A DÉVAVÁNYAI FŰRÁSBAN FELTÁRT ÜLEDÉKEK EREDETE GEOKÉMIAI ÉS ÁSVÁNYTANI VIZSGÁLATOK ALAPJÁN

A. Gheith*

A földtani alapfúrásokkal 1000–1500 m mélységig feltárt magyar Alföld folyóvízi és tavi üledékei alkalmasak arra, hogy korszerű szedimentológiai és geokémiai vizsgálatokkal az üledék eredetére és lerakódása körülményeire következtessünk s ezzel a medence pliocénvégi és negyedidőszaki fejlődéstörténetére vonatkozóan értékes adatokat kapjunk. Jelen tanulmányomban a dévaványai fúrás geokémiai és ásványtani vizsgálatának eredményeit közlöm. A szedimentológiai vizsgálatokról külön tanulmány készült.

A főbb elemeket 16 válogatott mintán nedves kémiai elemzéssel és lángfotométerrel vizsgáltuk. Az ásványtani vizsgálatokat 20 palás agyag mintán és azok elkülönített agyagfrakcióin röntgendiffrakciós eljárással végeztük. A nyomelemeket az emissziós spektrográffal és röntgenfluorescens módszerrel tanulmányoztuk. Utóbbi módszerrel kísérleti elemzéseket végeztünk az elkülönített agyagfrakciókon is.

Geokémiai vizsgálatok

A dévaványai fúrásanyag k é m i a i ö s s z e t é t e l e az 1. táblázatban látható. A homokkövek kémiai osztályozása az adatok háromszögdiagramon való ábrázolásával (1. ábra) történt. Megjegyzendő, hogy a megvizsgált dévaványai homokkövek legtöbbje szubarkózás típusú. Nagyon kevés a kvarcitos. A 2. ábra a Na₂O/K₂O arányt mutatja be, amely szintén az arkózás öszszetételt tükrözi. A 3. ábra az Al₂O₃ és az alkáliák közötti arányt mutatja be. A K₂O-tartalom az instabil összetevőkkel, a különböző kőzettani eredetű alumínium-oxidokkal növekszik. Az Al₂O₃/Na₂O arány 20 feletti értéke az anyag származási területén erősen mállott kőzetekre vall. A felső-pliocén alján települő üledék erősen mállott kőzetekből származik, míg a negyedidőszaki üledékek esetében a 10-nél alacsonyabb viszonyszám a kémiai mállás hiányát mutatja (3. ábra, 2. táblázat).

Hasonló eredményekre jutottunk a K_2O/Na_2O arány vizsgálatával. A felsőpliocén üledék alsó részénél nagy K_2O -tartalom mutatkozik, minthogy itt az agyagásványok nagy bőségben jelentkeznek.

Összefoglalva a dévaványai palás agyag minták kémiai összetételére vonatkozó vizsgálatokat, a következő megállapítások tehetők:

1. A felső-pliocén palás agyagokban az Al_2O_3 dúsult fel, az agyagásványtartalom és a (nem mállott) földpáttartalom megnövekedésének megfelelően.

* MTA – MÁFI aspiráns

A dévaványai üledékek

Mélység (m	ı), k	or, kőzet	SiO ₂ %	Tio2%	$\Lambda l_2 O_3 \%$	FegOr%	${ m Fe0}\%$	MnO%	Cn0%	MgO%	Nag0%
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	pl pl pl pl pl f p f p f p f p f p f p f	palás agyag homokkő palás agyag homokkő palás agyag homokkő palás agyag homokkő palás agyag homokkő homokkő homokkő palás agyag palás agyag	48,43 73,46 55,14 77,0 55,4 81,17 62,91 77,78 56,91 78,24 55,81 75,78 82,11 72,56 55,1 65,84	$\begin{array}{c} 0,83\\ 0,69\\ 0,9\\ 0,7\\ 0,90\\ 0,52\\ 0,85\\ 0,71\\ 0,97\\ 0,44\\ 1,06\\ 0,65\\ 0,37\\ 0,72\\ 0,81\\ 1,03\\ \end{array}$	$16,1 \\ 9,38 \\ 19,54 \\ 10,65 \\ 18,34 \\ 8,68 \\ 14,91 \\ 10,57 \\ 16,03 \\ 10,10 \\ 18,35 \\ 10,88 \\ 8,01 \\ 12,56 \\ 22,04 \\ 15,27 \\ 15,27 \\ 15,27 \\ 10,88 \\ 10,10 \\ 10,88 \\ 10,88 \\ 10,88 \\ 10,88 \\ 10,88 \\ 10,88 \\ 10,10 \\ $	5,05 2,00 3,48 2,065 1,59 3,74 1,44 5,98 1,37 5,69 1,64 1,2 2,04 2,04	$\begin{array}{c} 1,13\\ 3,57\\ 2,08\\ 1,05\\ 1,32\\ 1,30\\ 1,75\\ 1,38\\ 1,48\\ 1,14\\ 1,71\\ 1,66\\ 1,36\\ 1,98\\ 1,16\\ 1,17\\ \end{array}$	$\begin{array}{c} 0,14\\ 0,44\\ 0,07\\ 0,03\\ 0,06\\ 0,02\\ 0,07\\ 0,03\\ 0,23\\ 0,02\\ 0,02\\ 0,02\\ 0,04\\ 0,05\\ 0,03\\ 0,02\\ 0,04\\ 0,05\\ 0,03\\ 0,02\\ 0,14\\ \end{array}$	8,31 0,55 2,72 1,17 1,15 0,62 1,59 0,72 2,40 1,31 1,88 1,88 1,31 0,87 0,5 1,57	2,17 1,83 2,48 1,09 1,98 0,65 2,4 0,99 2,47 1,30 1,66 0,94 1,25 1,66 1,60	$\begin{array}{c} 0,96\\ 1,08\\ 0,85\\ 1,23\\ 0,80\\ 1,11\\ 1,21\\ 1,29\\ 1,10\\ 1,15\\ 0,85\\ 1,19\\ 1,02\\ 0,90\\ 0,6\\ 1,10\\ \end{array}$

B, Rb, Ga, Zn, V, Co, Cr = spektrográffal mérve.

Ba, Zr, Ni = röntgennel vizsgálva,

n. d. = nincs meghatározva,

pl = pleisztocén,

fp = felső-pliocén.

1. ábra. Dévaványai homokkövek kémiai összetétele

1. Kvarcitos homokkő, 2. szubarkózás homokkő, 3. arkózás homokkő, 4. szubgrauvakke, 5. grauvakke, Q = kvare, F = földpát, C = agyagásvány

Fig. 1. Chemical composition of the Dévaványa sandstones expressed in the $SiO_2 + TiO_2 - Al_2O_3 - remaining oxides triangle$ 1. Quartzose sandstones, 2. subarkoses, 3. arkoses, 4. subgraywackes, 5. graywackes, Q = quartz, F = feldspar, C = clay

2. ábra. Na₂O/K₂O arány a dévaványai homokkövekben I. Grauvakke, 2. arkózás homokkő

Fig. 2. Na₂O/K₂O ratio for the Dévaványa sandstones 1. Graywackes 2. arkoses

geokémiai összetétele

1. táblázat

K20%	- H ₂ 0%	+ 1120%	CO2%	$P_2O_5\%$	Össze- sen %	B ppm	Rb ppm	Ga ppm	undq u.S.	V ppm	Co ppm	Or ppm	Ba ppm	Zar ppm	Ni ppm
2.67	2,7	5.33	6.36	0.14	100.32	40	140	15	60	110	24	52	550	100	33
1.38	0,47	1,88	3,10	0.09	99,92	33	60	11	20	80	14	36	n. d.	n. d.	n. d.
3,06	2,89	5,08	1,73	0,11	100,13	75	150	22	100	110	23	68	670	118	46
1,52	0,72	2,81	0,11	0,07	100,21	30	65	12	25	75	15	42	n. d.	n. d.	n. d.
2,97	4,42	6,13	0,16	0,09	99,37	70	140	20	72	120	18	70	620	150	- 39
1,41	0,38	2,25	0,29	0,08	100,07	36	55	12	20	60	14	21	n. d.	n. d.	n. d.
2,55	1,66	5,15	0,79	0,11	99,69	110	100	16	110	130	21	52	620	160	37
1,83	0,57	2,96	0,17	0,07	100,51	59	70	14	40	- 90	16	40	n. d.	n. d.	n. d.
2,88	2,20	5,29	0,98	0,70	99,62	35	80	15	120	90	13	44	520	120	17
1,62	0,81	2,78	0,15	0,06	100,49	26	75	6	20	50	10	15	n. d.	n. d.	n.d.
3,12	3,37	6,05	0,07	0,09	99,67	70	140	20	100	130	24	58	625	- 98	39
1,68	0,76	2,96	0,15	0,07	100,43	45	- 80	13	32	120	20	34	n. d.	n. d.	n. d.
1,27	0,69	2,02	0,04	0,04	100,43	20	60	7	20	75	13	22	n. d.	n. d.	n. d.
2,07	1,48	3,93	0,07	0,03	100,49	49	80	15	32	100	15	50	n. d.	n. d.	n. d.
3,10	4,02	8,35	0,09	0,04	100,55	75	90	22	110	110	14	54	750	125	35
2,52	1,37	4,44	0,87	0,08	100,34	52	85	17	120	90	15	57	750	168	25

a = vörös agyag. b = bibor, c =összes vas, d =zöld, e =fekete

Fig. 4. Relation of ferrous-ferric content to colour for shales

a = red shale, b = purple shale, c = total iron, d = green shale, c = black shale

3. ábra. Az alumíniumoxidok és alkáliák közötti arány a homokkövekben

2. táblázat

Mintaszám	Al_2O_3/Na_2O	K ₂ O/Na ₂ O
<u>-</u> 2.	8,7	1,27
4.	8,6	1,23
6.	7,8	1,27
8.	8,1	1,42
10.	8,7	1,40
12.	9,1	1,41
13.	7,8	1,24
14.	14,0	2,30

Na₂O-arányok

2. A minták Fe_2O_3 -ban, MgO-ban és K_2O -ban való gazdagsága figyelhető meg, ami a kloritok és a csillámok feldúsulásával jár együtt.

3. A ferri- és ferro-oxidok viszonya az agyagásványok színét tükrözi (TOM-LINSON 1916, PETTIJOHN 1975). A dévaványai palás agyagok zöme ui. vörös és bíbor színű. Ez valószínűleg az üledékképződési környezetben mutatkozó oxidációs jelenségekre vezethető vissza (4. ábra).

4. Megállapítható volt, hogy a palás agyagokban a + H₂O-tartalom nagyobb, mint a homokkövekben, ami az agyagásványok feldúsulásának köszönhető, az agyagásványok ui. kristályvizet is tartalmaznak.

5. A palás agyagokban a kémiai összetétel változását a mélység függvényében az 5. ábra mutatja.

5. ábra. A kémiai összetétel változása a mélységgel a palás agyagokban 1. Kőzetkifejlődés, 2. minták sorszáma. pl = pleisztocén, fp = felső-pliocén

Fig. 5. Variation of the chemical composition of shale sediments with depth 1. Lithology, 2. core number, pl = Pleistocene, fp = Upper Pliocene

3. táblázat

Agyagásványok és nyomelemek a dévaványai palás agyag mintákban

			-	h A ml	nta ere	deti at	yaga (s	úly%)			2.	Agyagfi (súly%)	rakció			3. NJ	omelem	ek az ag	tyagfrake	hól an	
aikasmuni K	Mélyaég és kor	Montmotil	- mont/fillt finoffront	-ssum\tilli±till1 tivozl	Hiorit	ninitorA	ouerM	3hqbf00ith.N	Plagioklász- földpát	Kaleit	Montmorillo- nit+illit/mussk.	41111	tinilosA	Klorit	Ik. Ipna	Zr ppm	Zn Zn	N. Ni	I. I.I.	58 B	Mm %
1.	3,7- 4,4 pl	12	4	19	13		26	1	10	11	42	10	1	14	480	68	20	65	1	4.4	0.25
si	41,4- 50,0 pl	9	ny	33	2	I	25	13	17	9	53	61	12	16	240	34	100	68	170	3.5	0.42
ŝ	172,9-181,0 pl	0 1	13	53 23	10		34	1	1	I	51	20	01	13	092	37	120	0,	275	3,3	0,14
4.	282,3 - 284,5 pl	10	x	१ ११	05	I	14	ny	4	n	21	x	Ξ	14	320	4()	27 27	48	240	3,3	0,29
ić.	341,6-349,6 pl	1	6	2	1:3	I	40	1	10	6	56	22	11	11	560	42	8	22	280	4,2	0,18
.9	378,0-386,0 pl	22	ny	23	14		32		6		58	26	x	x	650	56	67	65	213	2,6	0,08
1.	474,6-477,6 pl	15	ł	24	1x	1	34	ny	10	1	4x	3()	10	12	230	43	110	ŝ	340	5,7	0,28
ż	481,2-485,0 pl	'ny)	49	00		20		12	1	42	36	91	12	970	55	120	11	280	4,8	0,09
6	590,0-592,0 pl	4	1	44	14		51	4	14		43	29	11	12	250	99	08	68	340	3,2	0,17
10.	625,5-630,0 fp	6	1	35	15		3	ny	10		22	1-	<u></u>	1.5	310	44	16	57	220	3,3	0,11
11.	755,0-759,0 fp	10	1	m	16	1	33		1-	4	39	39	2	<u>ମ</u>	360	30	06	52	210	3,8	0,17
12.	868,8-874,6 fp	9	1	ŝ	11	I	24	1	x	1	58	07	10	21	310	4	25	6.2	210	4,2	0,7
13.	908,8-912,0 fp	12	55	32	91		21		1	!	50	32	x	10	460	솪	<u>8</u> ;	54	290	2,6	0,08
14.	951,2 fp	4	1	39	12	i	28	\$1	=	сı	44	32	11	~	4:30	42	27	49	260	5,5	0,15
15.	1006,2 fp	1-1	9		07		24	1	9	1	47	31	10	12	480	40	80	72	290	3,9	0,15
16.	1052,2 fp	1-	x	51 X	15	1	5	1	a	ŝ	42	1-10	10	11	280	4 61	001	x1	290	4,1	0,51
17.	dJ 0,1011	x	11	45	1	c.	22		4		33	44	ដ	I	400	SS	22	42	300	1.7	1
ls.	1219,0 fp	1	I	49	57		19	1	11	1	26	37	20	17	490	40	100	17	330	3,6	0,00
19.	1262,0 fp		сı	44	01	1-	65	I	x	1	30	31	20	61	360	55	62	72	940	3,4	0,06
20.	1397,3 fp	1	1	34	1-	6	20 X	÷	x	0 1	34	60	44		I	46	06	<u>6</u> 6;	380	4,5	0,27

pl = pleisztocén, fp = felső-pliocén

6. ábra. Az agyagásványok viszonylagos gyakoriságának változása a mélységgel
1. Közetkifejlődés, 2. mintavétel. a = montmorillonit + illit/montmorillonit, b = illit, c = kaolinit, d = klorit

Fig. 6. Variation of the relative frequency of clay minerals with depth for sediments
1. Lithology, 2. samples, 3. clay minerals.
a = montmorillonite + illite/montmorillonite, b = illite.
c = kaolinite, d = chlorite

Á s v á n y o s ö s s z et é t e l. A dévaványai fúrásból az agyagos üledékekből 20 magmintát vizsgáltunk meg. Az agyagnak és a belőle leválasztott agyagfrakciónak ásványi összetételét röntgendiffrakciós vizsgálattal állapítottuk meg. Az eredmények a 3. táblázatban láthatók.

A nem frakcionált palás agyagban a legközönségesebb ásvány a kvarc, plagioklász és az agyagásványok: illit, klorit és montmorillonit. Ritkábbak a kaleit, a káliföldpát és a kaolinit.

A különválasztott agyagfrakciókban meghatározott ásványtársaság leginkább montmorillonitból áll, illit, klorit és kaolinit változó mennyiségben fordul elő. Relatív százalékarányukat a mélység függvényében a 6. ábra mutatja.

Az agyagok röntgenvizsgálattal megállapított montmorillonitjai vulkáni hamuból származhatnak, de származhatnak bázikus eruptív kőzetek mállott anyagából is. Az agyagban a plagioklászföldpátok túlsúlya a káliföldpátokkal szemben arra utal, hogy az üledékgyűjtőben bázikus eruptív kőzetek törmeléke került leülepedésre.

A felső-pliocén agyagokban nagy illittartalom mutatkozik, ami valószínűleg metamorf csillámpala anyakőzete-

ken végbement nagykiterjedésű mállásra vezethető vissza, ahol a csillámokból K oldódik ki és illit képződését segíti elő (WEAVER 1973).

Kaolinit a vizsgált mintaanyag agyagásványai között nem jelenik meg, mert a kimutatási határérték alatt van, viszont megjelenik az agyagfrakciókban. A montmorillonit nem volt elkülöníthető a kevertrácsú csillámoktól. A kaolinit a felső-pliocén rétegsor alján gyakori és fluviolakusztris környezetre vall (MILLOT 1962).

A negyedidőszaki és felső-pliocén agyagásványok között további fontos különbség az, hogy utóbbiakban nagy az illit és a kaolinit mennyisége és kevesebb a montmorillonit. Figyelemre méltó, hogy a negyedidőszaki palás agyagok MgO-tartalma nagyobb, mint a felső-pliocén rétegeké, ez a montmorillonit eredetére utal, amely főleg vulkáni anyagok átalakulásából keletkezik. A felsőpliocén palás agyagok kis MgO-tartalma a földpátok átalakulásával az illitképződésnek kedvez.

A K/Mg és K/Na arány értékeket is vizsgáltuk (4. táblázat). Alacsony értékek adódtak a negyedidőszaki palás agyagok esetében a montmorillonit és a klorit dúsulásának megfelelően. A felső-pliocén rétegekben jelentkező magas arány-érték a káliföldpátok mállásából származó illitnek tulajdonítható (WEA-VER 1973). Mindez összhangban van a korábbi következtetésekkel.

Általában megállanítható, hogy a dévaványai fúrás agyagásványai nagyobbrészt törmelékes eredetűek és a származási hely kőzeteinek lepusztulási termékei. Kevésbé mutatnak összefüggést a mélységgel.

N y o m e l e m e k. A nyomelemeket mind a teljes fúrási maganyagban, mind pedig a frakcionált agyagban megvizsgáltuk. A cél az üledékek származási helyének megállapítása volt.

Az 1. és 3. táblázatban foglalt adatokból a következőket állapíthatjuk meg:

1. A bór, a gallium és a rubídium, mint változók, az édesvízi és tengeri üledékek megkülönböztetésére alkalmasak DEGENS et al. (1958) szerint (7. ábra). A nyomelemek alapján a dévaványai üledékek édesvízi környezetből származnak.

2. A felső-pliocén mintákban a K/Rb aránya magasabb, mint a negyedidőszakiakban (5. ábra). Ez azt mutatja, hogy a felső-pliocén üledék kevésbé kilúgozott, éretlenebb és valószínűleg több bazalttörmeléket tartalmaz.

Az előforduló nyomelemek és a kőzetösszetétel (elsősorban az agyagásványok) között bizonyos kapcsolat mutatható ki.

3. A Zn, V és Co inkább a finomabb szemcséjű agyagokban halmozódik fel és nem a durva szemcséjű üledékekben. Ennek oka a szerves frakciók feldúsulásában van, amint azt az agyagásványoknál már láttuk. A Zn-nek a kloritokban való feldúsulását a világ más táján is észlelték (LEE et al. 1966). A cink az oktaéderes rétegekben a Mg-t vagy a Fe-t helyettesítheti (TAYLOR 1965).

4. A Zr és a Ba a minták durvább szemcséjű frakciójában dúsul fel és nem

1		
1.	5,11	1,81
3.	5,13	2,34
5.	6,23	2,42
7.	4,41	1,37
9.	4,85	1,71
11.	8,10	2,39
15.	7,76	3,37
16.	6.54	1.49
1	1	
50	*	\
507		100
/	b	\
/		
/		1
/		1 /
	1	Rh

7. ábra. A gallium, rubídium és bór előfordulása az üledékmintákban (a Ga esetében $10 \times \text{-es}$ értékkel) a = ćdesvízi, b = tengeri

50

Fig. 7. Triangle diagram showing abundance of gallium, rubidium and boron in the sediment samples (values for Ga $10 \times$ exaggerated) a =fresh water, b =marine

4. táblázat

K/Na

K-arányok

K/Mg

Mintaszáni

Fig. 8. Positive correlation between Ni and Fe content in the clay fractions $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1$

a finomabb agyagfrakciókban. Ez valószínűleg a lehordott földpátoknak, zirconnak, csillámoknak és karbonátoknak köszönhető.

5. A rubídium inkább a finomszemű üledékekben dúsul fel, megjelenhetik, mint adszorbeált ion az agyagásványokban és a kőzetlisztek földpátjainak szerkezetében.

6. A felső-pliocén üledékekben nagy mennyiségű illitet tapasztaltunk. Ez magyarázhatja a magas K₂O-, Ba- és Rb-tartalmat.

7. A Mn és Fe, mint az agyagásványok kísérője, azt mutatja, hogy a két elem mint kriptokristályos oxid jelenhet meg és/vagy mint hidroxidrészecske az agyagásványok felületén, vagy hasadékaiban. A Ni mennyisége a vaséval együtt válto-

zik (8. ábra). A frissen lerakódott, agyagásványokban gazdag üledék e három elemből már eredetileg is sokat tartalmazhatott.

A szerző köszönetet mond Rónai Andrásnak a minták rendelkezésére bocsátásáért és munkája felügyeletéért. Hálásan köszöni KLIBURSZKYNÉ VOGL Mária akadémikus értékes bírálatát, valamint Ravaszné Baranyai Lívia és Viczián István bátorítását és érdeklődését munkája iránt.

IRODALOM

- DEGENS E. T. VILLIAMS E. G. KEITH M. L. 1958: Environmental studies of carboniferous sediments. Part II: Application of geochemical criteria. – Bull. Amer. Petrol. Geol. 42, 5, pp. 981–997.
- LEE D. E.-COLEMAN R. S.-BASTRON H.-SMITH V. C. 1966: A two-amphibole glaucophane schist in the Franciscan formation. Cazadero area, Souma country, California. - U. S. Geol. Surv. Profess. Pap. 550-148.
- MILLOT G. 1962: Crystalline neoformations of clays and silica. Phys. Sci. Some Recent Advances in France and the United States. N. Y. Univ. Press. pp. 180–194.
- PETTIJOHN F. J. 1963: Classification of sandstones. Journ. Geol. 62. pp. 630–635.
- PETTIJOHN F. J. 1975: Sedimentary rocks. Harper and Row, New York.
- TAYLOR S. R. 1965: The application of trace element data to problems in petrology: 133-214. – In AHRENS L. A. – PRESS F. – RUNCORN S. K. – UREY C. (eds.): Physics and chemistry of the Earth, 6. Pergamon Press. Oxford.
- TOMLINSON C. W. 1916: The origin of red beds. Journ. Geol. 24. pp. 153–179.
- WEAVER C. E. POLLARD L. D. 1973: The chemistry of clay minerals. Developments in sedimentology. 15. Elsevier, Amsterdam, London, New York.

ON THE ORIGIN OF THE DÉVAVÁNYA SUBSURFACE SEDIMENTS, GREAT HUNGARIAN PLAIN

by

A. GHEITH*

The major elements were determined by wet chemical analyses and flame photometric method for selectively 16 core samples from the Dévaványa borehole. Mineralogical analyses were performed using X-ray diffraction for 20 shale samples and their separated clay fractions.

The common trace elements in the original samples were determined using emmission spectrographic method and X-ray fluorescence. A preliminary analysis was made for the separated clay minerals using X-ray fluorescence.

The major elements SiO_2 , TiO_2 , Al_2O_3 , Fe_2O_3 , FeO, MnO, CaO, MgO, Na₂O, K₂O, H₂O, CO₂ and P₂O₅ are determined for 16 core samples and the percentage of each oxide is given in Table 1.

The chemical classification of the sandstone was performed by the triangle diagram according to PETTIJOHN (1963) and given in Fig. 1. It is observed that most of the Dévaványa sandstones examined chemically are of subarkosic type. Very few samples are quartzose. Moreover, the relationship between Na₂O and K₂O for the Dévaványa sandstone was given in Fig. 2 and reflects the arkosic composition according to PETTIJOHN (1975).

The relationship between Al_2O_3 content and the alkalies was given in Fig. 3. It is observed that the K_2O content increases with increasing unstable components that produce various amount of alumina due to their different petrographic nature.

The ratio of Al_2O_3/Na_2O was examined, the values above 20 reflect mature strongly weathered materials in the source area. Therefore, the bottom part of the Upper Pliocene sediments indicate extensive weathering in the source area, while the Quaternary and the top part of Upper Pliocene with values below 10 reflect a lack of chemical weathering (Fig. 3. Table 2).

Similar results are achieved by the investigation of the K_2O/Na_2O ratio. High K_2O content is reflected by the Upper Pliocene bottom deposits due to the abundance of clay minerals.

Regarding the chemical composition of the shales examined from the Dévaványa borehole, the following criteria have been recorded:

I. The Upper Pliocene shales have an enrichment in Al_2O_3 reflecting an enrichment in clay minerals and unweathered feldspars.

2. It is clearly seen that the samples are enriched in Fe_2O_3 , MgO and K_2O , a phenomenon due to respective enrichment in chloritic matter and mica.

3. The relation of ferric to ferrous oxide reflects the colour of the shales (TOMLINSON 1916, PETTIJOHN 1975). It was observed that most of the shale samples studied from the Dévaványa borehole have a red to purple colour (Fig. 4) probably due to the oxidation state of the environment of deposition.

^{*} Candidate of the Hungarian Academy of Sciences and the Hungarian Geological Institute

4. It was recognized also that, there is a greater content in $+H_2O$ reflected by the shaly materials than the sandstones, which is due to the enrichment in clay minerals containing combined water in the crystal structure.

5. Variation of the chemical composition of the Dévaványa shale sediments with depth is given in Fig. 5.

Twenty core samples were chosen to represent the argillaceous strata of the Dévaványa borehole. The mineral assemblages of both the raw materials and the separated clay fractions are determined using the X-ray diffraction method. The detailed mineralogical data of the cores are presented in Table 3. The most common minerals in the original cores are quartz, plagioclase and clay minerals, illite, chlorite and montmorillonite. Among the less common minerals are calcite, potassic feldspar and kaolinite.

The clay mineral assemblages identified in the separated clay fractions consist mainly of montmorillonite mixed layer m./i. and illite. Chlorite and kaolinite are present in varying amounts. Their relative percentages with depth is shown in Fig. 6.

The presence of montmorillonite identified by X-ray examination of the clays might be from volcanic ash or it could have formed by weathering of basic igneous rocks in the source area. The predominance of plagioclase feldspar over potassic feldspar in the raw materials suggests basic igneous source rocks supplying some detritus to the basin of deposition.

High content of illite is recorded in the Upper Pliocene clays, this probably reflects an extensive weathering for metamorphic mica schist parent rocks in which K is leached from mica and illite is formed (WEAVER 1973).

Kaolinite did not appear among the clay minerals of raw materials because it is lower than the detection limit, but it appeared in the clay fractions. No montmorillonite could be separated from mixed layer m./i. Moreover, kaolinite shows a high frequency percentage in the bottom of the Upper Pliocene, probably due to the fluvio-lacustrine environment (MILLOT 1962).

Another important difference between the Quaternary and Upper Pliocene clay minerals is the high content of illite and kaolinite and the lower content of montmorillonite mixed layer m./i. recorded in the Upper Pliocene. Moreover, the author has noticed that the MgO content of the Quaternary shales is relatively higher than that of the Upper Pliocene, reflecting the origin of montmorillonite mostly formed by the alternation of volcanic materials. Also the low MgO in the Upper Pliocene shales favours the formation of illite from the alternation of feldspar. Thus MgO is usefully used to give information on the origin of clay minerals (WEAVER 1973).

However, K/Mg and K/Na ratios are also used (Table 4). Low ratios (reflected by the Quaternary shales) favour the formation of montmorillonite and chlorite and high values (reflected by the Upper Pliocene illite) appear to be due to the weathering of K-feldspar (WEAVER 1973). These circumstances corroborate the above conclusion.

Generally, it can be concluded that the great majority of the clay minerals studied in the Dévaványa borehole are detrital in origin reflecting the character of source rock and show slight changes with increasing depth.

The study is an attempt to determine the trace elements content in both the raw materials and their separated clay minerals. Moreover, the trace elements are used as indicators of environment and source rock type.

The trace elements determined for the raw materials and their separated clay minerals are shown in Table 1 and Table 3. The following observations are recorded:

1. The relative boron, gallium and rubidium as variables are used to differentiate between fresh-water and marine deposits according to DEGENS et al. (1958). The diagram is constructed and shown in Fig. 7. A good separation was possible on the basis of trace element data. Most of the Dévaványa deposits are associated with fresh-water environment.

2. The samples analyzed from the Upper Pliocene have the higher K/Rbratios than those from the Quaternary (Fig. 5). This indicates that the Upper Pliocene sediments consist of less leached, more immature materials or probably contain more basaltic debris than those of the Quaternary. It can be concluded that variations in trace elements are in part related to variations in rock composition especially clay minerals.

3. Zn, V and Co appear to be concentrated more in the finer raw shale materials than in the coarser detrital sediments, which is probably due to enrichment in organic fractions that have been seen and clay minerals. Moreover, chlorite was found to be enriched in Zn in other parts of the world (LEE et al. 1966). Zinc may be a substitute for Mg and/or Fe in octahedral layers (TAYLOR 1965).

4. In the size distribution of the sediments, it was found that both Zr and Ba are more enriched in the coarser detrital raw materials than in the finer clav fractions, which is probably due to the presence of detrital feldspar, detrital zircon, mica and carbonate.

5. Rubidium was found to be enriched more in the finer detrital shale deposits than in the coarser sediments, it may occur as adsorbed ions in clay minerals and in the structure of feldspars in the silt.

6. A large amount of illite was determined in the Upper Pliocene sediments, this may be explained by the higher K₂O, Ba and Rb contents.

7. The association of Mn and Fe with the clay minerals explains that the two elements may occur as crypto-crystalline oxides and/or hydroxide particles adhered to the surface or cleavage of clay minerals. Above all Ni was found to vary in proportion with iron (Fig. 8), a fact probably due to freshly deposited clay-rich sediments having over-all high contents of these three elements.

Table 4. K-percentages

Table 1. Geochemical composition of the Dévaványa sediments

Age: pl = Pleistocene, fp = Upper Pliocene. Lithology: pa = shale, hk = sandstone. B, Rb, Ga, Zn, V, Co, Cr are determined by emmission spectrography. Ba, Zr, Ni are determined by XRF. N.d. = non determined

Table 2. Na₂O-percentages

Table 3. Mineralogical and trace element data for Dévaványa shale samples. Date as rela-

tive percentages from X-ray diffractor out a for Devavality a share samples. Dute as relative percentages from X-ray diffractor out a for Devavality a share samples. Dute as relative percentages from X-ray diffractor out of the two percentages from X-ray diffractor out of two percentages from X-ray diffrac linite, chlorite. 3. Trace elements in clay fractions. ny = trace