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ABSTRACT 

Fault detection techniques based on vibration measurement are implemented to identify in an early stage failures 

appearing in gear transmissions. Condition monitoring indicators (CMI), like: Root Mean Square (RMS), Crest Factor, 

Kurtosis, FMO, FM4, Energy ratio, Energy operator, NA4 or NB4, are used to estimate the level of gear faults such as 

pitting, cracks, spalling, scuffing or scoring. However, in is multitude of indicators, the question that arises is: which 

CMI is the most sensitive in estimating the severity of defects? Thus, this paper presents an extensive comparison 

between the before mentioned indicators computed from vibration signals collected on four pinions with different 

pitting grades, created by artificial means. The pinions where incorporated in a single helical gearbox and the tests 

were performed on an open-energy test rig at three different input speeds. This comparative study assesses the 

receptivity of different condition monitoring indicators towards gear pitting failure. We concluded that all the involved 

indicators are responsive and sensitive to fault diagnosis, even in low speed operating conditions. 

Keywords: condition monitoring indicators, fault diagnosis, gear pitting 

1. INTRODUCTION 

Gearboxes are widely used in different industrial applications, because, compared to other mechanical 

transmissions, they are capable to transmit, both speeds and high moments, in small volumes. When the 

gear teeth are loaded near to their maximum capacity, they are forced to endure high contact pressures, 

which are leading to various fatigue deteriorations, such as scoring, scuffing, spalling or pitting. These 

failures occur even under proper lubrication conditions of the gears and represent nearly 60% of the 

damages in the gearboxes components [1]. 

Pitting is the most common failure of the gear teeth surface, working under oil lubrication conditions [2], 

[3]. It is initiated in the inclusions from the gear material, which act as stress concentrators, spreading 

parallel and below the teeth surfaces. When these cracks are joining or are breaking through the tooth 

surface, material separation occurs forming the so-called pits. 

In the last decades were developed different gear fault diagnosis methods and condition monitoring 

techniques [4], [5], [6]. Fundamentally, vibration signals acquired from gearboxes by means of 

accelerometers, are filtered, amplified, processed and analysed in time domain [7], frequency domain [8], 

or time-frequency domain [9]. 

With the fast development of artificial intelligence technologies, classification of gear faults using machine 

learning became a hot topic in the field of gear fault diagnosis methods. Thus, Liu et al. [10] proposed a 

personalized fault diagnosis method using finite element method simulation and extreme learning machine 

to detect faults in gears. Further, He et al. [11] introduce a deep transfer multi-wavelet auto-encoder for 

intelligent gear fault diagnosis with small training samples. 

Statistical indicators, likewise known as condition monitoring indicators, are also extensively used to 

identify failures in gear transmissions appearing in an early stage [12]. However, in the bunch of indicators, 

the doubt that rises is: which of these CMI’s is the most sensitive, being able to assess the gear fault 

severity. Therefore, this paper aims to analyse the responsiveness of different indicators towards gear 

pitting severity. Incorporating four pinions with various pitting grades, made by artificial means, in a single 

helical gearbox, vibration measurements were performed at three different input speeds, on an open-energy 
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test rig. Finally, the research has concluded regarding the receptivity of the involved condition monitoring 

indicators to predict gear-pitting severity. 

2. CONDITION MONITORING INDICATORS 

Following CMI’s were involved in the present research: 

2.1. Root Mean Square 

The root mean square (RMS) of a continuous-time waveform is the square root of the arithmetic mean of 

the squares of the values, or the square of the function that defines the continuous waveform. RMS was 

initially developed to characterize the heating of a resistor exposed to a sine wave varying current. In case 

of a set of n values {x1, x2,…, xn} the RMS is: 
  

𝑅𝑀𝑆𝑥 = (
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𝑛
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2.2. Crest Factor 

The Crest Factor (CF) is a parameter of a waveform showing the ratio of the maximum positive peak value 

to the RMS value: 
  

𝐶𝐹 =
max(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑅𝑀𝑆𝑥
 (2) 

  

Crest factor is a normalized parameter of the signal amplitude. A signal with a few high amplitude peaks 

are producing a bigger CF, as the numerator increases (high amplitude peaks), while the denominator 

decreases (few peaks means lower RMS). 

2.3. Kurtosis 

The shape of the amplitude disposal is regularly involved as a data descriptor. Kurtosis shows how peaked 

or flat a waveform signal is. When a vibration signal incorporates sharp peaks with higher value, then the 

distribution function will be sharper. We can presume that damaged gears produce these types of waves. 

Consequently, a damaged gear will have higher kurtosis value then a healthy gear. A mathematical 

expression of Kurtosis is given in (3): 
  

𝐾 =
𝑛 ∙ ∑ (𝑥𝑖 − �̅�)4𝑛

𝑖=1

(∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 )2

 (3) 

  

where �̅� is the mean value of the signal. 

2.4. Zero-order Figure of Merit (FM0) 

The zero-order figure of merit (FM0) is an indicator of major faults in a gear mesh, being defined as the 

ratio between the peak-to-peak value of a signal and the energy of the mesh frequency and its harmonics. 

In contrast to CF, which compares the peak value of the synchronous averaged signal with the energy of 

the synchronous averaged signal, FMO compares the same peak value of the synchronous averaged signal, 

with the energy of the regular signal. Thus, FMO is deducted as: 
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𝐹𝑀0 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

∑ 𝐴(𝑖)𝑛
𝑖=1

 (4) 

  

where xmax is the maximum amplitude of the signal, xmin the minimum amplitude of the signal, A(i) is the 

amplitude of the i-th mesh frequency harmonics and n is the total number of harmonics in the frequency 

spectrum. 

2.5. Fourth-order Figure of Merit FM4  

Fourth-order figure of merit (FM4) was designed to improveFM0 in the detection of damages located only 

on a finite number of gear teeth. This can be done by removing the gear meshing frequency and its 

harmonics from the time synchronous average signal. The obtained result is the so-called differential signal 

d. FM4 is computed as: 
  

𝐹𝑀4 =
𝑛 ∙ ∑ (𝑑𝑖 − �̅�)

4𝑛
𝑖=1

(∑ (𝑑𝑖 − �̅�)
2𝑛

𝑖=1 )
2 (5) 

  

where �̅� is the mean of the differential signal, di the i-th point of the differential signal the time signal and 

N the total number of data points in the time signal. 

2.6. Energy Ratio (ER) 

Energy ratio (ER) is an indicator for uniform wear. It is computed as the ratio of the RMS of the difference 

signal d to the RMS of the signal containing only the regular meshing components xd: 
  

𝐸𝑅 =
𝑅𝑀𝑆𝑑
𝑅𝑀𝑆𝑥𝑑

 (6) 

  

As wear progresses, energy moves from the regular signal to the difference signal. 

2.7. Energy Operator (EOP) 

Is calculated as a normalized kurtosis of a so-called resultant signal (re), re being computed as a difference 

between the squared input signal for each point xi (i=1….n) and the product of the point before and after     

(xi-1· xi+1): 
  

𝐸𝑂𝑃 =
𝑛∙∑ (𝑟𝑒𝑖−𝑟𝑒̅̅ ̅)

4𝑛
𝑖=1
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2𝑛
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where 𝑟𝑒𝑖 = 𝑥𝑖
2 − 𝑥𝑖−1 ∙ 𝑥𝑖+1 is the i

th
 measurement of the resulting signal re and 𝑟𝑒̅̅̅ is the average of the 

resulting signal. In case of the endpoints, the signal is assumed to be a continuous loop, meaning that for 

calculating the first point is involved  the last point and inversely. 

2.8. NA4 

The NA4 parameter was evolved to overcome the deficiency of FM4, which becomes less sensitive as the 

manifestation of faults grows in both number and severity. Two changes were done to develop NA4 to be 

more sensitive to the damage evolution: firstly, it is computed from the residual signal and secondly, 

trending was incorporated into the parameter. Thus, NA4 is calculated as the ratio of fourth moment of the 

residual signal to the square of its run time averaged variance: 
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where �̅� is the mean of the residual signal, n the total number of data points in the time signal, j the index of 

the time signal in the run ensemble, and m the number of the current time signal. 

2.9. NB4 

NB4 is computed as a time-averaged kurtosis of the envelope of the signal after it was band-pass filtered 

about the mesh frequency. The envelope s(t) is calculated involving the Hilbert Transform, being given by: 
  

𝑠(𝑡) = |{𝑏(𝑡) + 𝑖𝐻[𝑏(𝑡)]}| ,  (9) 
  

where, b(t) is band-pass filtered signal about the mesh frequency, i the number of samples and 𝐻[𝑏(𝑡)] the 

Hilbert Transform of b(t). 

3. MATERIALS AND METHODS 

For the evaluation of the gear pitting by involving the upper described CMI’s, an open-energy test stand 

was used. The main components of the stand are shown in Fig. 1, these being: an electric motor with 

variable speed, the gearbox and a hydraulic pump, used as a brake. 
 

 

Figure 1. Main components of the test stand [13] 

The connection between these components was made through two couplings with rubber strips, which 

ensure a good torsional vibration damping and allow a smooth assembling. For reading the input speed and 

the torques on the input shaft and output shaft respectively, two torque flanges of type T 10 FE, made by 

HBM- Germany, were used. 
Table 1. Technical data of the test stand 

Element Technical data 

Electric motor Power: Pmax= 2,5 kW 

 Speed: n= 0…1500 min
-1

 

Gearbox Centre distance: A= 125 mm 

 Teeth number: z1/ z2= 17/ 43 

 Module mn= 4 mm 

 Face width b= 40 mm 

 Helix angle β= 11° 

Break KF 6/400 gear pump (KRACHT) 

 

Electrical 

motor 

Torque 

flange 
 

Coupling 

 
Gearbox Coupling Torque 

flange 
Pump 
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A Kistler made accelerometer of type 8772, placed on the top of the gearbox housing, above the high-speed 

shaft, was used for vibration measurements. The vibration signals were acquired via a 92234 National 

Instruments module, placed in a chassis cDAQ-9172. 

For fine processing, the vibration signals were sent to a laptop programmed to run in LabView software a 

self-developed application. The main technical data of the test stand are described in Tab. 1. 

The before mentioned CMI’s were computed from vibration signals collected on four pinions with 

different pitting conditions, created by practicing artificial grooves with a diameter of 3 mm and a depth of 

about 0.5 mm, along the pitch line of the teeth. The pinions with different failure status (PC1- healthy 

teeth; PC2- teeth with slight pitting; PC3- teeth with mild pitting; PC4- teeth with acute pitting) are 

presented in Fig. 2. 

 

    
PC1 PC2 PC3 PC4 

Figure 2. Pinions with different failure status 

The experimental procedure was conducted following the below mentioned steps: 

- the healthy pinion (PC1- status) was assembled into the gearbox and the test stand was operated in turn, at 

following input speeds: 1000, 1250 and 1500 min
-1

; 

- collection, storage and processing of the vibration signals; 

- replacement of the pinion with PC1- status with the one having PC2- status, followed by the resumption 

of steps described above; 

- continuation of experimental measurements, as before described, for the other two pinions. 

4. RESULTS AND DISCUSSION 

CMI’s for pinions with different failure status operating at three different speeds have been evaluated. 

Values of the nine parameters described in Section 2 were computed, being organized in Tab. 2. To have a 

better image about how the nine condition parameters are influenced by the input speed of the gearbox and 

the pitting severity, Fig. 3 depicts the variation of the CMI’s for the three operating speeds and the four 

pinion healthy conditions. 

Table 2. Condition Monitoring Indicators 

CMI 
n1= 1000 min

-1
 n1= 1250 min

-1
 n1= 1500 min

-1
 

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

RMS 1,005 1,234 1,896 2,314 1,055 1,750 2,514 3,088 1,075 2,254 3,756 6,988 

CF 2,755 2,890 3,550 4,215 2,815 3,025 3,770 4,890 2,865 4,326 5,132 6,309 

K 3,021 3,775 3,895 4,777 3,210 3,995 5,210 6,455 3,431 4,055 6,643 9,342 

FM0 0,008 0,009 0,011 0,010 0,008 0,010 0,012 0,013 0,010 0,003 0,015 0,022 

FM4 2,890 3,150 3,364 3,955 3,050 3,390 3,675 4,750 3,179 4,305 5,925 7,795 

ER 0,555 0,690 0,712 0,798 0,595 0,722 0,756 0,912 0,605 1,765 2,095 2,849 

EOP 2,987 7,855 10,025 11,250 3,025 5,677 8,875 15,554 3,519 11,207 19,764 38,733 

NA4 3,015 3,187 3,247 3,998 3,010 3,022 3,225 4,205 3,035 4,115 4,435 4,878 

NB4 2,225 2,220 2,415 3,895 2,195 2,945 4,895 6,473 2,218 4,068 6,218 10,764 
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Figure 3. Variation of CMI’s for different input speeds and failure status 

As one can observe, all the nine indicators are working well, displaying increased shapes with the growth 

of the speed, respectively of the severity of the pitting. If in the case of the input speeds of 1000 min
-1

and 

1250 min
-1

, respectively, the increases of the nine investigated parameters are not spectacular, but still 

visible, with the aggravation of the pitting failure, this becomes obvious at the maximum speed (1500 min
-

1
) of the gearbox input shaft. 

Regardless of speed, the most receptive parameters to gear failure were in descending order, EOP, RMS, 

NB4 and ER. In this sense, Fig. 4 provides a visual proof of this finding. At the minimum investigated 

speed, the least sensitive parameters proved to be FMO, NA4 and FM4, a characteristic that was 

maintained even at the maximum speed of the input shaft. 

 

  

 

 

Figure 4. Percentage variation of the parameters with the highest sensitivity 

Starting from these findings, we express the opinion that based on the previous analysed condition 

monitoring parameters extracted in time domain, it would be possible to classify the gear pitting stage, by 

involving machine-learning techniques. This capability will prove effective, especially in the case of 

fluctuating speed operating regimes, when frequency spectrum analysis is no longer applicable. 

5. CONCLUSIONS 

Gearboxes have wide application in different industries for speed and torque conversion. Inappropriate 

failure of the gearbox can be costly. Therefore, an early diagnosis of faults is very critical for their reliable 

operation. 

In this study, experiments were performed for various gear pitting stages at three different input speeds. A 

comparative study of RMS, Crest Factor, Kurtosis, FM0, FM4, Energy ratio, Energy operator, NA4 and 

NB4 has been done for no, slight, mild and acute pitting of a pinion. This research highlights that all the 

indicators are responsive and sensitive to fault diagnosis, even at a low operating speed. Moreover, the 

experimental result indicates that CMI’s describing the overall vibration level track the condition of the 

tested gearbox condition very well. Certain CMI provide not only information that something has happened 

in the gear transmission but they provide information about what has happened. 
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Furthermore, the condition monitoring indicators may be involved, together with machine learning 

techniques, to classify the gear pitting status, in case of fluctuating speed operating regimes, where spectral 

analysis is more difficult to apply. 

Additionally, these CMI’s need to be also checked for fluctuating loading condition which is going to be 

the next goal in the area of non-stationary signals with non-constant operating circumstances. Our further 

research will be focussed on this topic. 
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