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ABSTRACT 

Because our infrastructure is aging and approaching the end of its intended functioning time, the detection of damage 

or loosening of joints is a topic of high importance in structural health monitoring. The most desired way to assess the 

health of engineering structures during operation is to use non-destructive vibration-based methods that can offer a 

global evaluation of the structure’s integrity. A comparison of using different modal data for training feedforward 

backpropagation neural networks for detecting transverse damages in beam-like structures that can also be affected by 

imperfect boundary conditions is presented in the current paper. The different RFS, RFSmin, and DLC training datasets 

are generated by applying an analytical method, previously developed by our research team, that uses a known relation, 

based on the modal curvature, severity estimation of the transverse crack, and the estimated severity for the weak 

clamping. The obtained dataset values are employed for training three feedforward backpropagation neural networks 

that will be used to locate transverse cracks in cantilever beams and detect if the structure is affected by weak 

clamping. The output from the three ANN models is compared by plotting the calculated error for each case.  
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1. INTRODUCTION  

Different types of damages can occur in structures and can be caused by a multitude of factors, such as 

exceeding the expected operating demands, degradation caused by environmental conditions, material 

fatigue, loosening of joints due to shocks and excessive vibrations, and improper manufacturing conditions. 

For a structural monitoring method to be efficient, it is desired to detect invisible damage in the incipient 

state, preferably by non-invasive methods. Traditional non-destructive detection techniques present the 

disadvantage that they are limited to an accessible area and require having prior knowledge of the possible 

location of damage by considering the areas with the highest risk, which in most cases can be erroneous 

[1]. To increase the operational safety of equipment, installations, and structures, new methods have been 

developed to monitor structural integrity; these methods can be an integral part of the structure from the 

design phase or can be mounted retroactively, to assess the condition of the equipment [2].  

Promising methods of structural assessment have been developed in recent decades that are based on the 

use of modal parameters of the structure. Although damage assessment using modal parameters is still 

under development, over time, many methods of evaluating the integrity of structures, by using the natural 

frequencies have proven to be reliable [3, 4, 5]. 

The fundamental starting point of vibration-based damage detection methods starts from the known fact 

that damages occurring in structures, significantly affect the stiffness and the energy dissipation properties 

of a system, which in turn will change its dynamic response [6].  

The biggest challenge in using detection methods based on modal parameters is the use of a large amount 

of data, as well as certain disturbances that may occur during signal acquisition caused by environmental 

conditions and by the improper clamping of structural elements.  

To address the shortcomings of current methods of vibro-diagnosis, new techniques have been developed 

over time, by using artificial intelligent networks which present promising results [7, 8]. 

In the current paper, we present a mathematical relation used for predicting the natural frequencies of 

beams affected by transverse breathing cracks and by improper boundary conditions developed in the paper 
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[9]. By employing this algorithm, we can easily create different datasets, namely relative frequency shifts 

(RFS), normalized relative frequency shifts (RFSmin), and damage location indicators (DLC) that are later 

used for training six machine learning models, three models are trained for generating 3 outputs (transverse 

crack location, transverse crack severity and weak clamping severity if present) and the remaining 3 

models are trained to detect only the position of the transverse crack also if the beam is affected by weak 

clamping. 

To evaluate the quality of the developed computational intelligent methods used for damage identification, 

a set of FEM-generated tests are produced for different damage scenarios. The test natural frequencies are 

generated by employing the simulation software, ANSYS. 

2. MATERIALS AND METHODS 

The paper presents the use of a feedforward backpropagation neural network, which is developed in the 

MATLAB deep learning environment, to detect transverse cracks and also weak clamping in cantilever 

beams, by using different sets of generated training data. 

2.1. Training dataset 

The training datasets are generated by using a previously developed method [9] for predicting the natural 

frequencies for beam-like models affected by cracks, starting from Equations (1): 
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In Equation (1), the terms (0, )a  and ( )i x  represent the crack severity and the modal curvature, 

respectively. The transverse crack severity is determined with the model presented in paper [10], using the 

following Equation (2): 
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In Equation (2), the terms  ( )D a  and U  represent the deflection of the beam with damage, respectively in 

an undamaged state. 

The modal curvature caused by the crack, with a known position x, is given by Equation (3) [11]: 
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To generate the training data, for several scenarios of the damaged beam, the relative frequency shift (RFS) 

values are used, according to Equation (4) [12, 13]: 

  

2( , )
( , ) (0, ) ( )i U i D

i i

i U

f f x a
f x a a x

f
  




        (4) 

  

The model shown in equations (1-4) is valid for generating the training data set for the perfect boundary 

conditions. 
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In paper [10] a model that uses the superposition principle is described and the resulting Equation (5) is 

developed for generating the RFS values for a beam that is affected both by a transverse crack and weak 

clamping, of known severities. 
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where 1 1( )a  is the severity for the weak clamping and  2 2( )a the severity of the transverse crack. 

By using Equation (5), for the research presented in the current paper, we have generated the RFS values, 

which is the first training dataset used for the ANN models. The RFS values are generated for the first 

eight weak axis bending vibration modes for several damage scenarios, by considering transverse cracks 

located on several positions along the beam when the cantilevers clamping is considered to be both in 

perfect condition and also weak condition. The considered crack position for each set of values is 

considered starting from x=2 mm and continuing to x=998 mm with a step of s=2mm. The datasets are 

generated for a transverse crack depth of a=1 mm, and for simulating the weak clamping cases a transverse 

crack at the fixed end of depth a=1 mm is considered. For both cracks, the severity is calculated using 

Equation (4).  

Furthermore, from the calculated RFS values, we generate a second type of dataset by reducing each value 

of the RFS series with the minimum value of the series for each damage position, as described in Equation 

(6): 

  

 
   min 1 2 2(0, , , ) mini D i DRFS f a x a f  (6) 

  

In Tab. 1, we present a partial dataset series obtained for a damage scenario where the crack is positioned 

at x= 510 mm using Equation (5)  

The third training dataset is also generated starting from the obtained RFS values by normalizing the 

dataset according to Equation (7): 
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Table 1. Calculated training values for a cantilever with a crack depth 20% affected by a 10% weak clamping 

Damage 

position 

x [mm] 

Transverse 

crack 

severity 

Weak 

 clamping  

severity 

Mode 

no. 

Dataset type 

RFS RFSmin DLC 

510 0.003345971 0.000866543 

1 0.001226 0.000341 0.473765 

2 0.002589 0.001703 1 

3 0.000885 0 0.342059 

4 0.002517 0.001632 0.972443 

5 0.000899 1.37E-05 0.347357 

6 0.00249 0.001605 0.961976 

7 0.000935 4.99E-05 0.361338 
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8 0.002448 0.001563 0.945801 

The generated data is used for training six ANN models, two for each training dataset, resulting in three 

models for predicting 3 outputs (transverse crack location, transverse crack severity, and weak clamping 

severity if present), and the remaining 3 models are trained to detect only the position of the transverse 

crack also if the beam is affected by weak clamping. 

The precision of the developed ANN models is evaluated by comparing the outputs obtained from the 

considered measured test data generated using the described FEM method.  

2.2. Neural network models 

The three generated datasets, i.e., RFS, RFSmin, and DLC are used for training the six ANN models by 

using the integrated Deep Learning module of the MatLab software. The training function used is Bayesian 

regularization, with the parameter sets presented in Fig. 1. 

 

 

Figure 1. Neural network parameters 

Each ANN model is denoted by the name of the dataset type and the number of outputs, resulting in six 

network names: RFS_1_output, RFS_3_output, RFSmin_1_output, RFSmin_3_output, DLC_1_output, 

DLC_3_output. 

The Backpropagation algorithm used in the current study learns (finds) the optimal values of the 

interconnection weights between learning units in a multi-level network with a fixed number of learning 

units. It uses a gradient slope to try to minimize the error between the value of the network output and the 

value that is wanted to be obtained for that entry. The problem with learning in this network is to look for 

the optimal values of the weights in the large space of the hypotheses given by all learning units in the 

network. The algorithm is described here for a feed-forward network containing three hidden neuron 

layers, each containing 30 neurons, as shown in Fig.2. 

 

Figure 2. Developed network configuration 
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2.3. Test data 

The structure considered for the current research is a steel cantilever beam, presented in Fig. 3, with its 

main dimensions L=1000 mm, B=50 mm, and thickness H=5mm. The first step for generating the training 

data was to determine using FEM simulations the natural frequencies for the cantilever in an undamaged 

state. 

 

Figure 3. Cantilever beam affected by a transverse crack and weak clamping 

The considered beam material, Structural Steel is applied from the ANSYS database with its physical-

mechanical properties presented in Tab.2. 

Table 2. Physical-mechanical properties of the cantilever beam 

Yield strength 

 [MPa] 

Ultimate strength 

 [MPa] 

Mass density ρ  

[kg/mm
3
] 

Young modulus E  

[N/m
2
] 

Poisson ratio v  

[-] 

250 460 7850 2·10
11

 0.3 

 

 

The test data consists of the first eight natural frequencies for the out-of-plain vibration modes, for the 

healthy beam and the beam with different damage scenarios containing both ideal clamping and non-ideal 

clamping. The 1 mm depth crack is applied by cutting the 3D model using a rectangle of 1 0.04 mm. 

To simulate the weak clamping behaviour, we considered also a 1 mm depth cut on the fixed end of the 

beam, and by applying the boundary condition only on the remaining surface, as shown in Fig. 3. The 

severity value for the transverse crack as well as for the weak clamping is determined by performing static 

simulations under own weight for the beam in undamaged state, damaged state, and with weak clamping. 

The deflections obtained are used for calculating the severity values using Equation (2). 

For the FEM test data, we have considered several damage scenarios, all crack depth (transverse crack and 

the crack simulating the weak clamping) are considered at depth a=1 mm. The first 32 scenarios take into 

consideration the cases where the beam is perfectly clamped, and the only variable considered is the crack 

location, which is considered one by one at x= 56, 73, 81, 120, 165, 173, 210, 233, 255, 290, 325, 347, 

360, 414, 466, 489, 516, 560, 563, 590, 660, 687, 690, 760, 796, 810, 820, 876, 896, 906, 946, 980. The 

next 32 damage scenarios take into consideration the same crack positions but also consider the weak-

clamping scenario at the fixed end.  

3. RESULTS AND DISCUSSION 

The frequencies obtained from the FEM simulations for the undamaged and the 64 damaged beam cases 

are used for calculating the test data, meaning the RFS, RFSmin, and DLC measured values, which are later 

introduced correspondingly in each of the 6 developed ANN models, depending on the data type. 
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Figure 4. Graphical representation of the obtained errors for the 6 ANN models 

The precision of predicting the position of a transverse crack present in cantilever beams by using the 

developed neural networks trained with different data types is assessed by comparing the prediction of each 

ANN model. The obtained errors are graphically plotted and illustrated in Fig. 4. 

4. CONCLUSIONS 

In the current study, six feedforward backpropagation neural networks are trained, using different datasets, 

for predicting the damage location for several scenarios, including the case where the cantilever is affected 

by weak clamping. 

After analyzing the obtained differences, it results that the largest error achieved for predicting the location 

of the crack is 19 mm for the network that is trained using the RFSmin_1_output dataset. The largest 

prediction error is obtained for the scenario where the crack is closer to the free end, i.e., x=980 mm. 

The ANN models with the best performance considering the crack position between x=2 mm and x=906 

mm is the RFS_1_output and DLC_1_output models, the first being the more precise one. 

The ANN models with the best performance considering the crack position starting from x=906 are 

DLC_3_output and RFSmin_3_output models. 

From the obtained prediction values, we can conclude that the method used could offer reliable data for 

evaluating the location of transversal cracks, even if the crack is located near the free end of the beam 

where the frequency drop due to the presence of damage is very small. The described algorithm can easily 

be applied for generating any of the three presented dataset types for training ANN models.  
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