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Abstract. Adequate and real-time monitoring of water stress is critical to enhance productivity, crop 

quality, as well as water use efficiency. This study contributes to the new approach of precise and rapid 

estimation of real-time water stress using thermal images taken with an Unmanned aerial vehicle. 

Different physiological parameters stomatal conductance (gs), leaf area, and ground reality parameter 

(Tc) were calculated between 11.30 and 13.30 (Chinese standard time) on sampling day. The 

volumetric water content (θ, m3 m-3) of the soil at different depths of (20, 40, and 60 cm) was 

measured. Data processing steps were implemented in MATLAB for thermal images to calculate the 

canopy temperature T1. Empirical (CWSIe) and statistical (CWSIs) methods of CWSI were applied for 

model calibration. Results showed that different spectral indices (TCARI, NDVI, OSAVI 

TCARI/OSAVI) had a high correlation with stomatal conductance (gs) (R2 = 0.590) and transpiration 

rate (tr) (R2 = 0.602) as compared to CWSIe and CWSIs. Volumetric water content (θ) and CWSIsi 

have a high correlation coefficient (0.872). However, the transpiration rate shows a week correlation 

with spectral indices (TCARI, NDVI, OSAVI, and TCARI/OSAVI) as compared with CWSI. The 

plotted high- resolution map shows the distribution of water stress in different irrigation treatments and 

potentially applied in precision irrigation management. 

Keywords: stomatal conductance, precision agriculture, PIX4D software, unmanned aerial vehicles, 

remote sensing 

Introduction 

Uses of water in sustainable agriculture has become a precarious issue in all 

developing countries, because of climate and water scarcity changes, so accurate 

irrigation water management strategies are required. In general terms, agriculture 

consumes most of the world water resources (Jiang et al., 2013). At the same time, other 

industries are trying to consume more and more water, and thus people are competing 

with food production. Globally 46% of the food supply is produced from the 

agricultural land, which covers only 18% of the cultivated land (Döll and Siebert, 

2002). So, it is essential to manage irrigation with the optimal use of water. Worldwide, 

farmers are facing many problems, particularly in semi-arid areas, related to agriculture 

water resources (Gonzalez-Dugo et al., 2010; Jin et al., 2018). Plant transpiration and 

climate change affect the crop productivity, quality and soil water balance significantly. 

Using thermal information for identifying plant water stress at ground level with 

thermal sensors become popular in the 1960s (Tanner, 1963). Crop water stress index 

(CWSI) has been familiarized for indicating water stress of crop based on the difference 

between air temperature and greenery of the crop (Jackson et al., 1981; Jones, 2013; 

Idso et al., 1981) which is most commonly used as the indicator of plant water status 

derived from canopy temperature. Jones (1999) developed a new reformulated CWSI by 

the difference between threshold temperature and canopy temperature (TCanopy), which is 

normalized by the difference in temperature between Twet (full transpiring temperature) 
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and Tdry (non-transpiring temperature) as upper and lower reference temperature (Jones, 

1999). In order to calculate crop water stress index (CWSI) (Jackson et al., 1981) 

proposed a method to calculate the theoretical CWSI with the theory of crop energy 

balance, but this approach needs too many metrological data. For obtaining the design 

parameter of empirical CWSIe, the secure method is to analyze the normalized 

temperature of the canopy (Jones, 1999; Jones et al., 2002) over calculating wet 

reference (Twet) temperature and dry reference (Tdry) temperature. However, the location 

of reference leaf and metrological factors are easily distributed; these essential reference 

surfaces and CWSI may not be the same in a different region. Another feasible method 

for calculating (Twet) from the temperature histogram of the average of the lowest 5% 

and (Tdry) temperature is supposed to be the same as (Tair) air temperature +50 °C 

(Cohen et al., 2005, 2017; Rud et al., 2014; Agam et al., 2014). In the agricultural 

sector, one of the most generally oppressed in remote sensing is optical or visual (RS) 

remote sensing. It uses different bands, i.e., SWIR (short wave infrared) and NIR (near-

infrared) sensors, to get pictures from ground surfaces by reflecting phenomena from 

the target area surface (Prasad and Bruce, 2011). Satellite images are collected by using 

visible, NIR, traditional aircraft and Unmanned Aerial Vehicles (UAVs). Numerous 

studies (Hatfield and Prueger, 2010; Jordan, 1969) have monitored crop conditions in 

the agriculture sector.  

In contrast, thermal sensors were used to detect surface temperature, and it was found 

to be a very quick response variable for monitoring crop health and crop stress 

(Anderson et al., 2013; Stark et al., 2014). Thermal remote sensing is a process that 

measures the radiation that is discharged from a surface body and transforming into 

temperature values without producing any interaction with an object. All surface object 

emits radiation with a temperature above 0 K or -273 °C (Khanal et al., 2017). The 

intensity of radiation of each object depends on the temperature, the higher the 

temperature the greater the intensity of the radiation is. Thermal remote sensing 

provides us with significant fluxes of temperature and energy from the earth's surface 

which are necessary to converse the landscape's processes and responses (Quattrochi 

and Luvall, 1999; De-Cai et al., 2012). 

CWSI estimation with TIR imagery is a practical approach that was introduced to 

eliminate the VIS imagery with the co-registration method (Meron et al., 2010). Many 

studies on assessing CWSI approaches through remote sensing have concentrated on 

image processing techniques from the nearby ground platform, to detect the stress level 

at different crop levels (Möller et al., 2006). Statically modeling techniques were used 

to calculate the lower reference temperature and canopy related temperature in TIR 

imagery. Recently detection of water stress from (UAVs) has been used worldwide with 

a higher spatial resolution with a potential of providing new ideas for farmers to observe 

the water stress at field level (Berni et al., 2009; Poblete-Echeverría et al., 2014; 

Espinoza et al., 2017). It is necessary to develop a new approach for measuring CWSI 

by using temperature histogram from UAV thermal Images and analyze water stress of 

crop and improve the irrigation efficiency. Overall objectives of this research are to (1) 

exclude soil background pixels to get the pure canopy pixel using different edge 

detection method and series of UAV thermal imagery: (2) estimate the values of (Twet), 

(Tdry) and (Tcanopy) from the histogram of canopy temperature which is simply 

recognized from UAV thermal images; (3) determine and optimize correlation to 

successfully identify the water stress from field condition by comparing different 

parameters of CWSI and spectral indices. 



Awais et al.: Detection of plant water stress using with UAV thermal images for precision farming application 

- 4089 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(3):4087-4102. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1803_40874102 

© 2020, ALÖKI Kft., Budapest, Hungary 

Materials and methods 

Experimental design 

This study was conducted in a cultivated land of 1.13-ha research field in a tea 

garden located at the (right) bank of the Yangtze River in Jiangsu Province, PR China 

(32°1′00″N, 119°4′00″E), with an elevation of 18.5 m above sea level. The tea plant 

was four-year-old Anji white tea, with a plant row spacing of 1.5 m and plant spacing 

with the row of 1 m. This research field was divided and completely randomized with 

four irrigation treatments with three replicates. Site area soil is silty-loam texture. The 

climate in this area is semi-arid, and the annual rainfall and ET0 respectively are 360 

mm and 1094 mm, for the year 2019. There were four randomized irrigation treatments 

with three replications and a total of 12 experimental plots, and each plot was designed 

to be 4 m wide (7 rows) and 5 m long. The four treatments were (T4) severe water 

stress, (T3) moderate water stress, (T2) mild water stress, and (T1) full irrigation. These 

twelve plots were selected randomly, and different treatment was irrigated to keep up 

the volumetric water content on a different level of the field capacity, respectively. In 

order to maintain the difference in irrigation, the four treatment plots were watered to 

maintain the volumetric soil water content at 90-100%, 75%, 60%, and 50% of the field 

capacity, respectively. Drip irrigation controller system was installed to irrigate the 

land, and an individual solenoid valve was opened and closed, which corresponding to 

each irrigation sector with one line per row had a stream rate of 1.5 Lh-1 and were 

spaced 0.85 m apart. In each plot, three sites for data gathering were selected for ground 

truth data. For post-processing image calibration, Pix-4D mapper was used in this 

research for obtaining thermal infrared mosaic images (Fig. 1). FLIR Tools software 

was also used for temperature calibration parameters, i.e., relative humidity, target 

distance, background temperature, and emissivity. 

 

 

Figure 1. Post-processing calibration in Pix4d software 

 

 

Aerial image acquisition and software solutions 

Figure 2 shows the main procedure of acquisition and pre-treatment of UAV 

imageries. A multi-rotor UAV drone manufactured by DJI (S900) equipped with RGB 

and thermal cameras (Zenmuse XT, FLIR System, Inc., USA) was used to measure the 
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canopy temperature. Temperature and spectral range of thermal cameras are 7.5-13 μm, 

with a resolution of 640 × 512 pixels, thermal sensitivity < 0.05 °C at + 30 °C and focal 

length of 25 mm. Due to its high matrices and multi-rotor function, they have a 

capability for a stable and safe flight with a long battery. The flying speed of UAV is 

2.5 ms-1 with a high elevation of 80 m beyond the earth’s surface with a sample space 

distance of 6.12 cm and has sufficient overlap for photogrammetric processing. The 

most significant uncertainty occurring in thermal mapping is sensor calibration. In our 

case, there is automatic sensor calibration while obtaining thermos MAP. Evaposensors 

(Skye Instruments, Llandrindod Wells, UK) were used to acquire the canopy reference 

temperature indices Twet and Tdry for supporting the segmentation of the thermal image. 

 

most significant uncertainty occurring in thermal mapping is sensor calibration. In our 1 

case, there is automatic sensor calibration while obtaining thermos MAP. Evaposensor (Skye 2 

Instruments, Llandrindod Wells, UK) were used to acquired the canopy reference temperature 3 

indices Twet and Tdry for supporting the segmentation of the thermal image.     4 
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Figure 2. Flow chart of image acquisition and pre-treatment of an unmanned aerial vehicle 

 

 

Physiological data collection 

Leaves temperature for thermal image calibration was calculated regarding five 

sunny leaves and five sheltered leaves using a portable infrared thermometer 

(TN410LCE, ZyTemp, Radiant Innovation Inc.) at the same time with UAV image 

acquisition. Different physiological parameter stomata conductance (Ahrenfeldt et al., 

2013), ground truth Tc, soil water content, and leaf area was calculated around 11.30 

and 13.30 (Chinese standard time) on sampling day. Transpiration rate (tr, mmolm-2 s-1) 

and the stomatal conductance (gs, mol m-2 s-1) of the leaves were calculated using a 

portable photosynthesis system (LI-6400, LI-COR Inc. USA). The leaf was the fourth 
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from the upper part of the tea canopy and fully exposed to the sun, and three leaves per 

plot were measured. LAI was measured 2 h earlier before sunset just to avoid the effect 

of direct sunlight. The ‘soil volumetric’ water content (θ, m3 m-3) at different depths (20, 

40, and 60 cm) was measured using soil moisture sensors (Decagon EM50 data logger, 

ECH20 sensor), when thermal infrared images were collected. Ground-truth Tc was 

measured by a handheld infrared thermometer (RAYTEK, ST60+, Raytek Inc., Santa 

Cruz, USA) with a temperature range of 32-600 °C and a spectral range of 8-12 μm. 

 

Data processing 

Data processing steps were implemented in MATLAB R2016b (Math works Inc., 

Matick, MA, USA) for thermal images to calculate the T1. Mapping of CWSI and 

extraction of canopy pixels from soil and other non-leaf material must be required. 

Calculation of T1 must require transparent canopy pixel from thermal images to show 

the higher temperature during midday periods. Edge recognition methods were used to 

exclude soil background pixels to get the transparent canopy pixel using Matlab. These 

edge detection methods are designed in the vertical and horizontal direction to identify 

gradient changes extremely to boundaries (Maini and Aggarwal, 2008). In this stage, 

two other edge detection methods Roberts and Prewitt, can also be applied to check the 

changes in gradient and edges of images. The mixed pixel was intensified for more 

conservative elimination, which is further dispersed up to more six pixels along and 

across the edge direction of the thermal gradient. 

 

CWSI calculation 

This study was suggested by (Jones, 2013) to estimate the CWSI algorithm, which 

can be represented as follows: 

 

 
WetDry

WetConopy

TK

TK
CWSI

−

−
=  (Eq.1) 

 

where Tcanopy is the temperature that is acquired by aerial TIR images, Twet is the lower 

reference temperature or entirely transparence leaf, and Tdry is the non-transpiring leaf 

temperature, which is also called an upper reference. The CWSI was acquired using 

simplified, statistical, and empirical approaches based on Tdry and Twet values. The 

temperature of fully transpiring plants leaves was measured using a spray of water on 

both sides of leaf (Twet), and petroleum jelly was used to calculate the temperature of 

non-transpiring leaves covered with jelly (Tdry). In this approach, individually, 

numerical analysis is performed to measure the threshold values of Twet and Tdry, which 

is dependent on sub-regions. Initially, TIR images were used to generate the 

temperature histogram for each region. Different studies assume that Twet from the 

histogram is derived from the coldest part, and further, Tdry is derived from the highest 

part of the histogram (Rud et al., 2014). Different spectral indices were also calculated 

using spectral reflectance of the canopy, i.e., transformed chlorophyll absorption for 

reflectance index (TCARI), Normalize Difference Vegetation Index (NDVI), optimize 

soil adjusted vegetation index (OSAVI). 

 

 ( ) ( ) ( ) 670/700557002.06707003 RRORRRRTCARI −−−=  (Eq.2) 
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 ( ) ( ) ( )16.0670800/67080016.01 ++−+= RRRROSAVI  (Eq.3) 

 

 
680800

680800

RR

RR
NDVI

+

−
=  (Eq.4) 

 

Adaptive Twet and Tdry 

A static approach is proposed to estimate the threshold values of Twet, and Tdry which 

depends on the regions. The histogram temperature was acquired as shown in the flow 

chart (Fig. 3). The average density distribution and distinctive bimodal are the 

histogram feature which is used to represent the soil pixels and vegetated pixels. In this 

study, Gaussian mixture modeling (GMM) was used to estimate the typical values of 

Twet and Tdry for canopy by fitting temperature distribution to cluster soil/canopy pixel. 

In the Gaussian distribution component, higher temperature representing the non-

canopy pixel of soil background affects Gaussian distribution. 
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Thermal infrared mosaic image  

Elimination and edge detection (Mixed pixel) 

T1 T2 T3  T4 

Histogram analysis 

Decision of automated Twet and Tdry 

Simplified crop water stress index (CWSIsi) 
 

Figure 3. Flow chart of detection (CWSI) using temperature histogram approach 

Results 

Feature extraction 

CWSI mapping required feature extraction of canopy pixel from the soil background 

images, which must have excluded non-leaf material and soil from the UAV images. 

Different canopy edge detection was used to show the transparent canopy pixel of 

higher temperature during midday of periods and compared these methods to indicate 

the raster image between copy and soil background pixel. Figure 4 shows a vibrant edge 

detection of the canopy plant by using edge detection algorithm in the raster image, and 

the mixture of crop canopy and pixel of different edges were screened out from 

orthomosaic images. White pixels show the temperature of clear canopy that was 

acquired. 
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Figure 4. Example of the orthomosaic image with Edge detection methods 

 

 

Canopy temperature histogram and calculation of CWSI 

Images from UAV thermal cameras were used to obtain the canopy temperature 

histogram based on the irrigation treatment of entire experiment plants. Twet and Tdry 

values were attained from the average of the highest and the lowest values of 0.5% 

from canopy temperature histogram, respectively. Figure 5 shows the surface 

temperature distribution of soil and canopy pixels from each experimental plot, which 

was bimodal (Fig. 5a). This soil and canopy temperature histogram represent the 

mixture of bare and dry soil, whereas it shows transpiring and actively growing 

canopies. This histogram’s bimodal distribution featured representing soil and 

vegetation background in between 23 and 43 °C due to the difference of apparent 

temperature up to 34 °C. To remove the accuracy of CWSI, removal of soil 

background is very crucial, so after soil background was removed, the temperature 

distribution was Gaussian (Fig. 5b). 

Twet values of different methods for CWSI was 25.8 °C, 28.9 °C, and 28.5 °C. 

Canopy and soil background temperature for selected plots are shown in Figure 5. 

Therefore, experimental results of temperature histogram stated that the temperature 

of canopy pixel is worse than that of soil pixel. The air temperature was measured 

from the entire experiment plots, and it was 38.3 °C. From this temperature, a 

considerable gap difference shows, which represents the undefined error in the 

measured values of Twet and Tair. So Twet values of CWSIs and simplified CWSI 

(CWSIsi) methods were approximately similar. Furthermore, the Tdry values of 

CWSIsi, CWSIs, and CWSIe were 39.4 °C, 43.8 °C, and 44.2 °C. Ti values of four 

different irrigation treatment plants were derived and analyzed the apparent difference 

from canopy temperature histogram. Soil and canopy temperature distribution of these 

four different treatments are shown in Figure 6. Results showed that plot 4 (T4) has 

the highest temperature value of Ti (35.6 °C) than T2, T3, and T1. These four 

treatments plot show higher difference among the values of T i that is obtained from 

the histogram approach, so canopy edged detection approach is an acceptable method 

to calculate the canopy temperature. 
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a      b 

Figure 5. Histogram (canopy and soil pixels) of temperatures of the entire experimental plot 

(a), Histogram (canopy pixels) of canopy temperatures of the entire experimental plot (b). Note: 

dark black lines of histogram represent null temperature values 

 

 

  
a (i) a (ii) 

  
b (i) b (ii) 
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c (i) c (ii) 

  
d (i) d (ii) 

Figure 6. Temperature histograms of soil pixel and canopy pixels for each experimental plot 

(a–d). (i) Mixed canopy and soil pixels, ii canopy pixel 

 

 

Relationship of CWSI and physiological indicators 

Many researchers (Gago et al., 2013; Jones, 1999; Pallavi et al., 2017) have proved 

that values of CWSI and stomatal conductance have a high correlation. Figure 7 shows 

the relationship of stomatal conductance with different CWSI values from the UAV 

thermal camera images. Stomatal and transpiration rates were calculated to identify the 

accurateness of CWSI by different parameters. Results revealed that stomatal 

conductance (gs) shows a negative correlation with three different models of calculating 

CWSI, and the value of R2 (coefficient of determination) is different. 

While taking thermal images on the same day transpiration rate was also 

considered at midday. The result stated that (Fig. 8) there is a negative correlation 

between transpiration rate and simplified, statistical, and experimental values with 

CWSI and R2 values remained 0.519, 0.501, and 0.5696 individually. CWSI from the 

histogram approach highly correlated with the measured transpiration rate, which 

reflects the water stress of crop (Fig. 8a-c). Experimental results suggest that water 

stress from the histogram approach is highly accepted and accurately shows the water 

stress condition. Besides, it can be observed (Fig. 8d-g) that transpiration rate has a 
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week correlation of spectral indices (TCARI, NDVI, OSAVI TCARI/OSAVI) as 

compared with CWSI. 

 

  
a b 

  
c d 

  
e f 
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g 

Figure 7. Stomatal conductance relationship with and (a) empirical (b) statistical (c) simplified 

CWSI (d) (NDVI), (e) (TCARI), (f) (OSAVI), (g) TCARI/OSAVI 

 

 

  
a b 

 

 
c d 
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e f 

 
g 

Figure 8. Transpiration rate relationship with (a) empirical (b) statistical (c) simplified CWSI 

(d) (NDVI), (e) (TCARI), (f) (OSAVI), (g) TCARI/OSAVI. 

 

 

Adaptive CWSI mapping 

Figure 9 shows the high-resolution predictable map of the CWSI index, which is 

based on the values of Twet and Tdry in four different experimental plots for agriculture 

water management. Detailed values of CWSIsi of water deficit are in between 0.100 to 

0.810, and the exact mean values of water stress index of four plots remained 0.161, 

0.362, 0.521, and 0.692 individually. This water stress map shows a stable relationship 

between the water stress condition of plots and CWSIsi. 
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Figure 9. Example of Adaptive CWSI mapping 

Discussion 

In this study, the ability of UAV technology with thermal camera images was used to 

determine the crop water status at the canopy scale. However, CWSI provides a critical 

piece of information for irrigation water management. Furthermore, soil background 

pixel was eliminated to get the transparent canopy pixel using different edge detection 

methods, and series of UAV thermal imagery and canopy temperature histogram 

approach was employed to calculate the CWSIsi parameter (T1, Twet, and Tdry). CWSI is 

a handy parameter for assessing the water stress condition of the crop. Many previous 

studies (Pallavi et al., 2017; Davcev et al., 2018) stated that there is a perfect 

relationship between stomatal conductance, transpiration rate, and CWSI, respectively. 

The proposed methods were based on the assumption that there exists a water stress 

level in the field for representing canopy temperature values for stress and non-stress 

plants, and no metrological data is essential for the calculation of CWSIsi. To calculate 

the CWSI from the canopy temperature, soil background pixels should be removed from 

the UAV thermal camera images. In this work, ArcGIS and Pix4D software were used 

to pre-process the UAV thermal images (Fig. 4). The average canopy temperature of 

different four plots which is carried out by edge detection algorithm is T4 (35.6 °C), T3 

(31.9 °C), T2 (31.2 °C), and T1 (30.1 °C) respectively. This temperature difference 

results have been proved with previous research (García-Tejero et al., 2016; Testi et al., 

2008). Tdry values can be calculated by different methods, and values of simplified, 

statistical, and empirical water stress was 39.4 °C, 43.8 °C, and 44.2 °C. Previous 

studies also suggested the reasonable values of Tdry temperature are 39.2 °C (Khorsandi 

et al., 2018). A bimodal histogram was obtained before the removal of soil background 

pixels, this histogram approach not only explained the temperature difference but also 

showed us the partially overlapping temperature. 

Besides, this approach for estimating CWSI is not a direct method for the 

measurement of actual water stress since its mean values can fluctuate with 
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environmental factors and moisture conditions. Crop physiological indicator and water 

stress induce relationship were compared and observed that values of R2 of stomatal 

conductance and TCARI, NDVI, OSAVI, TCARI/OSAVI are 0.037, 0.385, 0.142, and 

0.145. The R2 value of CWSIsi calculated from the histogram approach (0.658) is 

higher than other CWSIs statistical (0.531) and CWSIe empirical (0.454), respectively. 

Some previous studies also suggested the low correlation between stomatal and these 

spectral indices TCARI, NDVI, OSAVI, TCARI/OSAVI (Gago et al., 2013; Baluja et 

al., 2012). The values of empirical and statistical water stress range from 0.14 to 0.53 

and 0.04 to 0.49, while the values of simplified water stress are 0.14 to 0.55, 

respectively. These values are expected from the different approaches for estimated 

values of Twet and Tdry temperature, which was measured from the average values of the 

highest and the lowest 0.5% from canopy temperature histogram approach. The 

temperature of fully transpiring plants leaves was measured using a spray of water on 

both sides of leave (Twet), and petroleum jelly was used to calculate the temperature of 

non-transpiring leave covered with jelly (Tdry). Furthermore, wet and dry temperature 

values of simplified water stress are stable and easy to calculate. This study is carried 

out in one flight of UAV, and our finding suggested that CWSI may be applied for 

precision irrigation management. 

Conclusion 

This study proposed new techniques for the calculation of adaptive water stress index 

using a different approach: 1) canopy pixel extraction from different detection algorithm 

and statistical analysis approach for surface temperature distribution and histogram 

method is a very operational tool for the judgment of crop water stress: 2) adaptive 

CWSIsi and efficient determination of (wet) and (dry) references, and T1 is the more 

vigorous parameter for CWSIe, CWSIs, TCARI, NDVI, OSAVI, TCARI/OSAVI. Twet 

and Tdry values were attained from the average of the highest and the lowest values of 

0.5% from canopy temperature histogram, respectively. A strong linear relationship 

between adaptive CWSIsi and stomatal conductance was obtained. The current 

approach exists hypothetically and provides us a practical method for plant water stress 

calculation with a high spatial resolution at the field scale and plant for automated 

irrigation purposes. As for future work, further research will consider the effects of 

different vintages, and various phenotypic phases will be examined and applied to these 

methods for the control system of highly efficient, intelligent irrigation systems. 
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