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Petr Bojda 

ALGORITHM COMPUTING ELECTROMAGNETIC 

WAVE SCATTERING FROM ROUGH SURFACES 

INTRODUCTION 

Mostly, when one is talking about rough surfaces and wave scattering from 

rough surfaces there is assumed random rough surfaces. Practically it means that 

we deal with the surface that actual geometrical shape is not defined. Instead of 

exact forms and scattering properties the average approach to real scattering 

pattern is considered. 

D. E. Barrick defines three basic kinds of problems in his part of RCS handbook, 

ref. [3], dedicated to rough surfaces. Named without deeper description, there 

are direct scattering problems, inverse scattering problems and clutter problems. 

Direct scattering problem is characterised by finding average properties of 

scattered signal when the surface properties are known. In case of inverse 

scattering problem one try to obtain statistical information about the rough 

surface from the characteristics of scattered field. Clutter problem is more less 

application of direct problem since properties of for instance ground clutters are 

sought and that information is used to better unwanted clutter suppression. There 

is clear the direct scattering problem is the problem of cross section prediction 

techniques and scattered field simulation method. 

Important part of the prediction technique when reasonable precision of results is 

required of course is the equality of statistical parameters of surface model 

compared to natural surface. The same literature mentions following three types of 

rough surface models. First is so called semi-empirical model. This group of models 

for the most part offers the simplest results. All such models involve a set of 

arbitrary constants that are functions of the properties of the actual surface and are 

determined by matching the model to measured parameters of real surface. Second 

kind of model is geometrical model. These models employ a surface made up of 

deterministic or simple shapes arranged randomly over a planar area. There is 

example of the geometrical model, the vegetation-like rough surface model 

consisting of thin dielectric cylinders, arranged randomly but preferring a vertical 

orientation. Last type of model is statistical model, which treats the surface height 

above xy-plane as a random variable. That class of models is the most general and 



 
266 

provides results explicitly in terms of the average surface properties rather than 

arbitrary constants. The statistical models are the most suitable for numerical RCS 

prediction techniques and computer simulation. 

ROUGH SURFACE GENERATION 

There are several various methods used for random rough surface generation and 

each of them produces surfaces with specific character. J. A. Oglivy in his book, 

reference [2], gives more extend overview end description of those methods. In this 

stage of my work is not so important to have exact model of any natural rough 

surface, more important, in my opinion, is to have control above statistic parameters 

of created surface and to evolve their influence into scattering pattern. 

The method that gives good possibilities to generate specific surface as a random 

function of surface height satisfying required statistical distribution, in that case 

Gaussian distribution, and the method that I used is moving average process. 

Theory of the moving average process 

Three-dimensional surface characterised by dimensions along axes x and y and 

its height is in form hnp=h(nx, my) with x and y discretisation intervals can 

be generated by: 
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where variable u is uncorrelated random variable and vector w is weight vector, 

which gives statistical character of created surface, especially shape of the 

correlation function. Its length N then determines the order of moving average 

process. Used random number generator and its quality has influence over 

random character of created surface 

Weight matrix used to create surface with the Gaussian character of correlation 

function can have form: 
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where x, y are correlation lengths in the direction x and y, respectively. 

Constant w0 specifies extension of hnp. 

WAVE SCATTERING COMPUTATION 

The total field in presence of scatterer can be written as the sum of incident and 

scattered field: 
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Then vectors kinc and ksc are the wavevectors of incident and scattered waves. 

If the wavelengths of those waves are equals and speed of propagation is not 

changed, wavenumbers are equals only directions are different. 
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are the definitions of local incident and scattered wavevectors. 

Kirchhoff theory 

According to Physical Optics or Kirchhoff theory the scattered field can be 

computed by: 
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Every four adjacent points of the generated surface model form a small planar 

rectangular patch of dimensions x and y with the normal vector n. Algorithm 

is based on the idea of summing the scattered field contributions from all N 

times M patches. If the incident wave is assumed of spherically spreading then 

equation 5 becomes: 
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where Sn,m is the area of computation of (n,m)-th patch at x0=nx and y0=my. 

Vectors Rs and Rr are the vectors of source and receiver respectively with 

direction pointing from the origin. 

The amplitude of incident wave A(r0) is constant over each patch in this 

applications but generally it is possible to define dependencies between 

amplitude and antenna pattern, frequency characteristics of the system or 

absorption characteristics of the surface. 

Roughness criterion 

After the study of referenced literature, especially reference [1]. I know two 

approaches to compute electromagnetic field scattered from rough surface. 

There is one type of methods based on the perturbation theory that are useful for 

slightly rough surfaces. Next main kind of methods is derived from the Physical 

Optics and is represented by the Kirchhoff theory. These methods are sufficient 

mostly for higher degree of roughness than perturbation theory. It is necessary to 

define a criterion to decide if specified surface is still smooth or if it is rough and 

to divide slightly rough and rough surfaces. 

One possibility is to use Rayleigh criterion, reference [1], chapter 1.2. This 

criterion is based on the comparison of phase differences between two parallel 

rays scattered from separate points of surface. Because these two rays are 

parallel their incident angles are equal 1=2. Because they are scattered from 

separate points the heights of surface at these points are different h=h1-h2. 

Phase difference can be computed by: 

 

1cos2   hk     (7) 

 

The interference of these rays depends on , of course. According to the phase 

difference we can decide that surface is smooth if </2, otherwise it is rough. 

When Rayleigh parameter will be defined: 

 

1cos  kRa              (8) 

 

where h can be replaced by RMS deviation of height . Then Rayleigh 

criterion of roughness becomes: 
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At this work I developed algorithms using only the Kichhoff theory that means I 

am working with surfaces with higher degree of roughness. 

Kirchhoff theory application 

If the frequencies of incident and scattered waves are equal and environment of 

propagation is the same for both of these waves wavenumbers kinc=ksc=k hence I 

can denote: 
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Then equation 9 can be rewritten to the form: 

 

)(
4

1
)(

4

1

)()(2),(

0,0,

0,0,

,,

,

rdS
R

e
rdS

R

e

rdSRknjARR

mnS
sc

jkR

mnS
inc

jkR

mnS incsr
sc

mn

mn

sc

mn

inc

mn

















        (11) 

 

The patches in this application are rectangular and planar the first integral – 

scalar multiplication of normal vector n0 and wavevector of incident wave kinc- 

in equation 3.10 equation becomes equal to scalar multiplication of the normal 

vector n0 and the wavevector in the midpoint of the patch kinc MID. 
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Then we have to solve two remaining integrals of the Green’s function. 

Principe of numerical solution is to divide rectangular patch into the sufficient 

number of rectangular sub-patches of dimension xsub and ysub for that it is 

possible to consider spherically spreading function as constant and to write for 

the (u,v)-th patch: 
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The error constant Cerr has to be smaller than tolerance limit defined on the 

beginning of the computation. The numerical integration was launched as the 

iteration process when each iteration adds one row and column of sub-patches 
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and instead of real error in sense of difference between planar and spherical 

spreading there is computed estimation of this error as the difference between 

two following iterations: 
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The U and V are numbers of sub-patches in the y and x direction of the (n,m)-th 

patch. This algorithm works with the equal number of sub-patches in x and y 

direction. 
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Number of iterations is there denoted as i. 

Practically it is in deed too long computation time to solve this integral by 

iteration process and to evaluate the same patch several times to fit the tolerance 

condition. Better solution is to find dependency between the final error 

estimation and number of patches n and m and to compute the Green’s function 

GR
 directly with the required precision. At this moment I have the 

approximation function of mentioned dependency tested only for patches that 

partial derivatives h(x,y)/x and h(x,y)/y are 0. On the figure you can see the 

plot function of number of sub-patches n for interval of relative tolerances cest. 

from 0.5 to 10
-5

. The relative tolerance is defined for complex GR 
 by: 
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Approximation function is because of the shape of dependency the logarithmic 

progression: 
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where vector c is vector of coefficients having the length I+1. I is the number of 

progression’s members. It seems to be reasonable to choose I=3 and arbitrary 

parameter p=3. Then approximation function has the form: 
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The coefficient-vector c was found by least square method: 
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The vector of coefficients was computed as an arithmetic average of vectors 

evaluated for the patch of dimensions xsub=1mm and ysub=1mm “illuminated” 

from several directions and ranges (changing vector R) and by number of 

frequencies from X and Ku bands. 

CONCLUSION 

Described algoithm was practically tested in Matlab as a set of m-functions. The 

most significant shortcoming of it was the computation speed. For instance I 

have launched this computation on rough surface of dimensions 30 cm by 30 cm 

divided on to square 1 mm – patches. When requested error estimation has been 

between 10
-3

 and 10
-4

, the number of elements in every patch would be 100 by 

100. You can imagine the consumption of computation power needed to solve 

the numerical integration using this algorithm. 

On the other hand the advantage of used approach is the flexibility of 

computation. There exists the possibility to extend algorithm and to compute 

curve-shaped surface of the patches. That is the way to compute 3D-cubic spline 

approximations of curved surfaces, of course with the redefined approximation 

function. 
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