
 217 

Boscoianu Mircea—Stanciu Virgil 

AN ANALYSIS OF THE AXIAL FLOW COMPRESSOR 

STABILITY USING THE BIFURCATION THEORY 

INTRODUCTION 

Axial flow compressors are designed to operate in steady axisimetric flow. If the 

mass flow is decreased, the pressure rise increases but, unfortunately a critical 

value is reached, beyond steady flow is no longer stable; a small change in the 

flow may be enough to push one into the unstable region. It is important to 

know the nature of the flow that develops in this situation, as the different flows 

can have quite different consequences. 

In this paper it will be shown how bifurcation theory can be used to characterise 

each type of flow and locate the regions of parameter space where such a flow is 

stable. The flow regimes are: axisymetric steady, nonaxisymetric steady, 

axisymetric time dependent and non-axisymetric time dependent and are known 

respectively as design flow, rotating stall, deep surge and classic surge. 

It is possible to reduce the Moore-Greitzer model for compressor instability to a 

set of three ordinary differential equations using a one-mode truncation in 

bifurcation theory. The flow entering the inlet is uniform and the duct is straight 

(radial variations are negligible);the flow is assumed to be incompressible and 

irrotational (the velocity potential of any disturbance which develops in the inlet 

satisfies Laplace’s equation). The unsteady flow is 2D in axial distance and 

circumferential angle and the general solution is: 

 

(1) 

 

where 
~

 is the potential function for the disturbance in the inlet. The 

independent variables are time (nondimensionalised with the time for the wheel 

to rotate one radian), angular position and axial distance (nondimensionalised 

with the wheel radius). The disturbance that reaches the compressor face is 

assumed to move straight through the compressor to the plenum and as a result 

the only independent variables are and time, t. The rate of change of mass flow 

through the compressor can be related to the pressure rise in the following way: 
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(2) 

where  represents the angle averaged axial mass flow and  represents the 

angle averaged pressure rise, with the prime denoting differentiation with 

respect to t. The mass flow coefficient and pressure rise coeffficient have been 

rescaled and shifted so that: 
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Parameters W and H are scalling factors chosen so that the resulting 

performance curve is representative for all compressors at all speeds. Let Pmax be 

the maximum pressure rise coefficient and Mmax be the corresponding mass flow 

coefficient. Then: 
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The axial mass flow coefficient is: 

    , 0, t t       
 

where 0|,
~

  is the axial flow disturbance.  

The function  c in (2) represents the response of the compressor in steady 

axisymetric flow; it is a typically S-shaped curve (Moore-Greitzer): 

 

(3) 

The parameter co  reflects the number of stages in compressor, cl  represents 

the inertial length of the compressor and the scalling parameter S=H/W. 

When the angle variations are taken into account and the pressure rise is 

summed over each component of the engine, we arrive at the following 

expression which acts as the last boundary condition for Laplace’s equation in 

the inlet: 

 

(4) 

     
2

0

1
d

2

c
c

l
t t

S


       

 

 
3 1

1
2 2

c c o       

     , , , 0
0

1 1

2
t t c cm l t S t

a a
    

 

 
             

 

  



 219 

where 0|,
~

  is the axial mass flow disturbance at the compressor face. 

Parameter m reflects the type of exit duct (m=1 for abrupt expansion; m=2 for 

the long channel); parameter a is associated with the time lag of the flow in 

between the rows of blades. 

Assuming the process in the plenum polytropic, the mass continuity equation for 

the plenum chamber is: 
 

  (5) 

 

where T  is the mass flow coefficient leaving the chamber. The pressure rise 

through the throttle is modelled by the simple parabolic relationship: 

 

(6) 

 

where  is the control parameter for the exit mass flow. 

To simplify the parameter groupings we define a new time variable: 
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Substituting this into (1),(2),(4),(5) and recalling the solution for the inlet flow 

field gives the “full model”. The prime now denotes differentiation with respect 

to time. 

(7) 

(8) 

(9) 

(10) 

ONE MODE TRUNCATION 

This simplification has been added advantage that eight parameters of the full 

model can now be reduced to four. It is assumed that the second and higher 

modes have negligible amplitude: 
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(11) 

 

Substituting into (10) gives: 
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The complex coefficient a1  can be written as: 

 

(12) 

where r is the amplitude and  is the phase speed of an angular disturbance. 

Substituting this into the above and separating real and imaginary parts gives 
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where: 

 

(13) 

The equation for r can be further simplified by introducing R=r
2 

. Equation (8) 

is unchanged and the integral in (7) can be solved explicitly. Equations (7)-(11) 

are thus reduced to the following set of three ordinary differential equations: 
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where =2BS. Both  and R can assume only positive values; the former 

because of physical constrains and the latter because it is a squared quantity. 

Equations (14)-(16) contain the essential dynamics of the physical problem. 

Using the bifurcation theory to define the boundaries for different flow regimes 

in the (,,co,) parameter space is posiible to determine the possible solutions 

of this set of ordinary differential equations before solving them numerically. 
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The problem of locating the stationary points of (8)-(10) and examining their 

stability can be expressed as  xFx ,  where 43 ,  x  

The stationary values  ixx 00   satisfy   0, 0 ixF  and the stability of each 

ix0  is governed by the eigenvalues of the linear operator 

 ix xFDL 0,  .When no eigenvalue has a positive real part, the stationary 

point is stable to small perturbations; if one of this has real part positive, then 

the equilibrium point is unstable. As the parameter  is varied, qualitative 

changes may occur in the dynamics. These changes are called bifurcations and 

the parameter values are called bifurcations values. We first find the simplest 

bifurcations of the equilibria and latter discuss the bifurcations of the periodic 

orbits. A qualitative picture where the branches of the equilibria are shown in  

(x, ) space is a bifurcation diagram. A bifurcation set consists of the loci of the 

bifurcation points in  space. An examination of (14)-(16) shows that there are 

two equilibrium values of R , 
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The first of these demands c   , which defines the axisymetric 

characteristic. For the second case 

 
(17) 

which defines the rotating stall characteristic. Linerising (14)-(16) about  an 

equilibrium  point  , ,e e eR   gives: 
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The plane defined by R=0 is invariant since all flows starting on this plane will 

remain there forever. For all parameter values there is a fixed point 01x  on this 

plane at the intersection of the curves  c  and  T . Trajectories with 

R=0 represent  axisymetric flow and when fixed point is stable, it represents the 

steady design flow. At large values of  the design flow represented by 01x  is 

stable. Decreasing  corresponds to reducing the mass flow and causes 01x  to 
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lose stability either at a transcritical or a pitchfork bifurcation point. We denote 

this bifurcation point as c . At this stage we restrict our attention to the fixed 

points which are of interest physically, i.e., those which lie on or above the 

0R  plane. With 4co , two new fixed points, 02x  and 03x , results from the 

saddle node bifurcation at s  . The latter is unstable (having a complex pair 

of eigenvalues and a positive real eingevalue) until it moves below the 0R  

plane at the transcritical bifurcation where 01x  loses stability. Thereafter it is no 

longer of physical interest. The stability of 02x  will be discussed momentarily. 

In the critical case, 4co , where 01x  loses stability at a pitcfork bifurcation 

point. In this case 03x  exists only for 0R  and hence has no physical meaning. 

For 4co  the saddle node bifurcation lies below the 0R  plane and 01x  now 

loses its stability at the transcritical bifurcation point with 02x  and c  . 

When 01x  is stable, it represents the steady axisymmetric flow which is the 

design condition of the engine, and when 02x  is stable the flow condition 

modeled is steady rotating stall. The only occasions when 03x  is stable occur in 

the physically meaningless negative half/space of R. The possitions of the 

equilibrium points vary with , and the loci of the fixed points on the graph of 

pressure rise versus mass flow are called characteristics. The axismetric points 

lie on the cubic  co  axisymmetric characteristics). The non axisymmetric 

fixed points lie on another cubic, the rotating stall characteristic. 

CONCLUSIONS 

The three ordinary differential equations were studied using the methods of 

bifurcation theory, which gave the boundaries in space parameter for each type 

of solution. The analysis shows the qualitative difference between deep surge (a 

purely axisymetric periodic orbit with actual trajectories showing some rotating 

stall initiated by the back ground distortion) and classic surge (associated with 

the Hopf bifurcation of the rotating stall point). The bifurcation analysis is of 

great value in the study of compressor instability. It provides a complete picture 

of the parametric effects in this simple model. 
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