
GEOPHYSICAL TRANSACTIONS 1984 
Vol. 30. No. 2. pp. 121—139

SPECTRAL STRUCTURE OF REFLECTION SEISMOGRAMS FROM 
INSTANTANEOUS FREQUENCY DISPLAYS

J. G. SAHA*

The spectral characteristic of seismograms often resembles processes with mixed spectra. Such 
processes are usually nonstationary. Instantaneous phase/instantaneous frequencies derived from 
analytical signal technique enable one to detect the quasiharmonics present in a seismogram. The 
method is valid irrespective of whether the process is stationary or not. Time evolution and decay 
of such quasiharmonics can also be estimated with sufficient accuracy from instantaneous frequency 
displays.
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1. Introduction

A signal or a seismic trace (time series) can be described by certain para­
meters such as envelope, instantaneous phase and “instantaneous frequency” 
(IF). These parameters have been applied in geological interpretations [T a n e r  
et al. 1979]. The envelope of a signal is related to its strength and the phase may 
be understood by the number of accumulated cycles starting from a given time. 
The IF is defined as the derivative of instantaneous phase (or phase velocity 
which can also be negative). Although it can be defined clearly in mathematical 
terms, it is obviously not the same as that of Fourier frequency. In fact an IF 
that is present in a signal can fail to show up in the Fourier decomposition of 
the signal. In certain cases the IF will have values for which the Fourier 
spectrum of the signal vanishes [M a n d e l  1974]. It has been pointed out that the 
frequency decomposition through the Fourier transform technique cannot des­
cribe the local non-stationarities in time whereas the IF plots emphasize these 
non-stationarities. We may state that IF plots represent a stochastic process 
where local non-stationarities in phase velocities are displayed. So, in general, 
one should be extremely cautious in associationg the IF with the usual frequency 
interpretation of seismic sections.

The derivatives of instantaneous phase (instantaneous frequency) with time 
of a reflection seismogram represent essentially a stochastic process. The term 
“instantaneous frequency” has been objected to by many authors for the reason 
that one cannot embrace simultaneously two mutually exclusive variables such 
as Fourier frequency and time. However, the so-called instantaneous frequency
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can be identified with Fourier frequency in certain cases and for narrow-band 
signals the mean square bandwidth is equal to the variance of the instantaneous 
frequency with appropriate weighting factor. This can be proved from signal 
energy distribution function with time and frequency. The distribution function 
directly leads to the well-known Fourier uncertainty and a short time spectrum 
can also be defined as proposed first by De Bruijn.

Most of the above aspects of IF are well-known. However one can show that 
statistical averages of Fourier frequency and IF, when appropriately weighted, 
are approximately equal (if the process has an envelope which is slowly varying 
with time). For example, the variance of IF with respect to Fourier mean 
frequency is related to the mean square bandwidth of the signal. We recall that 
when a wavemeter is tuned to a particular Fourier frequency with a modulated 
signal as input, we obtain a spike only when the IF runs through the Fourier 
frequency being measured [Va k m a n  1964]. From the principle of stationary 
phase it can be shown that the spectral density at any Fourier frequency is 
determined from the contributions of the integral during times when the IF 
coincides with the Fourier frequency. In this paper we will show that most of 
the relations connecting the IF and the Fourier frequency can be derived from 
the concept of signal energy density in time and frequency. Further, the spectral 
model of any complex process such as of a reflection seismogram can often be 
ascertained from its IF displays.

2. Signal representation

We represent a real signal or a seismic trace f(t)  by

/(/)  = A(t) cos 0(t) = A(t) cos [a>0t+ Ф(0\, (1)

A(t) and <9(0 are the envelope and the phase respectively; may be termed as the 
slow part of the phase; w0 in the case of a seismic signal or seismic trace may 
be considered as the mean frequency about which the signal is centred in the 
frequency domain. In equation (1) the splitting of the signal into an amplitude 
part and an oscillatory part is obviously arbitrary and thus the representation 
is not unique. We consider next the complex representation of a signal:

where

ПО = f ( 0  + if(0 (2)

= A(t)em,) (2a)

A(t) = ]/f2( 0 + f ( 0 (2b)

<9(0 = arc tan [/(<)//(<)] (2c)
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and “instantaneous frequency” is,

d<9(?) _  f{ t) f '( t)~ f\ t) f '( t)  
át fHo+fd) (2d)

To determine co(t) we need not know 0(t), if/( /)  is known. We assume that f(t) 
is derivable through a linear operation on f(t), viz. f(t)  = Lf(t)  = / ’(/) 
where k(t) is real operator and * denotes convolution. It can be shown [M a n d el  
1967] that k(t) is uniquely determined when the signal is narrow band and is 
given by

or

k(t) = —1 P 
n

M  =
Л

' m
r — t

dr

(3)

(4)

P denotes Cauchy’s principal value. Henceforth limits of all integrals are from 
-  oo to + 00. The complex signal in equation (2) where f{t) is given by equation 
(4) is know as an analytic signal.

3. The “two frequencies”

Let us consider a vibration of the following form [Va k m a n  1973]:

f(t)  = A0 sin3 co0t (5a)

The signal sin3 to0t consist of two vibrations: sin œ0t and sin 3 a>0t. When we 
apply the analytic signal technique we obtain:

A(t)

a>(t)

A° ~ 8 COs2tV

3 3 . ,------ : cos 2 a>nt
4 4

5 3 Ö ,-  -  -  cos 2 co0t
■ CUn

(5b)

(5c)

We find that A (?) changes from \ ß A 0 to A0 and a>(t) from 0 to 3/2o)0 with a 
period of 1/2a>0. We consider now a complex signal [Mandel 1974]:
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t) = a1 exp[ :(
(Or ï J a ) '

+ a2 exp^ —i (̂u0+ ^ A<o )t

a ! фаг, A<o«(o0 (6a)

!P(t) represents a combination of two sinusoidal oscillations with frequencies 
symmetrically placed with respect to co0. On application of the same technique:

— a\ + a\
co(t) = OJ0 + -  Act). , , „

\a f  + a2 + 2axa2 cos Acot.
(6b)

When cos Acot = 1,

(o{t) -  cu0+ \ a (o 2 1 (7a)
2 a2 + a !

and for cos da»/ = -  1,

1 a, + a,
cu(/) — tu0+ --------- (7b)

2 Í72-Ű!

It is obvious that the deflections of <o{t) about w0 are not symmetrical and no 
Fourier components are present with frequencies as high as given by equation 
(7b). However the distributions of “instantaneous frequencies” of a signal and 
the spectral distributions of the signals are related by:

TIME (ms)

Fig. la. Instantaneous frequency of a 
segment of seismic trace: 
time window 764 ms—868 ms

la. ábra. Egy szeizmogram 
szakasz pillanatnyi frekvencia 
függvénye. Időablak: 764 ms—868 ms
Puc. la. Мгновенная частота от 
сегмента сейсмической трассы: 
временное окно 764 мс—868 мс
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Fig. lb. Spectral power estimate of the same segment of seismic trace 
FFT-Fast Fourier Transform; MLM Maxiumum Likelihood Method; MEM-Maximum

Entropy Method

lb ábra. Ugyanazon szeizmogram szakasz spektrális energia eloszlása

Рис. lb. Оценка спектральной мощности по сегменту сейсмической трассы: временное
окно 764 мс—868 мс

J (со- co0)2lF((o)dœ = J [œ(t) — со0]2 A2(t)dt (8а)

Щсо) is the spectral density,

J lP2(oj)ácü = J A 2(t)ât, by ParsevaFs theorem (8b)

The left hand side of equation (8a) is the mean square bandwidth. For 
convenience we assume the integrals in (8b) are equal to unity. The relation in 
equation (8a) is approximately true. One has to assume here a slowly varying 
envelope. M a n d e l  [1974] has shown that this relation is also true for a station­
ary stochastic process. So there is no one to one relationship between these two 
“frequencies”. This is because the two quantities are fundamentally different. 
Figure la shows sample by sample IF plots of a segment of one reflection 
seismic trace. The power spectral estimates for the same window are shown in 
Figure lb where estimates have been calculated by different methods as per the
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prescription of L acoss [1971]. It is seen that the peak frequency where the 
spectral power becomes maximum is absent in all the IF values within the same 
time window.

4. Sturm— Liouville problem

We recall that solutions of certain non-linear differential equations of 
Mathieu—Hill type represent oscillations with modulation in time of both 
amplitude and frequency. However these equations are not suitable for describ­
ing a seismic trace. Solutions of such equations often show that the maximum 
amplitude and minimum “instantaneous frequency” (maximum apparent 
period of one oscillation) occur together in time. This is not generally true for 
a seismic trace. We now deal with solutions of the following type of linear 
second-order homogeneous differential equation of Sturm—Liouville (SL) type:

U"+a(t)U= 0 (9)

The solutions of equation (9) will have three different regimes and being interest­
ed in the oscillatory regime we assume a(t) = g2(t). If g(t) is sufficiently large 
we can obtain an approximate solution by the WBK method:

m  = i g d t - 0 o ( 10)

The solution shows that the amplitude is closely coupled with “instantaneous 
frequency”. In fact it is true for a large class of signals and to quote Cornelius 
L a n c z o s  [1961] “the amplitude of the vibration is always inversely proportional 
to the square root of the IF. The law of zeros in the oscillations of Bessel 
functions, Laguerre or Hermite type of polynomials is not independent of the 
law according to which maxima of successive oscillations change”. We should 
note that the solution is not unique and the separation of amplitude and 
frequency can occur in infinitely many ways. We next consider the following SL 
equation:

d2U(t) 
d t2

[co(t)-œ0]2U(t) = 0 ( И )

where U{t) = t) exp ( -  ieo0r) is the complex envelope. The assumption of the 

narrow band nature of signals means that the variation of ^
d t

should be as

small as possible. We recall the connection between SL equations and calculus 
of variations and consider the following quadratic functional [Be l l m a n  1970]:
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J(U) = ) ( l / 2- g 2{t)U2)dt (12)

where g2(t) = [w(0~too]2-
Any solution of the SL equation is a stationary point for the functional 

J(U). We search for that particular U which furnishes the absolute minimum 
of J(U) and in turn will also furnish us with a unique solution of (11). We write 
(12) as:

AU) [co{t)-œ0]2A \ t ) dt (13)

Since the fluctuation of the envelope should be minimum, our extremization 
problem of J{U) reduces to the problem of finding the conditions for which

\[co{t)-co0]2A2{t)dt is minimum.

From equation (8a) we have:

J [co{t)-w0]2A 2{t)dt =  { (ft>-cy0)2!P(a>)da>,

A(t) varies slowly with time. The right hand side of the above equation is the 
variance of spectral density 4/(to) and it will be minimum when he deviation of 
со from co0 is minimum. This is satisfied when co0 is the mean Fourier frequency:

\  co(t)A2(t)dt \új4/(oj)doj
con --------------- = --------------  (14)

\A \t)d t  j>(oj)d<y

So the first moment of (co-co0) vanishes. To obtain a unique complex envelope 
function satisfying SL equation (11), the variational problem reduces to:

J ((o — co0)2tt/((o)dco = minimum (15a)

with the auxiliary condition

j(co — co0) f /(co)dco = 0 (15b)

Now !P(co) is given by M a n d el  [1967]:

Псо) = -Ф((о)[\+хК{со)]2 (15c)

Ф(со) is the spectral density of the real signal f a(t) and K(co) is the Fourier
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transform of k(t). By applying standard variational technique, Mandel [1967] 
has shown that the integral (15a) is indeed minimum if

K(co) = — i sgn to (16)

or in time domain,

So we conclude that for a certain class of signals the complex envelope satisfying 
the SL equation possesses a unique solution when fit) is the Hilbert transform 
of /(f). Thus,

A ( t ) K --------A q-------7 - (17)
№ t ) ~ c o 0]2) -

The validity of this relation is confined to within the reqime where the WBK 
soution is acceptable. The motivation of introducing the Sturm—Liouville 
problem in describing oscillatory processes with varying amplitude and “vary­
ing frequency” is now evident. Equation (17) shoes that when the deviation of 
IF from the mean Fourier frequency is maximum we should expect a minimum 
of the envelope at that instant. Figure 2 shows a plot of the evenlope with IF 
derived from a reflection trace. It shows that the main maxima and minima of 
the envelope may be predicted with accuracy from a study of IF displays only. 
The so-called IF is not only a fundamentally different quantity from Fourier 
frequency, it is also closely coupled with the envelope of the process. In other 
words the instantenous phase/frequency is not a robust attribute of the signal 
strength. This follows also from analytic signal theory. When we represent a 
complex signal such as F(t) = A(t) exp (i0(?), F(t) being regular and analytic 
in the upper half of the complex t plane, the phase and logarithm of the envelope 
are in quadrature. We also note that two random variables at any particular 
instant may be orthogonal. But it does not mean that the two processes are 
uncorrelated [P a p o u l is  1965]. We have a similar situation in the present case.

5. Signal energy distribution in frequency and time

The Fourier method is used to describe a signal either in frequency domain 
or in time domain, the two domains being mutually exclusive. Evidently a term 
like “freqency varying with time” is contradictory in the Fourier sense. To 
describe a signal energy density in frequency and time we attempt to combine
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these two mutually exclusive parameters. Be whatever it may, the existence of 
signal energy distribution in frequency and time is intuitively correct and a 
mathematical description of such a phenomenon was introduced by G abor  
[1964]. Following R ih a c z e k  [1968] we define the signal energy density function 
in t and /  as the two-dimensional Fourier transform of the combined autocor­
relation function in time and frequency. This is similar to the auto-ambiguity 
function in Radar theory [V a k m a n  1964]. We take the symmetrical version of 
the auto-ambiguity function and the corresponding energy density function is:

The signal 
ditions:

p{t,ca) = t+ t~  4 e~ iiuTdr (18)

lE(t) is given by equation (2a). p(t, at) satisfies the following con-

$p(t,co)d(o = 1 *F(t)\2 (19a)

\p{t,œ)àt = \ V(co)\2 (19b)

J p(t,co)dtdco = 2 E, (20)

E is the energy of the signal.
In can be proved that the first order conditional moment

j  (op(t,co) dœ d 0(r) 
at = = , = wit) 

J p(t,w)da> dt
(21a)

The variance of p(t,co) at a particular instant

w2-(a>)2 = -  2 ” [!°g^(0] (21b)

From (21a) we infer that the IF provides a measure of Fourier frequency at 
which the energy/power of a signal acts at an instant of time t [A c k r o y d  1970]. 
It can also be shown that the second conditional moment œ2 is related by:

{■•'■•'“ - [ " " г "
(22a)

For a narrow band signal the right hand side is by definiton the mean square 
Fourier frequency [G abor  1946]. So,
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w 2A 2(t)dt w 2(t)A2(t)dt  =  со2 (22b)

The appropriate weighting factor A2(t) is important. For Gaussian signals the 
mathematical expectation of IF may be infinite [Ström 1977] if the weight factor 
is not taken into account. Equation (18) for p{t,w) is similar to Wigner’s 
distribution function in quantum mechanics. The well known Fourier inequality

AcoAt >  ̂ follows directly from equation (18) [Moyal 1949]. By analogy with

a piece of music. De Bruijn has termed the function p(t,co) as the musical score 
or simply the score [De Bruijn 1967]. We recall that the instantaneous spectrum 
can be defined from the decompostion of the energy of singnals onto t — /  
planes [Levin 1964]. Although p{t,w) is real, one cannot define a physically 
realizable spectrum because p{t,a>) is not > 0 for all t. For example, if > 0 
for all t,p(t,co) is negative. De Bruijn has shown that certain moving averages 
yield positive values and the local smoothing (double convolution) of the 
instantaneous spectrum of a process with the instantaneous spectrum of window 
function yields the physical spectrum of the process [Mark 1976]. The window 
function should be such that it is non-negative over 0< /< oo  and its integral 
over the semiinfinite time domain is unity. We will not enter into details of 
spectral representation of non-stationary processes in the present article. The 
above points are mentioned here to stress the fact that a concept of signal energy 
density in time and frequency leads us not only to the concept of IF for narrow 
band signals, but with modifications the formulation can be used in defining the 
short period spectrum of any process. It is however quite complicated to 
generate a time-dependent spectrum as it is a function of two variables/ and t.

6. Spectral dynamics of a seismogram

Classical spectrum analysis is based on the concept of the linear stationary 
model (at least to the order two). For non-stationary processes the covariance 
kernel in the Wiener -Khintchine integral is not independent of the time origin. 
Loynes [1968] while listing the desirable properties of the spectrum of any 
stochastic process shows that spectral characteristics in the Fourier sense do not 
exist for non-stationary processes. Other statisticians, notably Priestley [1965], 
and Mark [1976] do not agree with such a conclusion and are of the opinion 
that a local power-frequency distribution at each instant of time exists. From 
our basic assumption a reflection seismogram is a stationary stochastic process 
with a continuous spectrum. The sharp peaks and notches observed within a 
finite time window are attributed to layer thicknesses present within the window. 
From spectral studies of reflection seismograms it is however very difficult to 
make out whether the spectral peaks are separate harmonic quasi-harmonic
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oscillations or are simply narrow peaks of a continuous spectrum. For processes 
with so-called mixed spectra we have discrete harmonics with a continuous 
coloured spectrum. Such a process is rarely stationary. If separate narrow band 
signals are superposed on a process with continuous spectra, due to the additive 
property of spectra it may appear similar to the spectrum of a reflection 
seismogram. This is always a non-stationary process. Further if we agree that 
there is a change of apparent periods of oscillations with time in a seismogram, 
the process is bound to be non-stationary. Let us consider a purely amplitude 
modulated process:

p(t) = A{t) cos co0t

œ0 is the peak Fourier frequency. The deterministic version of such a type of 
oscillation, known as a Berlage pulse, is given by:

/(/) = /"e ßl sin w0t

n is any integer and ß is a constant. Such analytical forms have been used in 
practice, particularly in simulation of earthquake coda [F a r n b a c k  1975]. In

seismic exploration ß »  W-° . These are narrow band signals and from classical
A

Fourier theory the spectra should contain an infinite number of frequencies. 
Figure 3 shows the envelopes and spectra of such pulses. Following P riestley  
[1981] we can represent the vibration as of only two frequencies cu0 and — w0 
each component having a time varying amplitude A(t). Now if the envelope A(t) 
and the oscillatory part cos co0 t are spectrally disjoint, from the product 
theorem of Bedrosian, the Hilbert transform in given by A(t) sin w0t. This is true 
if the envelope is slowly varying with time and then the instantaneous phase is 
given by

0{t) = arc tan
_ p(t) _

a>0t

or IF is equal to cu0; H denotes the Hilbert transform. Although the Hilbert 
operator is noncausal and equation (4) is computed by considering the integral 
over the entire range form -  oo to + со, the value of H{/?(/)} depends very little 
on the character of random process beyond the duration of the quasiharmonic 
signal being detected and analysed [Kharchenko et al. 1973]. Such vibrations 
can be identified on a time scale where 0{t) is linear or nearly linear. In IF 
displays we can detect and locate these frequencies where the IF is nearly 
constant, preferably for a period of time of the order off 0T к  1. Thus a study 
of instantaneous frequencies may be helpful to ascertain the dynamic change 
of frequencies (at least at certain discrete intervals of time) irrespective of the



Spectral structure of reflection seismograms. . . 133

FREQUENCY ( Hz)

Fig. 3. Envelope (A) and spectrum (B) of Berlage pulse with peak frequency 25 Hz 

3. ábra. Egy 25 Hz-es csúcsfrekvenciájú Berlage impulzus burkolója (A), és spektruma (B) 

Puc. 3. Огибающая (А) и спектр (В) импульса Берлаж с пиковой частотой 25 Гц

fact that the random realization of a time series belongs to the non-stationary 
class. Figures 4a and 4c show IF plots of a seismic trace for two different time 
windows. The trace is from a stacked section of land seismic data. The field 
seismograms (recording filter 8 Hz—124 Hz) after gain recovery have been 
stacked with appropriate spherical divergence and NMO corrections. No decon­
volution of any kind has been applied. A band pass filter (8 Hz—60 Hz) has 
been used before obtaining the stacked output. The figures show the presence 
of two quasi-harmonics with frequencies 22 Hz and 27 Hz at about 1976 ms 

2021 ms and 2532 ms - 2592 ms respectively. Power spectral estimates by 
three different techniques (FFT, MLM and MEM) of the original seismic trace 
for the same time windows are shown in Figures 4b and 4d. It is however 
observed that peak frequency values determined from IF plotes are nearer to 
peak values given by FFT or the Maximum Likelihood Method than values 
obtained from the Maximum Entropy Method. The peak freqency at a deeper 
level (Figure 4d) may sometimes be more than the peak frequency at a shallower 
level. This has been observed in many areas and was also mentioned earlier by 
other authors [T a n e r  et al. 1979].
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TIME (ms)

Fig. 4a. Instantaneous frequency plot of a seismic trace: time window 1836 ms—2040 ms

4a ábra. Egy szeizmogram szakasz pillanatnyi frekvencia függvénye.
Időablak: 1836 ms—2040 ms

Рис. 4a. Диаграмма мгновенных частот по сейсмической трассе: 
временное окно 1836 мс—2040 мс

20
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Fig. 4b. Spectral power estimate of a segment of seismic trace: time window 1976 ms 2012 ms

4h ábra. Egy szeizmogram szakasz spektrális energiaeloszlása. Időablak: 1976 ms 2012 ms

Рис. 4b. Оценка спектральой мощности по сегменту сейсмической трассы: временное окно
1976 мс 2012 мс

7. Conclusions

1. The Fourier frequency and instantaneous frequency are fundamentally dif­
ferent quantitites. However for a narrow band signal the variance of IF with 
respect to mean Fourier frequency is approximately equal to the band-width of 
the signal. This relation is true for stationary stochastic processes also. One 
should be cautious to use term by term IF values for the usual frequency 
interpretation of seismic section.
2. The complex envelope of a seismic envelope of a seismic trace can be 
determined uniquely by solving the appropriate Sturm -Liouville differential 
equation. The “instantaneous frequency” may often be strongly coupled with 
the envelope function. The location of maxima/minima of envelope (signal 
strength) can be predicted with fair accuracy from IF displays. The IF display 
may be helpful for seismic correlations where signal strengths are less.
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3. An attempt has been made in this paper to “embrace" the two mutually 
exclusive parameters, Fourier frequency and IF, by utilizing the concept of 
signal energy density function in time and frequency. It is shown that IF is a 
measure of Fourier frequency at which the signal energy density is con­
centrated at a particular instant of time. The interpretation is meaningful if the 
energy density function is real and positive. This also explains the occasionally 
observed phenomenon where most of the signal energies are transmitted by 
filters with band-widths much narrower than the signal band-widths. The 
expression for energy density function considered in this paper, when suitably 
modified, can also be used to define a physically realizable short-time spectrum 
of any process (stationary or non-stationary).

Fig. 4c. Instantaneous frequency plot of the same seismic trace as in Figure 4a; lime window
2392 ms 2656 ms

4c ábra. A 4a ábrán szereplő szeizmogram pillanatnyi frekvencia függvénye 
a 2392 ms 2656 ms időablakban

Рис. 4c. Диаграммы мгновенных частот по сейсмической трассе, показанной на Рис. 4а: 
временное окно 2392 мс 2656 мс
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Fig. 4d. Spectral power estimate of the same seismic trace as in Figure 4a): time window
2532 ms -2592 ms

4d ábra. A 4a ábrán szereplő szeizmogram spektrális energiaeloszlása a 2532 ms—2592 ms
időablakban

Рис. 4d. Оценка спектральной мощности по сеймической трассе, показанной на рис. 4а: 
временное окно 2532 мс—2592 мс.

4. The analytic signal technique can be exploited for decompostion of any 
random process into a number of quasi-harmonic oscillations at certain discrete 
time intervals of reflection seimograms. The peak Fourier frequencies deter­
mined from IF desplays may be used as additional information for ascertaining 
transition zones in a seismic section. The information obtained by this technique 
does not depend on the overall characteristics of the process.
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A REFLEXIÓS SZE1ZMOGRAMOK SPEKTRÁLIS SZERKEZETÉNEK 
TANULMÁNYOZÁSA A PILLANATNYI FREKVENCIA VIZSGÁLATA ALAPJÁN

.1 G. SAHA

A szeizmogramok spektrális jellemzői gyakran emlékeztetnek a kevert spektrumú folyamatok 
jellemzőire. Az ilyen folyamatok rendszerint nemstacionáriusak. A jelanalízis módszerével előál­
lítható pillanatnyi fázis -  pillanatnyi frekvencia függvények lehetővé teszik a szeizmogram kvázihar- 
monikus tartalmának kimutatását. A módszer a folyamat stacionárius vagy nemstacionárius vol­
tára való tekintet nélkül érvényes. A kváziharmonikusok kifejlődési és lecsengési folyamatai is kellő 
pontossággal követhetők a pillanatnyi frekvencia ismeretében.

СПЕКТРАЛЬНАЯ СТРУКТУРА СЕЙСМОГРАММ MOB, ПОЛУЧЕННЫХ В 
РЕПРЕЗЕНТАЦИИ ПО МГНОВЕННОЙ ЧАСТОТЕ

Й. Г. САХА

Спектральная характеристика сейсмограмм часто похожа на процессы со смешанными 
спектрами. Фазовые/мгновенные частоты, выведенные путем техники анализа из сигналов, 
позволяют обнаружить присутствующие в сейсмограмме квази-гармонические частоты. 
Метод может найти применение независимо от того, носит ли процесс установившийся 
характер или нет. Временная тволюция и затухание таких квази-гармонических частот могут 
быть оценены с достаточной точностью по мгновенной визуализации частоты.




