5. Bericht über die Tätigkeit des chemischen Laboratoriums.

Von Dr. KOLOMAN EMSZT.

Während des Jahres 1910 führte ich im chemischen Laboratorium, neben der Untersuchung des letzten eingesammelten Materials der Torf-aufnahmen folgende Arbeiten aus:

Von der Güterverwaltung des Grafen Dionis Andrássy zu Krasznahorkaváralja wurde uns ein weißes Material eingesendet, welches bei Krasznahorkaváralja gesammelt worden war, und von welchen wir feststellen sollten, ob es ein Kaolin sei.

in	100	Gewichtsteilen	sind	enthalten:	
2				MO OF O	

SiO_2 .						,	73.65 Gewt.
Fe_2O_8							1.58 ,,
Al_2O_3							23.53 ,,
K_2O .							Spuren
Na_2O			•				Spuren
H_2O .							1.14 ,,
		Z	usa	mn	aen		99.90 Gewt.

Der Grad der Feuerfestigkeit des Materials beträgt III., d. h. seine Oberfläche wird bei 1500° C glänzend, es schwillt unter Blasenbildung an, behält jedoch seine Pyramidenform. Das eingesandte Material gehört also nicht in die Klasse der feuerfesten Tone.

Sektionsgeologe Emerich Timkó ersuchte uns verschiedene auf seinem Aufnahmsgebiet vorkommende Bodentypen bezüglich ihres Humus-, Nitrogen- und Feuchtigkeitsgehaltes zu untersuchen.

V 17 1 1 1 1 1 1 1 1 1	100 Ge	wichtsteile e	nthalten	
Name und Fundort des Bodens	Humus	Nitrogen	Feuchtigkeit	
Brauner Ton, alter Anschwemmungsboden, Horgos-Teich, Domäne von Kisjenő, Kom. Arad	4.37%	0.27%	7.54%	
Hellgrauer, weisslicher Lehm,Podzol-artig, Simonyifalva, Komitat Arad	2.420/0	0.19%	13·15°/ _o	
Hellgrauer Lehm (Podzol-artig), Árpád, Kom. Bihar	1.93%	0.130/0	1.43%	
Brauner sandiger Ton, alter Anschwem- mungsboden, Domäne von Kisjenő, Fecset-Puszta, Kom. Arad	3.36%	0.55%	3.83%	
Hellgrauer Lehm (Podzol-artig), Domäne von Kisjenő, Lunka de josu, Kom. Arad.	3.40%	1.120/0	2.93°/0	
Gelblicher toniger Lehm, alter Anschwem- mungsboden, Domäne von Kisjenő, Zsófla-major, Kom. Arad	3.81%	0.53%	4.41%	
Gelblichbrauner toniger Lehm, alter Anschwemmungsboden, Domäne v. Kis- jenő, Somhid-dülő, Kom. Arad	4.52%	0.330/0	4.03%	
Gelblichbrauner Ton, alter Anschwem- mungsboden, Domäne v. Kisjenő, Irtás- puszta, Kom. Arad	4.100/0	0.540/0	6.130/0	
Ton mit Sodaflecken, Domäne v. Kisjenő Livada major, Kom. Arad	3.530/0	0.210/0	2.720/0	
Sodaton (Porszik), Domäne v. Kisjenő, Józsi major, Kom. Arad	4.04%	0.300/8	4.220/0	
Brauner toniger Lehm, Domäne v. Kisjenő, Livada major, Kengyel dülő, Kom. Arad	6.180/0	0.100/0	6.000/°	
Gelber Lehm, junger Anschwemmungs- boden, Dom. v. Kisjenő, Bököny major, Kőrös ufer	3.060/8	0.500/0	3.640/0	
Wiesenton Domäne v. Kisjenő, Ősi- major, Kom. Arad	6.280/0	0.19%	8.01%	
Brauner toniger Lehm, Domäne v. Kis- jenő, Fecset-puszta (Belső-major) Kom. Arad	6.440/0	0.530/0	3.70%	
Gelblichbrauner Ton, Domäne v. Kisjenő, Livada-major, Báránytó-dülő, Kom. Arad	3.980/0	0.130/0	6.47%,	
Gelblichbrauner toniger Lehm, Domäne v. Kisjenő, Józsi-major, Kom. Arad	3.79%	0.100/0	3.72%	
Gelber Ton, Anschwemmungsboden, Dom. v. Kisjenő, Bököny-major, Kom. Arad	3.576	0.090/0	6.85%	

Sektionsgeologe Dr. Karl v. Papp ersuchte uns den Gold- und Silbergehalt verschiedener auf seinem Aufnahmsgebiet vorkommender Gesteine zu bestimmen.

Herstammungsort des Gesteines	1 Tonne Gestein enthält goldiges Silber in Grammen	i Kilogramm goldiges Silber enthält Gold in Grammen
Pyrit. Biotin, Komitat Hunyad	120 gr.	33·3 gr.
Chalkopyrit, Búcsúm, Napoleon-Erbstollen, Spalte im Liegenden	560 gr.	178·3 gr.
Gold und Silber führendes Kupfererz, Búcsúm, Izbita, Aráma-Bergwerk, Napoleon-Erbstollen, 1. Aufbruch	192.5 gr.	77.5 gr.
Gold und Silber führendes Kupfererz, Búcsúm, lzbita, Aráma-Bergwerk, Napoleon-Erbstollen, 2. Aufbruch	300 gr.	83.3 gr.
Kupfererz, Búcsúm, Aráma-Bergwerk, Feldort	320 gr.	31.2 gr.
Pyrit, Búcsúm, Aráma-Bergwerk, Napoleon- Erbstollen	760 дт.	65.7 gr.
Gold und Silber führender Galenit, Sphalerit, Chalkopyrit Búcsúm, Izbita-Stollen	340 gr.	29 дт.
Silber führendes Bleierz Búcsúm, Dolea-Erbstollen	180 gr.	12 [.] 5 gr.
Pyrit, Búcsúm, Aráma-Bergwerk, Seitenbau bei 100 m im Napoleon-Erbstollen	760 gr.	190.7 gr.
Galenit in 3 parallellen Gängen, Búcsúm, Aráma- Bergwerk, nördlicher Feldort	195 gr.	128 [.] 3 gr.

Auf das Ansuchen des kgl. Geologen Paul Rozlozsnik wurde der Silbergehalt der bei Aranyida gesammelten Jamesonite festgestellt.

Bezeichnung der Jamesonite	1 Meterzentner Gestein enthält Silber
No. 99.	511.2 gr.
No. 131.	306·8 gr.
No. 42.	781.6 gr.

Bezeichnung der Jamesonite	1 Meterzentner Gestein enthält Silber
No. 45.	111.2 gr.
No. 95.	162'4 gr.
α	1114·36 gr.

Außer diesen Bestimmungen unterzog ich No. 99 und das mit α bezeichnete Material einer vollständigen Analyse.

100 Gewichtsteile enthalten:

					NO. 99. WILL 0	-pereicune.	
Blei .					19.92	48.92	
Antimon					13.40	27.81	
Arsen	(*:				14.28	1.22	
Eisen .	w).		٠.		14.09	0.98	
Kupfer				٠	1.19	0.08	
Zinlz					1.18	Spuren	

No 00 Mit - horoighnat

Kupfer Zink Bismuth Spuren 0.10 Silher 0.51 1.11 18.68 19.79

Schwefel 0.30 Unlöslich 16.22

> 99.53 Gewt. 100:30 Gewt. Zusammen

Diese Ergebnisse zeigen mit der chemischen Konstitution des Jamesonits verglichen eine vollständige Übereinstimmung.

Auf Ansuchen des Sektionsgeologen Dr. Aurel Liffa wurde das auf seinem Aufnahmsgebiet, in der Wirtschaft der Erzabtei von Pannonhalma bei Pusztadömötöri vorkommende Bitterwasser analysiert.

1000 gr.	Äequival	lentwerte		
Kalium Ione	$K+\ldots$	0.0753 gr	0.16 %	
Natrium ,,	$Na + \dots$	15.0555 ,,	55.43 ,,	100 %
Kalzium "	Ca + + .	0.7689 ,,	3.18 ,,	100 /0
Magnesium ,,	Mg + + .	5.9363 ,,	41.23 ,,	
Schwefelsäure "	SO_4 .	41.6322 ,,	73.40 ,,)	
Chlor ,,	<i>Cl</i> —	0.9871 ,,	2.36 "	100 %
Hydrokohlens. "	HCO_3 —	1	24.24 ,,	100 /0
Kieselsäure "	SiO_3 — .	0.0281 ,,]	2424 ,,	
Z	usammen	82·0540 gr.		

Aus den Bestandteilen in üblicher Weise Salze konstruierend enthalten

1000 gr. Wasser:		
Kieselsäure	0.0281	gr.
Kalziumsulphat	2.5806	"
Magnesiumsulphat	12.0787	77
Kaliumsulphat	0.1681	"
Natriumsulphat	44.6203	"
Magnesiumhydrokarbonat	20.9493	"
Natriumchlorid	1.6285	"
Zusammen	82.0540	gr.
Freie (CO2) in 1000 cc. Wasser	115 cc.	ily:

Paul Rónay, Gutsbesitzer von Zalahalap ließ den am Halapi-Berg vorkommenden Basalttuff bezüglich seiner Anwendbarkeit zur Zementfabrikation untersuchen. Das Material zeigte zu dem für die Zementprüfung vorgeschriebenen Feinheitsgrad zerpulvert folgende perzentuelle Zusammensetzung:

100 Gewichtsteile enthalten:										
SiO_2			-			•			51.34	Gewt.
Fe_2O_3							*):		8.84	77
$A l_2 O_3$					1			,	14.92	25
CaO .									9.37	77
MgO	٠	٠		100		20		Tate I	3.56	22
K_2O			4						0.64	77
Na_2O					*		W)		3.13	77
Feucht	igk	eit			*				8.08	77
Zusammen									99.88	Gewt.

Die Quantität der löslichen Kieselsäure betrug in Na_2CO_8 Lösung 8·87%. Die Menge sowohl des hygroskopischen Wassers, als auch der löslichen Kieselsäure ist also geringer, als die vorgeschriebene Norm.

Die aus dem Pulver nach Beigabe gleicher Mengen Kalkes, groben Sandes und Wassers hergestellten Probekörper wurden binnen 24 Stunden fest und es veränderte sich die scheinbare Festigkeit dieser Körper selbst nach einem 29 tägigen Einweichen in Wasser nicht. Die aus dem Wasser herausgenommenen Probekörper widerstanden einem Druck von 35 kg pro Quadratzentimeter.

Der Basalttuff des Zalahalaper Berges ist also ein Material, welches zur Zementfabrikation nicht geeignet ist.

Die Direktion der Sparkasse von Végvár ersuchte uns eine bei Panyova gesammelte Farberde und einen Ton chemisch zu untersuchen.

Der Ton zeigte nachstehende perzentuelle Zusammensetzung:

100	Ger	wic	hts	tei	le	enthalten				
SiO_2							46.57	Gewt.		
Fe_2O_8							8.92	"		
Al_2O_8						•	10.57	,,,		
CaO			VIII.				7.92	,,		
MgO						·	3.62	,,		
K_2O						•	2.88	,,		
Na_2O						- Lu	6.92	"		
Feuchtigkeit	٠						12.19	"		
	7.	100	mn	non			00.50	Corret		

Der Grad seiner Feuerfestigkeit ist IV, d. h. die Versuchs-Pyramide bleibt bei einer Temperatur von 1200° C unverändert, schmilzt jedoch bei 1500° C zu einer formlosen Masse zusammen. Er gehört demnach in die Klasse der nicht feuerfesten Tone.

Die Farberde ist ein blaßgrünliches, in geglühtem Zustand gelbes Pulver, welches ein starkes Kleb- und Färbvermögen besitzt. Seine perzentuelle Beschaffenheit ist folgende:

	10	0	Ge	wic	hts	teil	le	enth	alten		
SiO_2									58.83	Gewt.	
FeO .									12.21	"	
Al_2O_8									8.41	22	
CaO .								Tion.	2.03	"	
MgO									0.40	"	
K_2O						nyl.		11,110	1.41	77	
Na_2O							١.		4.90	"	
H_2O									11.33	"	
			Z	usa	min	nen			92.52	Gewt.	

Aus diesen analytischen Daten geht hervor, daß die Hauptmasse dieses Materials von einem Eisenoxydulsilikat gebildet wird, welches sich zur Herstellung einer Farberde vorteilhaft verwenden läßt.

Der in den Anlagen der Ziegelfabrik "Szászrégenvidéki Göztéglagyár" gesammelte Ton ist grau, plastisch und braust mit Salzsäure heftig.

100 Gewichtsteile enthalten:

						_			
SiO_2								49.12	Gewt.
Fe_2O_3								11.27	77
Al_2O_3			•					15.34	"
CaO	1.7							7.46	, ,,
MgO								2.87	"
K_2O								0.49	"
Na_2O		•						3.51	,,
CO_2							-	6.43	**
H_2O								4.11	22
		Z	usa	mn	nen			100.60	Gewt.

Die daraus hergestellte Pyramide verblieb bei 1200° C unverändert, schmolz jedoch bei 1500° C schlackernatig zusammen, besitzt also den Feuerfestigkeitsgrad IV.

Magnatenhausmitglied Dr. Josef v. Gáll übergab ein traßartiges Material, welches aus einem Aufschluß neben der Quelle auf seinem Gut bei Lukarecz herstammt, zur chemischen Untersuchung.

100 Gewichtsteile enthalten:

SiO_2	11.00	-					58:53	Gewt
Fe_2O_8							9.54	
-		•	•				3 34	"
Al_2O_8							13.60	,,
CaO					1.1		3.24	,,
MgO	1,20						2.57	"
K_2O		٠					0:85	,,
Na_2O							1.91	,,
Wasser					1		9.49	,,
		Z	ısaı	nr	nen	 ij.	99.73	Gewt.

Das Traßpulver von vorgeschriebener Feinheit enthielt 18.71% in Na_2CO_3 lösliche Kieselsäure. Die aus einem Gemisch dieses Pulvers mit Sand und Kalkhydratpulver verfertigten Probekörper wurden binnen 24 Stunden fest, und hielten nach einem 29 tägigen Stehen unter Wasser einen Druck von 25 kg pro Quadratcentimeter aus. Dieses Material ist folglich zur Zementfabrikation nicht brauchbar.

Seitens des kgl. ungar. Salinenamtes von Rónaszék wurde die Feststellung der chemischen Beschaffenheit des in das Franz-Bergwerk einsickernden Wassers erbeten.

1	Liter	Wasser	enthalt:	Aequivalent	%	der	Bestandteile
---	-------	--------	----------	-------------	---	-----	--------------

Kalium	Ione	$K + \dots$		Spuren) 00.70 0/)	
Natrium	"	Na + .		116.6673 gr.	99.12 %	100 °/ ₀
Kalzium	,,	Ca + +		0.8849 ,,	0.03 ,,	100 /0
Magnesium	77	Mg + +	i	0.0019 ,,	000 ,,	
Chlor	17	Cl —	*	178.7864 ,,	98.81 ,,	
Schwefelsäure	,,	$\dot{SO_4}$ — —		2.4856 ,,	1.02 ,, }	100 °/ ₀
Hydrokohlens	. ,,	HCO_3 —	¥.	0.5515 ,,	0.17 ,,	
	Zu	ısammen .		299·3776 gr.	Dotte	

In üblicher Weise zu Salzen umgestaltet:

Kaliumchlorid KCl .		. Spuren
Natriumchlorid NaCl	Characterist	. 295 0353 gr.
Natriumhidrocarbonat N	$VaHCO_3$. 0.7536 ,,
Magnesiumhydrocarbonat	$Mg[HCO_3]_2$. 0.0113 ,,
Kalziumsulphat CaSO ₄		***
Natriumsulphat Na ₂ SO ₄	de com é amount	. 0.5334 ,,
gundarous Carpeter	Zusammen .	. 299·3776 gr.

Diese Untersuchungen zeigen, daß sich die relative Menge der im Wasser gelösten Salze, im Vergleich mit der chemischen Beschaffenheit des im Jahre 1909 analysierten, von der nämlichen Stelle geschöpften Wassers nicht wesentlich verändert hat, die Lösung jedoch etwas diluierter ist.

Die ältere Untersuchung ergab nämlich in dem von der Sohle des Franz-Bergwerkes gesammelten Wasser 309·1094 gr, in dem vom First geschöpften Wasser 319·0535 gr feste Bestandteile, wogegen durch die jetzigen Analyse 299·3776 gr nachgewiesen wurden. Dieses Ergebnis weist darauf hin, daß das in die Grube hineinsickernde Wasser keine konzentrierte Salzlösung, sondern ein Süßwasser ist und das es zur Klarlegung dieser Verhältnisse notwendig wäre das eindringende Wasser zeitweise zu untersuchen.

Die Zentraldirektion der staatlichen Kohlenbergwerke übergab uns folgende Kohlenproben behufs chemischer Analyse:

Der zu best	immende Bestandteil	Kohle von Mehádia	Kohle von Komló	Kohle von Vrdnik
A AND SHE ES	Kohlenstoff	79.57 Gewt.	75.25 Gewt.	42.18 Gewt.
l e n	Hydrogen	3,55 Gewt.	4.42 Gewt.	3.41 Gewt.
t e	Oxygen + Nitrogen	2·79 Gewt.	7.05 Gewt.	12:30 Gewt.
ch t	Schwefel	1.62 Gewt.	1.52 Gewt.	0.38 Gewt.
G e w i	Asche	11.84 Gewt.	9.83 Gewt,	28.67 Gewt.
100 0	Feuchtigkeit	0.63 Gewt.	1 [.] 93 Gewt.	12.97 Gewt.
I n	Berechneter Heizwert	7734 Kal	7147 Kal	,3924 Kal
	Experimentell festges- tellter Heizwert	7593 Kal	7062 Kal	3735 Kal
chtig- chen- rial	Kohlenstoff	92.62 Gewt.	86.77 Gewt.	72·83 Gewt.
Schwefel, Feuchtig- keit und aschen- freies Material	Hydrogen	4.13 Gewt.	5.10 Gewt.	5 89 Gewt.
Schwe keit 1 freie	Oxygen + Nitrogen	3.25 Gewt.	8.13 Gewt.	21.28 Gewt.

Seitens des k. u. k. 13. Corpskommandos in Zagreb wurde eine kommissionell genommene Lignitprobe behufs Feststellung des Feuchtigkeits- und Aschengehaltes, ferner des Heizwertes nach Berthier eingesendet. Der Lignit enthielt 12·39% Feuchtigkeit und 6·49% Asche; 1 gr Kohle reduzierte 15·53 gr metallisches Blei, wonach ihr Heizwert 4501 Kalorien entspricht. Folglich sind 89·7 kg des eingesendeten Lignits 100 kg weichem Holz gleichwertig, den Heizwert des Holzes mit 4040 Kalorien angenommen.

Auf Wunsch des k. u. k. 6. Corpskommandos in Kassa wurden ebenfalls kommissionell genommene Kohlen aus Salgótarján und Sajószentpéter nach den gleichen Methoden geprüft. Die Salgótarjáner Kohle enthielt 9.62% Feuchtigkeit und 11.37% Asche, ihr Heizwert beträgt nach Berthier 5148 Kalorien. Aus diesen Resultaten berechnet sind 78.4 kg der untersuchten Kohle mit 100 kg weichem Holz gleich-

wertig. Die Kohle von Sajószentpéter enthielt 16.68% Feuchtigkeit und 10.48% Asche, ihr Heizwert beläuft sich nach Berthier auf 4997 Kalorien, woraus sich berechnen läßt, daß 84.2 kg Kohlen mit 100 kg weichem Holz gleichwertig sind.

Zufolge Ansuchens des Oberberginspektors im Ruhest. Árpád v. Zsigmondy wurde eine vorläufige Untersuchung des Gehaltes der aus den Bohrungen von Ruszkabánya herausbeförderten Kohlenproben an Asche, Schwefel, Feuchtigkeit und brennbaren Stoffen durchgeführt.

No. der Boh- rung	Asche	Feuchtigkeit	Schwefel	Brennbare Stoffe	Heizwert
I.	39·14	3.66	1.45	56.75	
II.	44.95	4.11	0.43	50:51	
III.	52 25	4.34	0.79	42.62	
IV.	40.01	4.32	0.48	55.19	
v.	60.16	2.77	0.64	36.43	
VI.	52.33	5.25	0.62	41.50	
VII.	35.78	3:43	0.69	60.10	
VIII.	49.22	2:48	0.68	47.62	4555
IX.	37-20	2.82	0.72	59.26	4929

Von den Banffyhunyader Insassen Géza Czimment und Martin Deak wurde eine Tonprobe behufs Feststellung des Feuerfestigkeitsgrades eingesendet. Das Material ist plastisch, der Grad seiner Feuerfestigkeit beträgt IV, d. h. es bleibt bei 1200° C unverändert und schmilzt bei 1500° C zu einer schlackenartigen Masse zusammen.

Vom Rechtsanwalt Dr. Dionis Kováos v. Farcád wurde ein angeblich aus der unmittelbaren Umgebung von Brassó herstammender Sandstein, welcher reichlich mit Quecksilbertropfen imprägniert war, behufs Bestimmung seines Quecksilbergehaltes eingesendet.

Die Quecksilbertropfen ließen sich mit Hilfe einer Zentrifuge leicht vereinigen und es entfielen auf 100 Gewichtsteile des Gesteins 1.22% metallisches Quecksilber.

Sektionsgeolog Dr. KARL v. Papp übergab uns 4 Gesteine zur partiellen Untersuchung.

- 1. Purit, welcher aus Petresd (Komitat Hunyad) herstammt; derselbe enthält 46.10% Schwefel.
- 2. Pyrolusit aus der Dsin-Grube bei Godinest (Komitat Hunyad), welcher 29.32% Manganoxyd enthält, was 23.12% metallischem Mangan entspricht.
- 3. Pyrolusit aus der Zangre-Grube bei Godinest (Komitat Hunyad), mit einem Manganoxyd-Gehalt von 39.62%, eine Menge, welcher 32.22% metallisches Mangan entspricht.
- 4. Ein Pyrolusit, welcher gleichfalls von Godinest, aus der Dsolu Merului-Grube herstammt, besitzt nachstehende perzentuelle Zusammensetzung:

	10	00	Ge	wic	hts	steil	e e	enth	alten	
SiO_2									9.36	Gewt.
Fe_2O_3								*	6.07	"
MnO_2									74.82	"
Al_2O_3									4.39	,,
CaO									0.85	"
MgO									Spuren	II whi
S.	14	124	1.		110	1	II.	.00	0.17	Part 37
Feuch	tigk	eit	e.U		*;				5:87	"
		III k	Z	usa	mn	nen		gri	99.47	Gewt.

auf metallisches Mangan umgerechnet, werden 57.96% gelöst.

Auf Wunsch des Herrn Direktors Dr. Ludwig v. Lóczy wurden die Sande der Umgegend des Balatonsees untersucht, um festzustellen, ob dieselben zur Glasfabrikation geeignet sind, oder nicht.

Der bestimmte Bestandteil	Pontischer Quarzsand Arács, Péter- Berg, oberhalb der Szabó-Villa	·Quarzsandstein aus den panno- nischen Schichten, Kővágóeörs	Gelber, feiner Quarzsand aus dem Wegein- schnitt unter- halb der "Pap- sapka kövek", an der Land- strasse von Gyulakeszi	Weisser, feinkörnl- ger Quarzsand aus den uuteren panno- nischen Schichten, aus der im Anfang des Tales von Lelince befindlichen Sandgrube
SiO ₂	82.27 Gewt.	97.77 Gewt.	92.89 Gewt.	99·36 Gewt.
Fe_2O_8	1.89 "	0.14 "	0.98 "	0.58 "
Al_2O_8	8.93 "	0.91 "	3.73	1.43 "
CaO	1.47 "	1 44 n	0 62 "	
MgO	0.44 "		0.11 "	dwyl-Pl
K ₂ O	1.59 "	Spuren	Spuren	Spuren
Na ₂ O	2.13 "	0.36 Gewt.	0.92 Gewt.	0.58 Gewt.
$H_{\mathfrak{g}}O$	0.91 "	0.38 "	0.38 "	0.11 %
Zusammen	99.63 Gewt.	99.59 Gewt.	99·43 Gewt.	99.76 Gewt.

Die in der II. und IV. Colonne angeführten Quarzsande sind zur Glasfabrikation vorteilhaft zu gebrauchen, da sie Fe_2O_3 blos in verschwindend kleiner Menge enthalten und sich auch dieser Eisengehalt noch vermindern läßt; mit HCl extrahiert behielt nämlich No. II blos 0.02% Fe_2O_3 , der in der IV. Colonne befindliche Sand aber 0.14% Fe_2O_3 . Die übrigen zwei Sandvarietäten eignen sich blos zur Fabrikation von grünen Flaschengläsern.

Ich untersuchte außerdem die aus dem oberen pannonischen Ton von Kenese gesammelte Salzeffloreszenz (Fancsér-oldal).

100 Gewichtsteile enthalten:

$CaCO_3$							1.26	Gewt.
$MgSO_4$								22
MgCl							0.51	. 99
$CaSO_4$							3.89	22
NaCl							2.88	77
KCl	,						0.07	"
		7	1159	mn	nen		99.81	Gewt

Auf Wunsch des Herrn Direktors Dr. Ludwig v. Lóczy wurden die in der Umgebung des Balatonsees gesammelten, aus verschiedenen Gesteinen hervorbrechenden Wasser chemisch untersucht. Die Resultate der Analysen sind in nachstehender Tabelle zusammengefasst:

ler	Analyse	n sind	in	nachs	tehe	nder	Tabe	elle a	zusan	nmen	gefa	sst:	
1	Gesamt- Härte	44.6	36.—	7.07	34.9	58.5	149.3	37.2	55.6	20.4	33. –	37.—	
17	Für organi- sche Stoffe verbrauchte Menge K ₂ Mn ₂ O ₈	0.00091	0.00041	0.00051	0.00058	0.00034	0.00081	0.00079	0.00032	0.00016	0.00021	0.00033	
	NO ₈	and a	Spuren	milin	THE	17	Spuren	Spuren	1	Spuren	Spuren	17	
۱	NOs	I	1	1	1	1	1	on It	or life	1	1		
	H_8N	L.	ál.	L	IL.	1	Spuren	Spuren	ı	1	I	Lin	i,
allell:	Freies CO,	1.13 cm ³	3.18 "	2.52 "	0.21 "	1.18 "	1.5	81.2	1:11	2.3	1.8	2.5	regions
wasser chimalten:	HCO.	0.3564	0.3637	0.3020	0.0498	0.6780	0.3711	0.5057	0.7320	0.2013	0.2614	0.2995	- Adje
81. W d3	504	0-1732	0.1510	1.3775	0.0333	0.2991	2.2659	0.2634	2:3597	Ĺ	0.0298	0.0440	
TOOM	М	0.0563	0.0289	0.0621	0.0041	0.0924	0.1120	0:2732	0.1916	0.0118	0.0296	0.0103	
1 100	Mgo	0.2634	0.1946	0.2375	0.0181	0.3363	0.3395	0.2634	0.9046	0.0518	0.1475	0.1239	
	CaO	0.0800	0660.0	0-3750	0960-0	0.1140	1.0260	0.1690	0.4320	0.1330	0.1390	0.2040	
	Trocken Rück- stand	1.0600	0.7940	2.5980	0.7020	1.5130	4.0480	1-9820	4.4680	0.5290	0.6840	0.7280	torad.
	No.	H	п	III.	IV.	Δ.	VI.	УШ.	VUI.	IX.	×	Ϊ́	Ro-i

- I. Balatonfüred, roter Permsandstein.
- II. Balatonfüred, untere Werfener Tonschiefer und Dolomitplatten.
 - III. Balatonarács, untere Campiler-Reihe der Werfener Schichten.
 - IV. Csopak, obere Werfener Schichten, unterer Campiler-Sandstein.
 - V. Csopak, obere Werfener Schichten, tieferer Horizont des unteren Campiler-Sandsteines.
 - VI. Csopak, Benedülő, oberer Werfener Plattendolomit.
 - VII. Csopak, mittlerer Campiler Horizont der oberen Werfener Schichten.
 - VIII. Csopak, Plattendolomit.
 - IX. Révfülöp.
 - X-XI. Balatonlelle, Sand.

Die kgl. ungar. Expositur für Kalisalzforschung und das kgl. ungar. staatliche Kohlenbergamt in Komló übersandten uns Wasserproben zur chemischen Untersuchung und behufs Feststellung, ob dieselben zur Kesselspeisung geeignet sind und wenn nicht, mit welchen Zusätzen das Wasser zu diesem Zweck brauchbar gemacht werden könnte.

Die Daten der Analyse stellte ich in folgender Tabelle zusammen:

Der bestimmte Bestandteil	I. Brunnen- wasser von Nagysårmås	alten Brun- nens von	III. Wasser des neuen Brun- nens von Nagysármás	wasser von Marosszent-	V. Brunnen- wasser von Komló
In 1000 gr. Wasser:			-		lact.
Trocken-Rückstand	5.5873 gr.	2·9100 gr.	4.5130 gr.	0.3430 gr.	0·4990 gr.
Kalziumoxyd	0·7650 "	0.2920 "	0.3030 "	0.0412 "	0-1120 "
Magnesiumoxyd	0.2863 "	0.2529 "	0.4697 "	0.0118 "	0.0507 "
Grad der Alkalität	13.1 Grade	5.3 Grade	10.7 Grade	1.18 Grade	6 Grade
Gesamte Härte	116.3 "	64.2 "	95.4 "	10.4 "	- 11
Konstante Härte	36.6 "	14.8 "	29.9 "		
Variable Härte	79.7 "	49.4 "	65.5 "		
Für 1 m ⁸ Wasser benötigtes Na ₂ CO ₈	1506 gr.	934 gr.	1238 gr.	Ohne Erwei- chung zur Kessel-Speisung	119 gr.
Für 1 m ³ Wasser benötigtes CaO	764 "	589 gr.	1190 "	geeignet geeignet	28 "