

Virucidal activity of

"PMF-concentrate"

against the Transmissible Gastroenteritis Virus of Swine (TGEV)

(used as a model virus for the Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

Short report of the screening test S3

by

PD Dr. Olaf Thraenhart and Dr. Christian Jursch

Study time: in March 2015

Konto-Nr.: 1000 993 937 BLZ: 160 500 00 SWIFT/BIC: WELA DE D1 PMB

IBAN: DE14 1605 0000 1000 9939 37

Mittelbrandenburgische Sparkasse in Potsdam

Antivirale Validierung & Rabies

Principal: PMF Natural Products company

Arab Republic of Egypt

Product: PMF-concentrate

[Lot-no.: not specified; product sample as arrived; Arrival: 01.08.2014, Storage at 2-8°C]

Parameter of test:

• 0,75 g of PMF-concentrate solved within 2,95 mL of A. bidest (25,42% [w/v])

• $T = 37^{\circ} C$ and 60 and 240 min. of exposure

Test system:

• Transmissible Gastroenteritis Virus of Swine (TGEV); Strain: Toyama (Origin: Virusbank of the Bundesforschungsanstalt f. Viruskrankheiten der Tiere; Friedrich Löffler-Institut, Insel Riems, Germany)

• ST75/2 cells (foetal testis cells of swine) (Origin: Robert Koch-Institute, Berlin, Germany)

Test method:

- The testing was performed following the guideline of the DVV and the Robert Koch-Institute (DVV/RKI-guideline [Bundesgesundhbl. (2008); 51 (8):937-945]): for the quantitative virucidal suspension test (QST).
- With this testing virus titration of the main samples was performed according to *Lycke's* methodolgy (*Arch Ges Virusforsch* (1957); 7:483-493).

<u>Tab. 1:</u> Dosage of product (solvent: A. bidest)

Set	Product(s)	Conc. in Test (1x)	Working sol. (x 1,25)	Dosage	pH of working sol.
#1	PMF-concentrate	20,34%	25,42%	0,75 g in 2,95 mL	pH 9,54 (in test: pH 9,52)

<u>Tab. 2</u>: Results of virus inactivation

Reduction 2 (log ID ₅₀ ± K [95%])	$4,31 \pm 0,48$	> 5,50 ± 0,45	
Residual virus ¹ (log ID ₅₀ ± K [95%])	$1,80 \pm 0,34$ (43/480 virus positive cell culture units)	< 1 ID ₅₀ (0,0 lg ID ₅₀) (0/480 virus positive cell culture units)	
Detection limit (cytotoxicity level)	$< 1 \text{ ID}_{50} \ (0.0 \ lg \ ID_{50})$		
Virus input ¹ (per test volume)	$6,11 \pm 0,34$	$5,50 \pm 0,32$	
Exposure time	t = 60 min.	t = 240 min.	
Samples	Virus ina	ectivation	
Samples	1a + 1b	2a + 2b	

¹ = Calculation of 95% confidential interval of virus titer as well as virus reduction following DVV/RKI-Guideline.

 $^{^{2}}$ = Virus reduction: titer of virus control minus titer of sample (lg ID₅₀).

Antivirale Validierung & Rabies

Results: (cf. Tab. 2)

Control tests

- With S3 the amount of input virus at 37° C was estimated to $\lg ID_{50} = 6.13 \pm 0.34$ after 60 min.
- After 240 min. of incubation at 37° C virus titer was declined to $\lg ID_{50} = 5,52 \pm 0,32$ due to the influence of temperature (Δ virus titer = 0,61 ± 0,46).
- With the *Lycke's* method a sample dilution was done (VF = 1000). With that dilution no cytotoxicity was visible and the susceptibility of the detection cells was given (Δ titer = 0.18 ± 0.47).

Virus inactivation

- With 20,34% of PMF (final test concentration) and after 60 min. the virus reduction factor was estimated to $\mathbf{RF} = 4.31 \pm 0.48$.
- After the exposure time was prolonged to 240 min. no residual virus could be detected. The corresponding virus reduction factor was estimated to $RF > 5,50 \pm 0,45$.

Conclusions:

- Prolongation of the exposure at 37° C from 60 to 240 min. was associated with only a minor reduction of input virus (Δ virus titer = 0,61 ± 0,46). The test virus was sufficiently stable at the test temperature over the observation period.
- After 60 min. at 37° C the tested product PMF-concentrate in its 20,34% dilution (final concentration) inactivated *TGEV* by RF = 4,31 ± 0,48 or by 99,995% under the test conditions. After 240 min. a virus reduction factor of RF > 5,5 ± 0,45 was observed, correspondent to a virus reduction of 99,999%.

Luckenwalde, 18th of March 2015

Dr. Christian Jursch

(Laboratory manager and Managing Director of Eurovir)

Do. a. Juil

D-14943 Luckenwalde

Antivirale Validierung & Rabies

Inactivation of TGEV (a model virus for MERS-CoV) by PMF-concentrate - testing with the quantitative virucidal supension test at T = 37 °C -

- Attachment: Experimental protocols -

• Virucidal activity of the product <u>PMF-concentrate</u> - Experiment S3 at T = 37° C / testing in the *quantitative suspension test* (QST) using the methodology of Lycke for virus titration of the main samples.

The testing was performed with the *Transmissible Gastroenteritis Virus of Swine (TGEV)* which served as a model virus for the *Middle East Respiratory Syndrome Coronavirus (MERS-CoV)*.

Attachment: experimental protocol(s)

Information about the testing

Principal: PMF Natural Products company Test run: S3

Product(s):PMF-concentrateTest date:12.03.2015Test system:TGEV (Toyama) + ST75/2-cellsAnalysis:18.03.2015 (6 p.i.)

Test methodology and test parameters

Test method: quantitative virucidal suspensions test according to DVV/RKI-guideline (Version 08/08)

Test mixture: 1 VT protein load + 1 VT virus suspension + 8 VT 1,25fold working solution

Protein load: no additional protein load (PBS)

Parameter: test temperature: 37° C with the exposure time(s) of: 60 and 240 min.

Tested product sample(s)

1st product: PMF-concentrate [Product sample: as received (designation: PMF), Arrival: 01.08.2014,

Storage at 2-8° C]

Tab. 1: Weight of content

Set	Product(s)	Conc. in Test (1x)	Working sol. (x 1,25)	Dosage	pH of working sol.
#1	PMF-concentrate	20,34%	25,42%	0,75 g in 2,95 mL	pH 9,71 (in test: pH 9,69)

Tab. 2: Content of samples

	1a	1b	2a	2b			
Samples	Virus inactivation						
	Set #1 /	60 min.	Set #1 / 240 min.				
PBS	15μL	15μL	15μL	15μL			
TGEV	15μL	15μL	15μL	15μL			
PMF / Sol.	120μL	120µL	120μL	120μL			
Titration	Lycke (VF = 1000)		Lycke (VI	F = 1000)			

	3a	3b	4a	4b	5	
Samples	Virus control / 60 Min.		Virus contro	Cytotoxicity		
	W	w/o		w/o		
PBS	15µL	15µL	15µL	15µL	15µL	
TGEV	15μL	15µL	15μL	15µL		
Medium					15µL	
PBS	120µL	120μL	120μL	120μL		
PMF / Sol.					120μL	
Titration	S&K (VF = 5)		S&K (VF = 5)	Lycke (VF = 1000)	

Attachment: experimental protocol(s)

Performing of the test

- 1. Preparation of the product solution: (in the specified sequence)
- 0,75 g PMF-concentrate was solved with agitation and warming to 37°C in 2,95 mL A. bidest.
- 2. Preparation of the test samples
- Per test point (concentration/exposure time) 2 redundant test samples were prepared.
- Test mixture: 1 vol. PBS + 1 vol. virus suspension + 8 vol. PMF-working solution (1,25-fold)
- 3. Dilution of the test sample and estimation of virus titer
- *Termination of virus inactivation:* after exposure the test samples were diluted with medium (cf. virus titration).
- With the *virus control* the virus titer was estimated using the methodology of *Spearman & Kärber* with VF = 5 from 113 μ L (out of 150 μ L of the test sample).
- With the *virus inactivation samples* the virus titer was estimated using the methodology of *Lycke*. For each of the test samples (a and b) 48 μL was added to 96 mL Medium, corresponding to a dilution of VF = 1000. All of the 96 mL were then transferred to cell cultures with 200 μL per well (480 wells).

4. Susceptibility control

• Sample 5 (cytotoxicity sample) was diluted 1000fold and was then distributed to cell cultures (cf. virus inactivation). Afterwards a virus dilution serie (VK/E) was transferred to these cells.

5. Judgement of the cells / virus detection

• At day 6 p.i. the cell cultures were examined visually using a microscope (magnification: 100fold). The virus positive cell cultures were identified by the virus induced CPE).

<u>Tab. 3.1</u>: Virus control + Susceptibility control (virus titration: according to Spearman & Kärber)

Commiss	3a	3b	Ø	4a	4b	Ø	5	VK/E	
Samples	Virus control / 60 min.			Virus	Virus control / 240 min.			Susceptibility Control	
1 / -0,7	4/4 1	4/4	8/8	4/4 1	4/4	8/8	8/8	8/8	
2 / -1,4	4/4	4/4	8/8	4/4	4/4	8/8	8/8	8/8	
3 / -2,1	4/4	4/4	8/8	4/4	4/4	8/8	8/8	8/8	
4 / -2,8	4/4	4/4	8/8	4/4	4/4	8/8	8/8	8/8	
5 / -3,5	4/4	4/4	8/8	4/4	4/4	8/8	8/8	8/8	
6 / -4,2	4/4	4/4	8/8	4/4	4/4	8/8	8/8	8/8	
7 / -4,9	4/4	4/4	8/8	4/4	3/4	7/8	8/8	8/8	
8 / -5,6	3/4	4/4	7/8	2/4	2/4	4/8	4/8	3/8	
9 / -6,3	1/4	1/4	2/8	0/4	0/4	0/8	0/8	2/8	
10 / -7,0	1/4	0/4	1/8					1/8	
11 / -7,7	0/4		0/8					0/8	
ZK	0/4	0/4	0/8	0/4	0/4	0/8	0/8	0/8	
Titer/test vol. (lg ID ₅₀)	6,13	6,13	6,13	5,6	5,43	5,52	5,78 ± 0,39	5,60 ± 0,26	
Average ± CI (95%) ²	$6,13 \pm 0,34 \text{ per } 100 \mu\text{L}$ ($\approx 6,11 lg ID_{50} pro 96 \mu\text{L}$)		$5,52 \pm 0,32 \text{ per } 100 \mu\text{L}$ ($\approx 5,50 lg ID_{50} pro 96 \mu\text{L}$)		RF = 0,1	$8 \pm 0,47$			
Reduction ³ lg ID ₅₀ ± CI [95%]			0,61 ± 0,46			ceptible:			

¹ = number of virus positive cell culture units to total number of cell culture units

² = Calculation of 95% confidental intervall of virus titer as well as virus reduction following DVV/RKI-Guideline.

 $^{^{3}}$ = Virus reduction: titer of virus control minus titer of sample (lg ID₅₀).

⁴ = Susceptibility of the detection cells is to be assumed when Δ virus titer is ≤ lg 0,5 [DVV/RKI-Guideline].

<u>Tab. 3.2</u>: Virus inactivation (virus titration: according to Lycke)

	1a + 1b	2a + 2b			
Samples	Virus inactivation ($VF = 1000$)				
	Set #1 / 60 min.	Set #1 / 240 min.			
analysed sample vol.	$2 \times 48 = 96 \mu\text{L}$	$2 \times 48 = 96 \mu\text{L}$			
Cell culture units	480	480			
Virus positive	43	0			
Ratio p ²	0,0896	0,0			
Residual virus (lg ID50 per 96 µL)	$1,80 \pm 0,34$	< 1 ID ₅₀ (0,0 lg ID ₅₀)			
Virus input (lg ID50 per 96 μL)	$6,11 \pm 0,34$	$5,50 \pm 0,32$			
Reduction ³ (lg ID ₅₀ ±CI [95%])	4,31 ± 0,48	> 5,50 ± 0,45			

 $^{^{1}}$ = sample volume transferred onto cell cultures: 48 μ L from test mix a. plus 48 μ L from test mix b. resulting in 2 x 48 = 96 μ L

Estimation of virus titer by LYCKE's method (Arch Ges Virusforsch (1957); 7:483-493)

Calculation of virus titer by using the following formula:

- $ID_{50} = [1,4 \text{ x ln } (1-p)]$ p = ratio of positive cell cultures to total number of cell cultures

• Example: 51 out of 100 cell culture units was virus positive $\rightarrow p = 51/100 = 0.51$

p put into formula: $-ID_{50} = [1,4 \times ln (1-0,51)]$

with $\ln (0.49)$: $- \text{ID}_{50} = 1.4 \text{ x } -0.71$

resulting in: $-ID_{50} = -0.998$ or $ID_{50} = 0.998$

That means that per single cell culture unit 0,998 or 1 ID₅₀ of residual virus was present.

When this content of virus was multiplied with the number of cell culture units (= 100) the complete amount of residual virus was obtained: $1,0 \text{ ID}_{50} \times 100 = 100 \text{ ID}_{50}$ or $1 \text{g ID}_{50} = 2,0$

Result of the example: the total quantity of residual virus which was present in the examined sample of liquid was estimated to $\lg ID_{50} = 2,0$

² = ratio of virus positive cell culture units to total number of cell cultures.

 $^{^{3}}$ = Virus reduction: titer of virus control (cf. Tab. 3.1) minus titer of sample (lg ID₅₀)

Attachment: experimental protocol(s)

Materials and reagents used:

• Testvirus

Test virus	Transmissible Gastroenteritis Virus of Swine (TGEV)
Strain	Toyama 36
Origin	Virusbank der BFA f. Viruskrankheiten der Tiere; Friedrich Löffler-Institut, Insel Riems Virus (lyophilisate) v. 05/2003; kindly provided by Dr. M. Dauber (Virus passage FLI +0)
Virus material used in test	Supernatant from infected cell culture, Virus propagation TGEV-12 v. 16.02.2015; Set #1 Virus passage: FLI +12;

Cells

Cells	ST75/2 cells (foetal testis cells of swine)
Origin	Robert Koch-Institut, Berlin Cells reveived 03/2002 in frozen condition (1 Ampoule; v. 13.02.1996); corresponding to cell passage RKI +0
Cell passage used in test	RKI + 3 / + 15

• Additional material and reagents

Material	Supplier	Order No.	Lot	Expiry date
DMEM	Biochrom	F 0435	1006 C	11/2015
Glutamine	Biochrom	chrom K 0283		08/2016
Pen./Strept.	Biochrom	A 2213	0627 C	05/2017
FCS	Biochrom	S 0210	0677 B	06/2019
PBS Biochrom		L 1820	0743 C	07/2017
Trypsin Invitrogen		25300-096	1437736	09/2015

• Performing of the experiment and responsibilities

Part of experiment	Performed by (position)
Supervision	Dr. Ch. Jursch (Laborleiter)
Control of product input	Fr. S. Sachs (Biologielaborantin) und Dr. Ch. Jursch (Laborleiter)
Performing the test	Fr. S. Sachs (Biologielaborantin)
Cell culturing	Fr. S. Sachs (Biologielaborantin)
Reading of cells & Raw data	Dr. Ch. Jursch (Laborleiter)
Data input & Analysis	Dr. Ch. Jursch (Laborleiter)
Protocol preparation	Dr. Ch. Jursch (Laborleiter)