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Abstract. Remote sensing of soil moisture can provide important data for monitoring large-scale 

agricultural drought. Due to differences between the various sensors and inversion methods, remote 

sensing data from different sources are unsuitable for direct comparison and analysis. Data fusion has 

become an area of active research regarding the application of remote sensing data. Based on the principle 

of cumulative distribution function matching, this study proposed a continuous relationship establishment 

algorithm for multisource remote sensing soil moisture data. Using this new algorithm, soil Moisture and 

Ocean Salinity (SMOS) and Climate Change Initiative (CCI) satellite data from the Songnen Plain as test 

data were fused to a long time series product of real-time remote sensing soil moisture data. This 

application validation of this new method to SMOS and CCI indicated that this Lagrange interpolation 

continuous fusion algorithm could improve the fusion accuracy of multisource remote sensing soil 

moisture data significantly. The low-value region of the cumulative probability distribution curve is a 

crucial data segment for characterization of agricultural drought. Through implementation of the proposed 

continuous fusion algorithm, fused SMOS and CCI data were found to have high coincidence at each 

quantile in the low-value region of the curve. 

Keywords: agricultural drought, continuous fusion, Songnen Plain, SMOS, CCI 

Introduction 

Remote sensing of soil moisture has been used in simulation, monitoring and 

analysis of drought characteristics (Atlas, 1993; Su, 2003; Sheffield and Wood, 2007; 

Bolten et al., 2010). It is effective for quickly detecting change in large-scale 

agricultural droughts. However, such remote sensing data can have different spatial and 

temporal resolutions and various time series lengths due to the variety of platforms, 

sensors and inversion methods available. Satellite data of the same terrestrial object 

released by different sources cannot be used directly for continuous analysis and the 

absolute value cannot be compared directly. To overcome this problem, remote sensing 

data fusion is proposed as an effective means of integrating multisource satellite-derived 

ground object information (Schmitt and Zhu, 2007, 2016). 

Data fusion is defined as a multilevel integration process for detection, association, 

analysis and a combination of sensors designed to produce a single signal of higher 

quality and reliability (Waltz and Llinas, 1990; Sportouche et al., 2011; Li et al., 1995). 

Due to the resource complementarity of multiple sensors, multisource fusion can 
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provide information that is more comprehensive than obtained from a single sensor 

(Khaleghi, 2013). The data fusion principle is the cumulative distribution function 

(CDF) matching method. The CDF principle was first proposed by Calheiros in 1987 

(2010), and it has since been used for the correction of radar remote sensing 

precipitation data (Atlas et al., 1990; Anagnostou et al., 2010). In recent years, this CDF 

matching principle is widely used to reduce the systematic biases between the original 

data and the reference data by rescaling the target data to the direction of the reference 

data (Reichle, 2004; Drusch, 2005; Brocca et al., 2011; Lee and Im, 2015). 

In the implementation of the CDF principle based on some reliable data, the fusion of 

remote sensing data from other sources can be used to improve the spatiotemporal 

resolution of the data or to extend the length of the data time series. Fused remote 

sensing data can improve its quality and reliability and enable its maximal utilization 

(Li et al., 1995). Previous studies that have used this principle to conduct fusion 

research on different remote sensing data groups have reported reduced remote sensing 

data bias and improved time series lengths for single data sources (Reichle and Koster, 

2004; Liu et al., 2009). Based on this principle, the same basic data can be used to 

correct the fusion of multiple remote sensing datasets from different sources (Liu et al., 

2010). In recent years, this principle has also been applied to the data fusion of multiple 

remote sensing soil moisture products (Lee et al., 2017). The CDF principle can 

maintain the original relative change mode of remote sensing data (Liu et al., 2010) and 

adjust the data scope to be close to the real value, which can improve the accuracy of 

remote sensing soil moisture data for characterization of surface features. However, the 

above calculation algorithm of fusion is simplistic and the fusion precision needs to be 

improved. The piecewise linear regression method is generally used to establish the 

relationship between the cumulative distribution curves of data from different sources. 

This method sets the same section for different cumulative distribution curves, and it 

obtains the linear equation of the two data correlations in that section to realize the 

fusion of one set of data to the other on the same quantile. The main disadvantage of 

subsection fusion is that the subsection properties will lead to a certain fitting error of 

the curve in the subsection, irrespective of the subsection density. 

Given the increasing levels of research into remote sensing products and their 

application, the demands for data in terms of time series length and real-time update 

speed have increased. Improvement of the accuracy of multisource remote sensing data 

fusion is one of the most important scientific problems to be overcome in relation to 

research of remote sensing applications. Based on the CDF matching theory, this study 

constructed a new continuous fusion algorithm to address the problem of low accuracy 

in the piecewise linear fusion method, to improve the fusion accuracy in the low-value 

region of the cumulative probability distribution curve (i.e., this critical stage related to 

impending or emerging drought). The fusion effect of this proposed algorithm was 

verified by SMOS and CCI data in the Songnen Plain (Northeast China). 

Data and study area 

Soil moisture and ocean salinity (SMOS) data 

The Soil Moisture and Ocean Salinity (SMOS) satellite designed specifically for 

monitoring global soil moisture content and ocean salinity. The L-band, which is 

insensitive to surface roughness and vegetation coverage, is very suitable for soil 

moisture inversion. The SMOS soil moisture data are obtained using a radiative transfer 
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model using luminance temperature data (Calvet et al., 2011; Ramirez-Beltran et al., 

2010). Related study has proven that the SMOS soil moisture data has high inversion 

accuracy and signification advantage over other remote sensing data in areas with high 

vegetation coverage (Al-Yaari et al., 2014). The daily SMOS Level-3 volumetric (m3 m-3) 

soil moisture data (January 2010 to March 2016) used in this study were obtained from 

the expert center in Barcelona, Spain (http://www.smos-bec.icm.csic.es/smos_products). 

For SMOS data, radio frequency interference (RFI) is revealed to be an important source 

of noise (Anterrieu, 2011). This dataset discarded some data which do not meet the 

quality requirement in the processing of RFI. The Level-3 data in this dataset is 

remapped to an Equal Area Scalable Earth grid of 25 km × 25 km. According to the 

data analysis, during the main growth stage of crops from April to October, this dataset 

still has a high coverage in Northeast China. This daily SMOS dataset is a near real-

time soil moisture data (delay one day). In the management of agricultural drought 

resistance, timeliness is important for the evaluation of agricultural drought. But this 

data cannot be used to perform frequency and evolution analysis due to the short length 

of the time series. 

 

Climate change initiative (CCI) data 

The European Space Agency (ESA) launched the Climate Change Initiative (CCI) 

program in 2010 to generate a dataset of global soil moisture based on passive, active 

and fused products (Dorigo et al., 2017). This program was designed to produce 

complete and consistent global soil moisture dataset by several active and passive 

remote sensing data. The long time series CCI dataset, which comprises a variety of 

integrated multisatellite soil moisture products, provides the possibility for long-term 

dynamic analysis of global soil moisture (Hollmann et al., 2013). This dataset has been 

widely adopted since its release, and it has been verified and applied in many regions of 

the world (González-Zamora et al., 2018; Jian et al., 2018; Wang et al., 2018; Siyu et 

al., 2017). As reprocessing data, real-time drought evaluation cannot be undertaken 

using this dataset. This study uses daily CCI (version 02.2) volumetric (m3 m-3) 

combined data (1978-2014) to carry out the algorithm validation. These daily soil 

moisture products have a grid resolution of 0.25° (Chakravorty et al., 2016). 

The fusion calculation algorithm proposed in this study can extent the time series of 

remote sensing data. And it will have another significant advantage if the new fusion 

data has the property of near real-time update at the same time. Therefore, in this study 

CCI data is the basic data in fusion calculation. Through fusion calculation, the real-

time update SMOS data has been rescaled to CCI to produce the new fusion data, which 

has the property of both long time series and real-time update. Before fusion, both 

SMOS and CCI data have been rescaled to the same spatial and temporal resolution. 

 

Study area 

This study verified the proposed continuous algorithm by application to an area 

of the Songnen Plain (43°36′–49°45′N, 121°27′–128°12′E), which is one of the main 

bases for grain production in Northeast China (Wang et al., 2004). The Songnen 

Plain has a temperate semihumid-semiarid continental monsoon climate (Zheng et 

al., 2015). Mean annual precipitation is 350–600 mm with 70–80% of precipitation 

occurring in June–September. The typical zonal soils are black soil and chernozem. 

The Songnen Plain is within the drainage area of the Songhua River. The Second 
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Songhua River and the Nen River merge in the center of the area to form the 

Songhua River. In recent years, mean precipitation on the Songnen Plain has 

declined and the area has suffered frequent drought disasters, especially in western 

regions. Due to its flat terrain, simple underlying surface type and wide distribution 

of farmland, this region is ideal for research on remote sensing evaluation of 

drought. The elevation of the Songnen Plain is 200– 250 m above sea level. The soil 

in this region is fertile with vast farmland and few hills. Black soil, meadow soil, 

dark-brown soil and chernozem are widely distributed in there (Jiang et al., 2016).  

Methodology 

Data fusion in this study is to rescale one data against another basic data by the 

relationship obtained from data for the overlapping period. The CDF matching 

method is the principle of establishing relationship by cumulative distribution curves 

in data fusion. The calculation error of fusion in the process of establishing the 

relationship between two curves is very important because it determines the 

accuracy of the data produced for subsequent application. Currently, the relationship 

establish algorithm is piecewise linear regression. The relational fitting curve 

constructed by piecewise might lead to large error in the fusion result. To reduce 

error and improve fusion accuracy, this study proposed a continuous relationship 

establish method in fusion of multisource remote sensing soil moisture data based on 

the CDF principle. By using this new continuous algorithm, the overlapping period 

(2010-2013) data can be used to establish the relationship between CCI and SMOS 

in each quantile of the cumulative probability distribution curve. In the absence of 

CCI soil moisture data, the relationship of each quantile can rescale real-time SMOS 

to CCI, consequently to produce a new fusion data with the property of long time 

series and real-time update. 

 

Cumulative distribution function (CDF) 

The CDF is the sum of the probabilities that a random variable falls within a 

certain interval in the sample space, and it is the integral of the probability density 

function. When plotting the integral distribution function, it is often defined as the 

integral of the histogram distribution because the real probability distribution 

function is unknown. The objective of this study is to derive an algorithm by using 

CDF principle to fuse real-time SMOS data to the benchmark long time series CCI 

remote sensing soil moisture data. This new algorithm can make the SMOS and CCI 

data having the similar distribution curves. Subsequently, a set of real-time updated 

and long-term remote sensing soil moisture data could be synthesized.  

The fusion process of soil moisture data can be expressed as follows: 

 

 ( ') ( )=c scdf x cdf x  (Eq.1) 

 

where cdfc is the CDF of the CCI soil moisture, cdfs is the CDF of the SMOS soil 

moisture, x is the soil moisture of the SMOS product and x’ is the fused SMOS soil 

moisture. In fusion computing, the closer the match of the two curves, the better the 

fusion precision and the effect. 
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Piecewise linear algorithm 

Piecewise linear regression is the commonly used correlation calculation method in 

fusion and its calculation process is shown in Figure 1. As an example, the cumulative 

probability distribution curves of the SMOS and CCI datasets were divided into 10 

segments: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. The 

correlation between their respective cumulative probability distribution curves can be 

obtained based on the linear equation of these two datasets in each segment. 

 

  

Figure 1. Schematic of piecewise linear fusion between SMOS and CCI soil moisture 

 

 

Lagrange continuous algorithm 

To improve fusion accuracy, correlation calculation algorithms of cumulative 

probability distribution curve between different data need to be further improved. This 

study proposed a Lagrange continuous algorithm to establish the relationship between 

the SMOS and CCI cumulative probability distribution curves. Between the cumulative 

probability distribution curves of the SMOS and CCI datasets, each SMOS value has a 

corresponding probability distribution value P. On the CCI curve, if a CCI value 

corresponds to this probability value P, this CCI value is used as the fused SMOS value. 

If the probability value P has no corresponding CCI value, an appropriate value is 

calculated using an interpolation method. The Lagrange equidistant interpolation 

continuous algorithm can realize continuous fusion of the SMOS and CCI data in each 

quantile on the probability distribution curve. 

Interpolation refers to the interpolation of discrete data to the continuous function, 

such that the continuous function curve passes through all data points. Interpolation can 

be used to estimate an approximation of the function at other points based on the value 

of the function at a finite point. Unary interpolation can calculate the approximate value 

at interpolation point t using the function when given the value at n equidistant nodes. 

The Lagrange interpolation polynomial was first published by Waring in 1779, 

rediscovered by Euler, and published by Lagrange in 1795 (Meyer et al., 2008; Jeffreys 

and Jeffreys, 1988). Lagrange interpolation polynomial can be expressed as follows: 
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where, lj(x) is the Lagrange basic polynomial (also called the interpolation basis 

function), which can be expressed as 
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Through Lagrange interpolation, each SMOS data element has a corresponding CCI 

value, and the CCI value obtained using this interpolation method has minimal 

deviation on the cumulative probability curve. Figure 2 shows the cumulative 

distribution curve schematic of SMOS and CCI, together with the fused SMOS (labeled 

SMOS’ in the figure) obtained using the proposed Lagrange interpolation continuous 

algorithm. It can be seen that the cumulative distribution curve of the SMOS’ data 

almost overlaps with the curve of CCI data. 

 

 

Figure 2. Schematic of Lagrange continuous fusion between SMOS and CCI soil moisture 

Continuous fusion algorithm results analysis 

Analysis of fusion data time series 

Comparison of time series of remote sensing soil moisture data before and after 

fusion can illuminate the change of scope of the remote sensing data manifest by the 

fusion algorithm. As an example, the comparison of Shuangcheng in Songnen Plain is 

presented in Figure 3. 
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Following the fusion process, the fused SMOS data (labeled SMOS’ in Fig. 3) are 

clearly closer to the CCI data distribution. The values of the SMOS data time series 

before fusion are generally lower than the CCI data values. After fusion, the soil water 

content of the SMOS data is increased, especially in months with low soil water 

content. The SMOS’ data maintain the change characteristics of the original data time 

series. And the range of data values is adjusted to a certain extent, enhancing the degree 

of similarity with the CCI data range. In the case of Shuangcheng, the SMOS data range 

of Shuangcheng changed from 13–30% to 19–35% through fusion. 

 

 

Figure 3. Soil moisture time series of SMOS, CCI and fusion SMOS data in Shuangcheng 

 

 

Comparison of cumulative probability distributions between the two fusion methods 

According to the CDF matching principle, the closer the curve of the target data to 

the cumulative probability distribution curve, the higher the fusion accuracy. Here, the 

result of the fusion of SMOS and CCI data of Shuangcheng (in Songnen Plain) is taken 

as an example for comparative analysis. The relationship between the cumulative 

probability distribution curves of the fused SMOS (labeled SMOS’ in Fig. 3) and CCI 

data fused by piecewise linear algorithm and the Lagrange continuous algorithm is 

shown in Figure 4a and b, respectively. 

 

  
a. Piecewise linear fusion method b. Lagrange interpolation fusion method 

Figure 4. Cumulative probability distributions derived using (a) piecewise linear algorithm and 

(b) Lagrange continuous algorithm in Shuangcheng 

 

 

The result of the piecewise linear fusion shows certain error in SMOS’ data, 

especially in the low-value region that is indicative of drought. This error would cause 
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loss of accuracy in real-time drought evaluation based on this fused soil moisture. The 

correlation established using the linear equation in each segment is the cause of this 

error. The result of the Lagrange continuous fusion shows the cumulative probability 

distribution curves of the SMOS’ data (fused data) and CCI data (target data) coincide 

almost exactly (Fig. 4b). The two curves retain a high degree of coincidence in the low-

value region of the curve. In terms of the cumulative probability distribution curve, the 

Lagrange continuous algorithm has higher fusion accuracy than the piecewise linear 

algorithm in fusion calculation. 

The fusion precision of the two algorithms is also assessed quantitatively assessed by 

determining the coefficient of correlation (R2) and the Nash efficiency coefficient (ENS). 

The Nash efficiency coefficient can be calculated as follows: 
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 (Eq.4) 

 

where Oi and Pi represent the CCI and SMOS’ data, respectively, and Ō is the average 

of the CCI data. The closer the value of ENS to 1, the better the degree of coincidence 

between the two results. 

The values of R2 and ENS of the two curves obtained using the piecewise linear 

algorithm were 0.98 and 0.97, respectively. And the R2 and ENS values in the low-value 

region were 0.73 and 0.52, respectively. The values of R2 and ENS of the two curves 

obtained using the Lagrange continuous algorithm were 0.99 and 0.99, respectively. 

And the R2 and ENS values in the low-value region were also 0.99 and 0.99, respectively. 

Therefore, it is evident that the Lagrange continuous algorithm improves the fusion 

precision significantly in the low-value region which be used for the characterization of 

drought. 

 

Verification of remote sensing soil moisture by drought event 

The fused SMOS data (SMOS’ data), SMOS and CCI data were also evaluated for 

accuracy of drought expression. Site observation data from six stations within the study 

area were used as the basis for quantitative evaluation of the degree of consistency 

between the remote sensing data and the site observation data in the expression of 

drought events. The in situ data comes from China crop growth and development data 

set in China meteorological data network. This dataset contains moisture data per ten-

day for 7 soil depths at each site. The surface 10 cm data was compared with the remote 

sensing data for verification. Here, as quantitative evaluation indices, hit rate (H), false 

alarm rate (F) and equitable threat score (ETS) are used to reflect the level of agreement 

of remote sensing of soil moisture with drought events (Grayson and Western, 1998). 

The higher the ETS value, higher the H value and lower the F value, the closer the level 

of agreement between the remote sensing data and drought events. The cumulative 

probability distribution of 30% is used as the threshold of the occurrence of drought 

both for remote sensing data and in situ data. 

These evaluation indices define a as the number of events when drought is shown to 

occur in both the in situ observations and the fused SMOS data, b is when drought 

occurs in the fused SMOS data but not in the in situ observations, c is when drought 

occurs in the in situ observations but not in the fused SMOS data and d is when drought 
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does not occur in either the fused SMOS data or the in situ observations. Then, H can be 

expressed as follows: 

 

 
a

=H
a b+

 (Eq.5) 

 

where the range of values of H is 0–1(1 being the best); F can be written as 

 

 =
b

F
b d+

 (Eq.6) 

 

where the range of values of F is 0–1 (0 being the best) and ETS can be expressed as 

 

 = r ef

r ef

a a
ETS

a a b c

−

− + +
 (Eq.7) 

 

where the range of values of ETS is -1/3 to 1 (1 being the best). Here, aref is expressed as 

 

 
( ) ( )
( )

=
r ef

a b a c
a

a b c d

+ +

+ + +
 (Eq.8) 

 

The drought verification of SMOS, CCI and SMOS’ data for the six sites in the study 

area is shown in Table 1. CCI (version 02.2) dataset produced by several active and 

passive remote sensing data has integrally highest hit rate and equitable threat score. 

SMOS data as a single data source has integrally lowest hit rate and equitable threat 

score. SMOS’ data is a combination of CCI and SMOS, with real-time update feature as 

with SMOS, and has significantly more accurate results for drought events verification 

than SMOS. The fused SMOS data has the characteristics of long time series and real-

time update, which achieves the purpose of fusion research in this paper. In terms of 

drought event validation, SMOS’ has a better validation effect than SMOS, indicating 

that this SMOS’ dataset can be applied to drought evaluation research. 

 
Table 1. Drought verification by in situ data 

Site 

Hit rate 

H 

False alarm 

F 

Equitable threat score 

ETS (10-2) 

SMOS CCI SMOS’ SMOS CCI SMOS’ SMOS CCI SMOS’ 

Keshan 0.31 0.69 0.38 0.27 0.14 0.26 2.26 38.16 6.00 

Fuyu 0.11 0.64 0.69 0.37 0.16 0.13 -11.28 31.08 38.82 

Hailun 0.58 0.33 0.53 0.18 0.27 0.21 25.09 3.26 19.16 

Tailai 0.33 0.57 0.43 0.07 0.19 0.23 18.6 23 11.11 

Anda 0.4 0.57 0.35 0.24 0.2 0.27 8.41 20.91 4.42 

Changling 0.35 0.5 0.25 0.28 0.22 0.31 3.67 15.88 -2.93 

Meihekou 0.18 0.55 0.36 0.33 0.19 0.28 -7.04 21.97 4.36 
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Comparison of CCI data between version 02.2 and version 04.2 

The latest version of CCI soil moisture product (v04.2) has already included the 

SMOS soil moisture. Figure 5 shows the time series comparison of two different 

version of CCI data in a county in the study area. The new version of CCI data that 

incorporates SMOS is more similar in scope to SMOS data. The time series of CCI 

(v04.2) combined dataset is form 1978 to 2016, and the timeliness limited the 

application in real-time evaluation. The fusion method proposed in this paper can 

generate near-real-time, long-sequence data products that can reflect real drought events 

more accurately than SMOS. 

 

 

Figure 5. Soil moisture time series of CCI(v02.2), CCI(v04.2), SMOS, and SMOS’ data in 

Shuangcheng 

Discussion and conclusion 

The efficacy of the application of remote sensing soil moisture data to the evaluation 

of agricultural drought is reflected mainly in the validity and accuracy of the remote 

sensing data when soil moisture is low (i.e., impending or emerging drought). Remote 

sensing data fusion technology that uses one dataset to extend a time series or to 

improve the update speed of another dataset is an important method with which to 

improve the performance of remote sensing data application. Fusion precision and the 

fusion algorithm are the primary problems associated with the application of such 

techniques to remote sensing datasets. 

The existing piecewise linear fusion method can produce certain deviation, especially 

in the low-value region of a soil moisture curve that represents the stage of impending 

or emerging drought. Such deviation could easily lead to large errors in fused data used 

in drought forecasting, which could result in the misreporting or omission of 

agricultural drought events. Adopting the fusion principle of cumulative distribution 

function matching, this study constructed a continuous fusion algorithm, based on 

which analysis of the precision of the fusion of Soil Moisture and Ocean Salinity 

(SMOS) satellite data with Climate Change Initiative (CCI) satellite data was conducted 

at county level on the Songnen Plain (Northeast China). It was demonstrated that the 

proposed Lagrange continuous fusion algorithm could improve the fusion precision of 
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multisource remote sensing data and enhance the sensitivity of remote sensing soil 

moisture data in the characterization of drought. 

Through application of the fusion algorithm, a fused CCI–SMOS remote sensing soil 

water product was generated at the county level for the Songnen Plain area. Through 

analysis of time series data before and after the fusion process, it was revealed that the 

fused SMOS data range was closer to the CCI data range than the original data, while 

the relative change mode of the original data was retained. After the in situ data 

verification, fused SMOS data has a better validation effect than SMOS. The systematic 

deviation of the fused remote sensing soil water product was reduced, while displaying 

the advantages of a long time sequence and near real-time features. The results of this 

study could provide data support for further real-time evaluation and frequency analysis 

of large-scale agricultural drought on the regional scale. Validation analysis studies 

between the other different data sources and in other regions are needed to further verify 

the availability of this new fusion method. 
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