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DESIGN OF THE CHEBYSHEV BR FILTER FOR THE 

ELASTIC AIRCRAFT LONGITUDINAL STABILITY 

AUGMENTATION SYSTEM 

ABSTRACT 

In classical automatic flight control system‘s theory aircraft is considered as the 

rigid-body one. The controller automatically stabilizing the aircraft spatial 

motion is designed for the nominal plant. In real flight aircraft behaves 

elastically. Any external force or moment results in the aircraft elastic motion. 

The most common mathematical representation of the fuselage bending motion 

is the transfer function method. If to consider the aircraft elevator angular 

deflection for the input and the pitch rate as the output the model of the elastic 

motion can be considered as additive uncertainty. The purpose of the authors is 

to design a filter for hypothetical aircraft pitch rate gyroscope. For the solution 

of this problem a new MATLAB
®
 M-file was created by the authors. 

INTRODUCTION 

Due to their main features space and air vehicles are elastic ones. Airplanes are 

maneuvering in the three dimensional space and they must be considered as 

elastic vehicles. Aeroelasticity is in the focus of attention since many decades. 

Knowledge of the aircraft elastic motion is important for designers from the 

point of view of the sensor location upon the aircraft. If elastic motion results in 

the error of rate sensing it is necessary to filter electric signals of the sensors. 

Many aircraft flight control system is equipped with filters designed for filtering 

unwanted signals from the first and second elastic overtone [5]. One of the 

possible methods is the classical representation based upon the transfer function 

method. The most modern method for the elastic motion modeling is the state 

space representation, which allows to consider the aircraft as the multi input - 

multi output (MIMO) system. In this paper transfer function method is used for 

representation of the high frequency dynamics of the elastic aircraft. 
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MATHEMATICAL MODEL OF THE ELASTIC AIRCRAFT 

During the mathematical modeling of the elastic aircraft the fuselage and the 

wings elastic motion can be analyzed. The aircraft fuselage is considered as a 

simple rod. The fuselage bending motion equation is given in [2, 3, 6] to be: 
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where 1K  is constant gain, i  is the natural frequency of the undamped 

oscillation of the ith elastic mode, i  is the damping ratio of the undamped 

oscillation of the ith elastic mode, iq  is the generalized coordinate of the ith 

elastic mode. Taking Laplace transform of eq. (1) respecting zero initial 

conditions we have: 
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It is easily can be seen that pitch rate generated by fuselage elastic motion can 

be determined as follows: 
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where iK  is the gain of the ith elastic degree of freedom. In [4, 5, 6] parameters 

of the 1
st
 and the 2

nd
 overtones of the hypothetical fighter fuselage bending 

motion are given as follows: 
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Later it will be supposed that the longitudinal motion control system is affecting 

only the short period motion. The simplified mathematical model of the 

longitudinal motion of the aircraft is given by the following equation [1, 6, 7]: 
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In eq. (5) for the flight conditions H=1000 m and M=0.4 let us consider the 

following parameters of the aircraft [5, 6]: 
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The output signal of the pitch rate gyro can be determined as sum of the rigid 

and elastic aircraft output signals defined by eqs (3) and (5): 
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The aeroelastic aircraft model built by eqs. (3), (5) and (7) is represented in 

Figure 1. 

 
Fig. 1. The Aircraft Rigid Model and Elastic Model 

 

Sign ‗-‗ in rigid aircraft transfer function is for direction measuring between 

elevator deflection and the pitch rate. Elevator deflection is supposed to be 

positive if leads to negative pitch rate. If to neglect this sign in pitch rate damper 

the feedback must be positive. 

TIME DOMAIN ANALYSIS OF THE UNCONTROLLED 

AIRCRAFT 

Let us consider the aircraft model defined by eq (5) and (6). Eigenvalues and 

dynamic performances of the aircraft are as follows: 
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The uncontrolled rigid and the uncontrolled elastic aircraft was analized in the 

time domain. Result of the computer simulation can be seen in Figure 2. From 

Figure 2 it can be seen that the uncontrolled aircraft transient response has large 

overshoot and response time. If the plant model is perturbed with elastic motion 

ovestones given by eq. (4) the step response of the uncontrolled aircraft is 

highly oscillatory one. Pitch rate oscillates around step response of the rigid 

aircraft. 
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Fig. 2. Pitch Rate Step Responses 

solid: uncontrolled rigid aircraft dash: uncontrolled elastic aircraft 

FREQUENCY DOMAIN ANALYSIS OF THE 

UNCONTROLLED AIRCRAFT 

Bode diagram of the additive uncertainty represented by the high frequency 

dynamics of the aircraft elastic motion can be seen in Figure 3. Uncertainty gain 

has resonance peak at 10 s
-1

 and at 20 s
-1

. These peaks are developed by the D-

lag in the numerator of eq. (3). Both in low and high frequency domain 

uncertainty gain is small. 

The additive uncertainty affects the frequency domain behavior of the open loop 

stability augmentation system. Results of the computer simulation can be seen in 

Figure 4. During computer simulation unity gains for the controller and the pitch 

rate gyro were supposed. 

From Figure 4 can be seen the effect from elastic motion dynamics, which can 

be considered for additive uncertainty. At the resonance frequencies of 10 s
-1

 

and 20 s
-1

 the gain and the phase angle have peaks in their values. The open loop 

gain and the phase angle are increased only at the resonance frequency and in its 

nearest domain. 
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Fig. 3. Elastic Overtones Modeled as Additive Uncertainty 

 

 
Fig. 4. Bode Diagram of the Open Loop Perturbed System 
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BR FILTER DESIGN FOR PITCH RATE SENSOR 

From Chapter ―Mathematical Model of the Elastic Aircraft‖ it is evident that 

dynamics of the elastic motion of the aircraft fuselage is defined with the 

proportional-differential second order term (see eq. 3). For filtering of the 

output signals from pitch rate sensors there are some types of filter transfer 

functions given in [6] as follows: 
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Band rejection transfer function 
1FY  is for decreasing gain overshoots generated 

by elastic overtones. Filter design means finding appropriate time constants 

321 T ,T ,T  and 4T  for determining band rejection transfer function. The other 

possible transfer function is given by eq. (10). In this equation T  is used as 

tuning parameter. From eq. (10) it is easily can be determined that for i « T  

takes place the following equation: 
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Tuning parameter T  must be found heuristically for determination of the filter 

transfer function. At the first stage filters were derived for resonance 

frequencies of 10 s
-1

 and 20 s
-1

. Filters preliminary designed was tested and it 

was derived that transfer function given by eq. (10) provides not enough 

bandwidth for rejecting elastic motion gain overshoots. For increase of 

bandwidth of the band rejection filters for each overtone resonance frequency 

there was applied series connection of two filters adjusted for 8,3 s
-1

 and 10,6 s
-

1
. Transfer functions derived for these frequencies are: 
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The second overtone is rejected by series connection of filters adjusted for 19,6 s
-1
 

and 20,1 s
-1
. These transfer functions are: 
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Using eqs. (12) and (13) band rejection filters were tested in frequency domain. 

Results of the computer simulation can be seen in Figure 5. 

 
Fig. 5. Frequency Domain Behavior of the BR Filters 

TIME DOMAIN ANALYSIS OF THE AIRCRAFT 

LONGITUDINAL STABILITY AUGMENTATION SYSTEM 

Dynamic performances of the controlled aircraft e.g. the damping ratio must be 

between 0,6 and 0,8 [7]. For providing desirable dynamic performances the pole 

placement method can be used. Pole placement is realized with state feedback by the 

pitch rate. The pitch rate damper is built using sensor, controller and hydraulic actuator. 

In conventional stability augmentation systems the pitch rate sensor is the electro-

mechanical device. Sensor dynamics can be represented as the proportional second 

order lag. Assuming high natural frequency of the rate gyro it can be modeled as a 

simple proportional lag with unity gain sK . The compensator is supposed to be 

proportional lag cK . During analysis of the pitch rate it is supposed that hydraulic 
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actuator has fast response to input signals without any time delay. The block diagram 

of the longitudinal stability augmentation system when the first and the second 

overtone of the aircraft elastic motion are taken into account can be seen in Figure 6. 

 
Fig. 6. Longitudinal Motion Stability Augmentation System 

 

The longitudinal stability augmentation with the unity gain controller was analyzed 

in the time domain. Results of the computer simulation can be seen in Figure 7. 

From this figure it is easily can be stated that the rigid and the elastic aircraft 

behavior are very close to each other. For having appropriate time domain dynamic 

performances closed loop system must be adjusted varying controller gain cK . 

 
Fig. 7. Transient Behavior of the Aircraft 

‗—‗: rigid aircraft; ‗- -‗: elastic aircraft; ‗…‘: elastic aircraft with filter 
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FREQUENCY DOMAIN ANALYSIS OF THE AIRCRAFT 

LONGITUDINAL STABILITY AUGMENTATION SYSTEM 

In Chapter ―Frequency Domain Analysis of the Uncontrolled Aircraft‖ Bode 

diagram of the elastic aircraft was shown. Applying filter given by eqs. (12) and 

(13) the open loop control system was analyzed in the frequency domain. 

Results of the computer simulation can be seen in Figure 8. 

 

 
Fig. 8. Open Loop System Bode Diagrams 

‗—‗: rigid aircraft; ‗- -‗: elastic aircraft; ‗…‘: elastic aircraft with filter 

 

From Figure 8 it is easily can be seen that filters adjusted for resonance 

frequencies of the first and second overtones of the aircraft decrease overshoots 

of the open loop gain. In frequency range beyond that of the second overtone 

there is some increase of the open loop gain. Overshoots in phase angle also 

decreased and there are deviations in it only at resonance frequencies. 
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CONCLUSIONS 

The paper deals with problems of mathematical modeling of aeroelastic aircraft 

and with problems of signal filtering of rate gyro output signal. The BR filters 

for elastic aircraft were designed for the hypothetical aircraft longitudinal 

stability augmentation system. Filters provide for the closed loop and for the 

open loop control system ‗good‘ dynamic performances. For solution of the 

problem a new MATLAB
®
 M-file was created by the authors. 
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