titers in
patients with essential hypertension (27, 85, 88, 110). Hypertensive patients have also
increased HSP70 gene expression and HSP70 protein abundance in circulating leukocytes
(110) and, in a limited number of patients, we showed that T cells from patients with essential
hypertension responded to a challenge with HSP70 with a strong proliferative reaction (88).
Li et al. (58) have reported that certain HSP70 gene haplotypes (H5 and H8) are associated

Fig. 3. HSP70 is a relevant endogenous antigen in essential hypertension. Inflammation resulting from innate and
adaptive autoimmunity induces and sustains hypertension. Experimental induction of tolerance to HSP70 results in
the generation of IL-10-driven regulatory T cell response that prevents inflammation and salt-induced hypertension
(88). DAMPs: danger-associated molecular patterns; PAMPs: pathogen-associated molecular patterns; CNS: central
nervous system; SNS: sympathetic nervous system; CO: cardiac output; PVR: peripheral vascular resistance
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with hypertension in the Uygur ethnic minority in China and genome wide association studies
have identified single nucleotide polymorphisms of HSPs in the BAT2-BAT5 loci (HSPA1L,
HSPA1A, and HSP1B) associated with hypertension (25).

The induction of tolerance to HSP70 has not been evaluated as a therapeutic strategy in
patients with essential hypertension. The lack of significant side effects associated with oral
HSP60 and derived peptides in clinical trials of prevention of atherosclerosis (32, 50, 128)
suggests that a similar approach could be investigated for the treatment of essential
hypertension. Future studies on the participation of HSP-driven autoimmunity may bring
important insights on the pathogenesis and hopefully treatment of essential hypertension.
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