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Introduction

Socio-economic development can impact 
on land-use change process in many ways 
(Lambin, E.F. and Meyfroidt, P. 2010). In de-
veloping countries, the process of urbaniza-
tion and the shift of socio-economic develop-
ment policies, such as from agriculture-based 
to industry-oriented economy, lead to high 
land-use demand (Nourqolipour, R. et al. 
2016). As a result, the land-use transition is 
intense. Much of the transition in this context 
has been from natural and semi-natural to 
artificial landscapes. In recent years, due to 
population growth and urbanization, land-

use change has taken place strongly in the 
vicinity of existing urban areas and in the 
key economic development zones in Viet-
nam (Truong, N.C.Q. et al. 2018; Ha, T.V.  
et al. 2020; Nguyen, Q. and Kim, D.-C. 2020).

For example, in Binh Duong province, 
which is in the neighbourhood of the largest 
metropolis of Vietnam, and in the southern 
key economic zone, urbanization and indus-
trialization have taken place very strongly in 
the last 25 years (Le, V.H. 2019; Le, V.N. et al. 
2019). As a result, a large amount of agricul-
tural land has been converted into industrial 
zones and urban areas. This type of conver-
sion is still ongoing.
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Abstract

The main purpose of this study is to simulate future land use up to 2030 and to evaluate the change in landscape 
pattern due to land-use change from 1995 to 2030 in Binh Duong province, Vietnam. Land-use maps generated 
from multi-temporal Landsat images from 1995 to 2020 and various physical and social driving variables were 
used as inputs. Markov chain and Decision Forest algorithm integrated in Land Change Modeler applica-
tion of IDRISI software were used to predict quantity and location of future land-use allocation. Meanwhile, 
FRAGSTATS software was used to calculate landscape metrics at class and landscape levels. The simulation 
results showed that there will be 253.8 km2 of agricultural land urbanized in the period from 2020 to 2030. 
The urban areas will gradually expand from the edge of the existing zones and fill the newly planned areas 
from South to North and Northeast of the province. The results also revealed that the studied landscape was 
decreasing in dominance and increasing diversity and heterogeneity at landscape level. The processes of 
dispersion and aggregation were taking place at the same time in the entire landscape and in the urban class. 
Meanwhile, the classes of agriculture, mining, and greenspace were increasingly dispersed, but the shape of 
patches was becoming more regular. The water class increased the dispersion and the irregularity of the patch 
shape. Finally, the landscape metrics of the unused land fluctuated over time.
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Land-use change affects landscape patterns 
and, as a result, ecosystem functions (Lin, 
T. et al. 2013; Estoque, R.C. and Murayama, 
Y. 2016; Tolessa, T. et al. 2017; Kertész, Á. 
and Křeček, J. 2019; Tang, J. et al. 2020). 
Therefore, quantification of changes in 
landscape patterns, including shape, size, 
and spatial distribution, is essential, espe-
cially where land-use change is dramatic, 
such as in emerging urban areas. The quan-
tification facilitates comparison and assess-
ment of landscape change during past and 
future land-use change. At the same time, 
it can also partly reveal the impact trend 
of land-use changes on the structure and 
function of diverse types of landscapes and 
ecosystems. This information may be use-
ful for decision-making and land-use plan-
ning toward efficient use of resources and 
sustainable development (Vaz, E. et al. 2014; 
Abdolalizadeh, Z. et al. 2019). The landscape 
pattern change is often assessed by land-
scape metrics at the three levels including 
patch, class, and landscape (Turner, M.G. 
and Gardner, R.H. 2015; Gergel, S.E. and 
Turner, M.G. 2017; Gudmann, A. et al. 2020). 

To calculate landscape metrics, land-use 
maps are often used as input. The maps in the 
past can be generated by historical geodetic 
measurement and administrative land-change 
records over the years. Another fast and effec-
tive method that is widely applied is to inter-
pret from remote sensing images (Rahman, 
M.T. 2016; Zhang, B. et al. 2017; Singh, S.K.  
et al. 2018). Although the use of remote sens-
ing images to create land-use maps has some 
limitations such as resolution, classification al-
gorithms, the ability to distinguish land use, 
etc., this is still a useful approach due to its 
promptness and proactivity. Meanwhile, fu-
ture land-use maps can be collected from land-
use planning maps or from simulation based 
on past variability trends and future demand 
in terms of quantity and spatio-temporal dis-
tribution (Zheng, H.W. et al. 2015; Saxena, A. 
and Jat, M.K. 2019; Yin, L. et al. 2021).

There are many models developed for 
land-change simulation, such as CLUE-S, 
CLUMondo, Land Change Modeler (LCM), 

LucSim, DinamicaEGO, SLEUTH, etc. Each 
model has its own pros and cons, and the 
choice of model to use depends on the goals 
and the available data of the study (Camacho 
Olmedo, M.T. et al. 2018). LCM is one of the 
popular applications used to assess and sim-
ulate land-use change. The advantage of this 
application is that it is simple to use, easy to 
set up input parameters, has clear instruc-
tions, and many simulation algorithms are 
integrated. Many studies have used this ap-
plication for land-use change prediction for 
various purposes (Megahed, Y. et al. 2015; 
Nor, A.N.M. et al. 2017; Islam, K. et al. 2018; 
Mishra, V.N. et al. 2018).

With the mentioned issues in mind, this 
study was carried out for two main purpos-
es including (1) Using LCM to simulate the 
future land use in Binh Duong province in 
2025 and 2030, and (2) Quantification and 
evaluation of landscape change due to land-
use change from 1995 to 2020 and forecast 
to 2030.

Materials and methods

Study area

This study was conducted in Binh Duong 
province which located in the southeast 
region of Vietnam (Figure 1). The land-use 
change in the province took place dramati-
cally from 1997 when the province was re-es-
tablished. Agricultural land and unused land 
were converted to other uses, most of which 
were devoted to expanding residential and 
industrial areas. These changes were mainly 
due to socio-economic factors including ur-
banization, industrialization, and structural 
changes in agricultural production, and re-
lated policies (Le, V.H. 2019; Le, V.N. et al. 
2019; Bui, D.H. and Mucsi, L. 2022).

Data

This study used the land-use maps in 1995, 
2001, 2005, 2010, 2015, and 2020 which were 
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generated from multi-temporal Landsat im-
ages from the study of Bui, D.H. and Mucsi, 
L. (2022). The map was in the WGS-84 UTM 
48N projection and a spatial resolution 
of 30 m and consisted of 8 land-use types  
(Table 1). The overall accuracy of these maps 
was reported to be 89.2, 88.9, 89.6, 90.8, 93.0, 
and 90.1 percent, respectively. The produc-
er’s accuracy ranged from 70.8 to 100 percent, 
while the user’s accuracy ranged from 70.9 
to 100 percent. Therefore, it is appropriate 
and dependable to use them for land-change 
prediction and landscape analysis.

To explore the drivers for the land-use 
change, which was a key step for the sim-
ulation model of land-use change, several 

kinds of data were collected and pre-pro-
cessed. SRTM 1 Arc-Second 30m digital ele-
vation model (DEM) was downloaded from 
the website https://earthexplorer.usgs.gov/. 
Slope and aspect were extracted from the 
DEM. Population density raster data were 
downloaded from the website https://www.
worldpop.org/ with a spatial resolution of 
100 m. A raster of the mean population den-
sity in the period of 2010–2020 was calculated 
and resampled to a 30-m spatial resolution 
using bilinear method. All these raster data 
were pre-projected to WGS-84 UTM 48N. In 
addition, open water surfaces were extracted 
from the Open Street Map project (https://
www.openstreetmap.org/) and downloaded 

Fig. 1. Study area in two maps. a = Composite from Landsat-8 OLI image (RGB: 6-5-2) acquired on 06/01/2020 
and downloaded from the USGS website (https://earthexplorer.usgs.gov/); b = Land-use map in 2020 derived 

from the study of Bui, D.H. and Mucsi, L. 2022.

Table 1. Land use categories

ID Original land use class New class for Land Change Modeler New ID
1
2
3
4
5
6
7
8

Unused land
Industry and commerce
Recreation and greenspace
Mixed residence
Mining site
Agriculture with annual plants
Agriculture with perennial plants
Water surface

Agricultural land
Industry and commerce
Others
Mixed residence
Others
Agricultural land
Agricultural land
Others

1
2
3
4
3
1
1
3

https://earthexplorer.usgs.gov/
https://www.worldpop.org/
https://www.worldpop.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://earthexplorer.usgs.gov/
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from the website https://download.geofabrik.
de/. Forest protection areas and planned in-
dustrial parks for 2020 and 2030 were extract-
ed from the planning map of the provincial 
government. The 3-level main road network 
was extracted from the administrative map 
in 2014 and modified based on the Google 
satellite images. 

The location points of the administrative 
and economic centre of the province and 
districts (hereinafter referred to as prov-
ince centre and district centres, respective-
ly), airport, train stations, and river ports 
were manually digitalized based on the 
Google satellite images. All these data were 
collected in vector format. Therefore, they 
were rasterized to a spatial resolution of 30 
m and a projection of WGS-84 UTM 48N. 
After that, the maps of Euclidean distance to 
the open water surfaces, planned industrial 
parks, main roads, province centre, district 
centres, and transportation ports were ex-
tracted in turns. Furthermore, based on the 
land-use maps, the map of Euclidean dis-
tance to current residential and industrial 
areas in 2001 and 2020 was also produced, 
respectively.

Land-use change prediction

This study tended to simulate the land use 
of the study area in 2025 and 2030 based on 
the land-use maps of previous periods and 
land-use change drivers. We only focused on 
simulating the transition from agricultural 
land to urban land, which was the major 
transition taking place in recent years. The 
land-used maps were re-classed from eight 
to four categories as shown in Table 1. It 
should be noted that the two urban classes 
were not grouped together because their ex-
pansion was driven by varied factors. As a 
result, the transition from agricultural land 
to urban land would be included two sub-
models. One was the transition from agri-
cultural land to industrial and commercial 
regions (agri_to_indus), and the another 
was the transition from agricultural land to 

mixed residential areas (agri_to_resid). Other 
conversion types were ignored. 

The LCM application integrated in the 
Terrset IDRISI 2020 software was used. The 
simulation process consists of calibration, 
validation, and prediction. The overall pro-
cess is illustrated in the Figure 2. The LCM 
includes six algorithm options for simula-
tion, including Multi-layer Perceptron neural 
network, Decision Forest (DF), Logistic re-
gression, Support Vector Machine, Weighted 
Normalized Likelihoods, and SimWeight. 
After some trials, the DF algorithm was 
chosen. The number of trees was set at 100, 
and the number of variables at split was the 
square root of a number of input variables.

At the calibration phase, the land-use 
maps of 2001 and 2010 were used as the ear-
lier and later maps, respectively, combined 
with a set of variables to build the model. 
The purpose of these phases was to select 
appropriate variables as drivers for the land-
use change transitions. The variable selection 
was based on the Out of bag (OOB) accuracy 
in the output report of the transition sub-
models. If the OOB accuracy when holding 
a given variable constant was greater than 
OOB accuracy with all variables, it means 
that the given variable might not be signifi-
cant in the model (Eastman, J.R. 2020a), and 
it was excluded. At the validation phase, the 
predicted map in 2020 was simulated and 
compared with the reality map in 2020 to 
validate the model. The performance of the 
model was evaluated by the Kappa coeffi-
cients (Pontius, R.G. 2000; Hagen, A. 2002, 
2003; Hagen-Zanker, A. et al. 2005), and 
Figure of merit (FoM) (Pontius, R.G. et al. 
2008) for the hard-classification and the area 
under the curve (AUC) (Mas, J.F. 2018) for 
the soft-classification outputs.

After the performance of the model was 
confirmed and satisfied, the prediction phase 
was performed. In this phase, the land-use 
maps in 2015 and 2020 were used as input to 
predict the maps in 2025 and 2030 with the 
same set of drivers selected at the calibration 
and validation phases. The reason to use the 
maps 2015 and 2020 was that the urban area 

https://download.geofabrik.de/
https://download.geofabrik.de/
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in Binh Duong province has expanded at an 
increasing rate from 1995 to 2020 (Bui, D.H. 
and Mucsi, L. 2022), therefore, the two lat-
est maps used may capture the most recent 
trend of urban expansion. This may more 
accurately reflect future land-use demand 
for the simulation. The land-use demand 
was calculated based on the Markov chain 
with the assumption that future conversion 
would be at a similar rate to the current peri-
od (Zheng, H.W. et al. 2015). This calculation 
was built-in into LCM. The LCM also allows 
setting constraints and incentives for a par-
ticular type of conversion. The weights for 
these regions can be set between in a range 
of 0 to 1, where 0 is strictly forbidden and 1 

is strongly encouraged. In this study, the pro-
tection forest was considered the prohibited 
area for both types of urbanization (weight 
of 0). For the agri_to_indus sub-model, it was 
encouraged to develop inside the planned 
industrial parks with a weight of 1, and 
the rest was set to a weight of 0.1. For the 
agri_to_resid sub-model, the weights were 
set to 1 and 0 for areas outside and inside the 
planned industrial parks, respectively.

After the prediction phases, the 4-class pre-
dicted maps in 2025 and 2030 were overlaid 
with the land-use map in 2020 (8 classes) to 
generate the 8-class land-use maps in 2025 
and 2030, which would be used for calculat-
ing landscape metrics.

Fig. 2. Simulation process
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Landscape metrics

To measure the change in landscape pat-
terns over time, this study used landscape 
metrics (McGarigal, K. et al. 2012; Turner, 
M.G. and Gardner, R.H. 2015; Gergel, S.E. 
and Turner, M.G. 2017) at landscape and 
class levels. Because the mixed residential, 
industrial, and commercial areas formed the 
urban landscape, they were re-classed into a 
common class named urban. From the land-
use maps, landscape metrics were calculated 
in FRAGSTATS 4.2 software based on the 
eight-cell neighbour rule (McGarigal, K. 
et al. 2012). The metrics were chosen so that 
they were representative of the features of 
the landscape, were not redundant, and have 
been widely and effectively used in previous 
studies (Su, S. et al. 2014; Dadashpoor, H.  
et al. 2019). The features measured included 
dominance, diversity, and fragmentation. The 
selected metrics is shown in Table 2, and a de-
tailed definition and description of the met-
rics can be found in the FRAGSTATS Manual 
document (McGarigal, K. et al. 2012).

Results

Simulation of land-use change in future

Driving factors

Based on the results of the analysis of OBB 
accuracy in the DF outputs, the drivers in-

cluded in the two sub-models are presented 
in Table 3. The drivers included in these sub-
models are reasonable. A common point of 
both sub-models is that natural factors re-
lated to topography (DEM, slope, aspect) do 
not affect urbanization. Possibly because the 
terrain of the whole area is relatively flat, ex-
cept for a few low-mountain areas within the 
protected area, the weighting of these factors 
is likely to be the same in most places. The 
impact of other drivers of each sub-model 
was explained in detail below.

For the agri_to_resid sub-model, the in-
cluded drivers can be explained by the fol-
lowing reasons. First, the new settlements are 
often formed from the edge of existing neigh-
bourhoods. Second, the more populous the 
places, the higher the demand for housing 
and utilities. Third, the choice of housing also 
depends on the accessibility to utility servic-
es, which are often concentrated in the cen-
tral areas of the province and districts. Last, 
to access these facilities as well as workplac-
es, accessibility to the transportation network 
is clearly an influencing factor. Meanwhile, 
the excluded factors may be due to several 
reasons. According to the general develop-
ment orientation of the province, residential 
areas are formed close to industrial zones, 
which make up industrial – urban – service 
complexes, thus, making the distance to the 
existing industrial park redundant. Except 
for Tan Son Nhat Airport, the rest of ports 
(train stations and river harbours) are cargo 
stations, not passenger stations, so it has no 

Table 2. Landscape metrics used

Metric Name
Level used

Landscape Class
AREA_MN
CONTAG
IJI
LPI
LSI
NP
PD
PLAND
SHDI
SHEI

Mean Patch Size
Contagion Index
Interspersion and Juxtaposition Index
Largest Patch Index
Landscape Shape Index
Number of Patches
Patch Density
Percentage of Landscape
Shannon’s Diversity Index
Shannon’s Evenness Index

x
x
x
x
x
x
–
–
x
x

x
–
x
x
x
x
x
x
–
–
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impact. The distance to the water source is 
not included probably because residential 
areas mainly use water from boreholes or 
water supply systems, which are relatively 
well distributed in urban areas.

Similarly, for the sub-model of agri_to_indus, 
the impact of included drivers can be explained 
as follow. First, new factories tend to form near 
previously developed places where infrastruc-
ture already exists. Second, the selection of sites 
within or near planned industrial zones is also 
to take advantage of the planned infrastructure 
and preferential policies from the provincial 
government. Third, reducing the distance to dis-
trict centres and ports can increase market ac-
cess and reduces transportation costs. Last, the 
ability to access water is probably to serve the 
needs of exploiting water resources for produc-
tion activities. Meanwhile, the excluded driv-
ers can be explained by some reasons. Similar 
to the case of the agri_to_resid sub-model, the 
distance to the existing residential areas is re-
dundant. Distance to the province centre is also 
redundant compared to the distance to district 
centres. Besides, population density does not 
affect industrial development, maybe because 
of convenient transportation, people can go to 
work farther, so it is not necessary to form facto-
ries near densely populated areas to utilize hu-
man resources. Interestingly, the distance trav-
elled does not affect the model either. Maybe 
because the current transport system has de-

veloped relatively widely, and the planning of 
new industrial zones also leads to the expansion 
of the transport network to access these zones. 
Therefore, this variable has no effect.

The performance of selected models

Four different maps of the study area (reality 
map, hard prediction map, soft prediction 
map and cross-validation map in 2020) are 
illustrated in Figure 3.

For hard prediction, the Kappa coefficients 
and FoM were used to evaluate the accuracy 
of the predicted map in 2020 and thereby vali-
date the performance of the selected model. 
The results showed that Kappa, Kappa loca-
tion, and Kappa histogram coefficients reached 
0.71, 0.72, and 0.99, respectively. The simulated 
map contained the percentages of hits, null 
successes, misses, and false alarms of 3.77, 
87.75, 4.54, and 3.94 percent, respectively. As 
a result, the FoM achieved 30.77 percent, pro-
ducer’s accuracy achieved 41.71 percent, and 
user’s accuracy achieved 48.88 percent.

It can be seen that these values were rela-
tively low. An important source of error was 
that the hard classification result was only one 
outcome in many equally plausible scenarios 
(Eastman, J.R. 2020b). Therefore, it was dif-
ficult to predict exactly the location in terms 
of pixel-level where the change would take 

Table 3. Drivers for sub-models

No Input drivers
Selected drivers by Decision Forest algorithm

Agri_to_resid Agri_to_indus

1
2
3
4
5
6
7
8
9
10
11
12

DEM
Slope
Aspect

– –

Distance to

water sources
province centre
district centres
existing residential areas
existing industrial areas
planned industrial zones
main road
ports

–
x
x
x
–
–
x
–

x
–
x
–
x
x
–
x

Mean population density in 2010–2020 x –
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place. As can be seen visually, the hits, false 
alarms, and misses tended to occur in the same 
location in close proximity. This revealed that 
predicting the location of the change was 
relatively accurate. For 2-dimensional assess-
ment, when validating by fuzzy Kappa us-
ing the exponential decay function (radius of 
neighbourhood = 4, halving distance = 2), the 
fuzzy Kappa value reached 0.77 and the aver-
age similarity achieved 0.94, which is much 

better than the traditional kappa coefficients. 
In addition, for 3-dimensional assessment, ac-
cording to Pontius, R.G. et al. (2008), the FoM 
is proportional to net changes in the study 
area. In this study, the actual rate of change 
from agricultural land to urban in the period 
2010–2020 accounted for 4.32 percent of the en-
tire area and 8.52 percent of the total agricul-
tural area in 2010. The calculated FoM value 
was relatively high compared to these rates. 

Fig. 3. Reality map (a), hard-prediction map (b), soft-prediction map (c), and cross-validation map (d)
for the study area in 2020.
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Furthermore, Peng, K. et al. (2020) mentioned 
that “the spatial allocation algorithm cannot 
well simulate the isolated patches that newly 
emerged”. Last but not least, the FoM value in 
this study was higher than that in other stud-
ies, where the FoM was less than 20 percent 
(Megahed, Y. et al. 2015; Peng, K. et al. 2020).

The soft prediction result was validated 
by the AUC. The AUC is an index used to 
evaluate “how well a continuous surface pre-
dicts the locations given the distribution of 
a Boolean variable” (Eastman, J.R. 2020b), 
and it was calculated from the receiver op-
erator characteristic (ROC). The AUC value 
ranges from 0.5 (bad model) to 1 (perfect 
model) (Estoque, R.C. and Murayama, Y. 
2016; Peng, K. et al. 2020). The AUC in our 
model reached 0.96, which validated that the 
model could simulate potential areas for ur-
ban expansion from agricultural land with 
high accuracy.

Predicted maps and land-use change in 
2025 and 2030

The simulation results gave that a total of 
126.9 km2 and 253.8 km2 of agricultural land 
are expected to urbanize by 2025 and 2030, 
respectively. Specifically, residential areas 
may expand to 309.3 km2 in 2025 and 395.9 
km2 in 2030, corresponding to an increase of 
86.5 km2 (138.8%) and 173.1 km2 (177.7%), 
respectively, compared to 2020. The residen-
tial development is still concentrated in the 
South of the province and around the centre 
of the districts, where the infrastructure for 
development is an advantage. Meanwhile, 
the area of industrial and commercial zones 
may reach 150.4 km2 in 2025 and 190.8 km2 
in 2030, corresponding to an increase of  
40.4 km2 (136.7%) and 80.8 km2 (173.4%), re-
spectively, compared to 2020. The new fac-
tories are going to fill the existing industrial 
parks and expand to the new planned indus-
trial zones in the North and Northeast. 

Corresponding to this urban expansion, 
from 2020 to 2025, perennial cropland, un-
used land, and annual cropland may be de-

creased by 77.8 km2, 40.7 km2, and 8.4 km2, 
corresponding to a decline of 4.0, 16.4, and 
9.4 percent, respectively, compared to 2020. 
Meanwhile, by 2030, these land-use types 
may be decreased by a total of 168.8 km2,  
67 km2, and 18 km2, corresponding to a de-
cline of 8.8, 27.0, and 20.3 percent, respective-
ly, compared to 2020. The predicted land use 
in 2025 and 2030 are illustrated in Figure 4. 

Landscape pattern change

Landscape level

The trends of the landscape indices at the 
landscape level are shown in Figure 5. Land-
scape change was analysed according to 
dominance, diversity, and fragmentation.

Dominance: The dominance in the stud-
ied landscape was revealed by the LPI and 
SHEI. LPI increased in the period 1995–2010, 
then decreased in the period 2010–2020. It 
was also predicted to continuously decrease 
sharply in the period 2020–2030. Meanwhile, 
the SHEI decreased during the period  
1995–2001 but increased continuously from 
2001 to 2020 and was expected to continue 
to increase until 2030. The overall trend 
for LPI was to decrease while SHEI was to 
increase over the entire study period. This 
showed that although there was still a high 
dominance of a class in the landscape (in this 
case, the woodland), the area proportion of 
the classes was tending towards a more uni-
form distribution. In other words, there is a 
trend of transitioning from a landscape with 
only one dominant land-use type to a mixed 
landscape with many different land uses 
(Weng, Y.C. 2007). 

Diversity: Landscape diversity was reflect-
ed by the SHDI, which tended to increase 
over the study period. Of which, the SHDI 
decreased in the period 1995–2001, increased 
continuously in the period 2001–2020, and 
was forecasted to continue to increase until 
2030. This indicated an increase in diversity, 
which also means heterogeneity, in the land-
scape.
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Fragmentation: The results showed an in-
creasing trend of AREA_MN and IJI and a 
decreasing trend of NP, CONTAG, and LSI. 
NP and AREA_MN were the two indices that 
had an opposing trend and represented the 
characteristics of the land-use transforma-
tion in the study area, which had both dis-
persion and aggregation processes. When the 
landscape was fragmented, new fragments 
were formed (NP increased), and the average 
area of fragments decreased (AREA_MN de-
creased). But as these individual patches were 
gradually expanded, and clumped together 
into a larger patch, NP would be decreased 
and AREA_MN would be increased. The 
increasing trend of AREA_MN and decreas-
ing trend of NP in the whole study period 
revealed that the aggregation process may 
be probably stronger, especially from 2020 to 
2030. An increase in the IJI indicated that the 
landscape was more dispersion. However, 
this trend only took place strongly in the 
period 2001–2015, which most influenced 

the overall trend, while in other periods the 
increase was insignificant. A decrease in the 
CONTAG indicated a slight decrease in the 
degree of aggregation and infectivity between 
regions of the same class, i.e., an increase in 
the degree of interlacing, while a decrease in 
LSI revealed that structure fragments become 
less irregular and less complex.

In general, the results showed that the in-
dices have a fluctuation over time, and the 
fragmentation of the landscape still existed 
in parallel with the aggregation, but the ag-
gregation was somewhat stronger. This can 
be largely attributed to the strong transition 
from crops to woody land from 1995 to 2005, 
and then urban expansion in later stages, 
when urban areas formed separately at first 
were gradually expanded and became more 
interconnected, forming more compact re-
gions with more regular shapes. In addition, 
part of this may also be because the predic-
tion was only interested in the transition 
from agricultural land to urban.

Fig. 4. Predicted land use in 2025 (left) and in 2030 (right)
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Fig. 5. Landscape metrics calculated at landscape level. LPI = Largest Patch Index; SHEI = Shannon’s Evenness 
Index; SHDI = Shannon’s Diversity Index; NP = Number of Patches; IJI = Interspersion and Juxtaposition Index; 

AREA_MN = Mean Patch Size; CONTAG = Contagion Index; LSI = Landscape Shape Index

Class level

The calculation results of the class-level met-
rics are presented in Table 4.

Agriculture with perennial plants (AP): The 
PLAND and LPI of AP increased between 
1995 and 2010, decreased between 2010 and 
2020, and were expected to continue to de-
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Table 4. Landscape metrics calculated at class level
Land-use type Year PLAND NP PD LPI LSI AREA_MN IJI

Agriculture 
with perennial 
plants

1995
2001
2005
2010
2015
2020
2025
2030

70.52
75.64
75.51
77.13
75.29
71.52
68.62
65.24

3,472
2,834
3,383
2,832
2,728
3,310
3,520
3,122

1.29
1.05
1.26
1.05
1.01
1.23
1.31
1.16

57.91
60.91
72.07
72.55
70.91
66.94
58.55
28.82

71.20
60.79
64.28
44.99
43.41
54.20
52.97
49.26

54.69
71.86
60.10
73.32
74.31
58.17
52.49
56.27

37.08
32.49
47.87
66.77
71.27
73.36
72.48
72.36

Agriculture 
with annual 
plants

1995
2001
2005
2010
2015
2020
2025
2030

20.20
17.98
13.09
5.49
3.69
3.29
2.98
2.62

10,238
11,060
14,550
8,519
5,853
5,482
5,024
4,458

3.80
4.11
5.40
3.16
2.17
2.04
1.87
1.66

2.16
2.12
0.78
0.47
0.21
0.14
0.14
0.14

113.30
119.89
129.10
93.41
73.99
69.11
66.74
63.01

5.31
4.38
2.42
1.74
1.70
1.62
1.60
1.58

31.78
29.78
39.67
45.32
52.95
50.53
53.45
54.19

Urban

1995
2001
2005
2010
2015
2020
2025
2030

0.19
0.95
2.50
4.77
7.39

12.36
17.07
21.79

381
787

1,128
2,633
2,949
4,514
3,779
2,874

0.14
0.29
0.42
0.98
1.10
1.68
1.40
1.07

0.03
0.14
1.90
2.84
4.63
8.24

12.34
17.22

21.54
33.34
38.66
55.96
56.56
70.90
62.17
49.90

1.34
3.27
5.97
4.88
6.75
7.37

12.16
20.41

63.72
63.33
66.03
58.14
63.28
58.48
59.66
61.28

Mining site

1995
2001
2005
2010
2015
2020
2025
2030

0.04
0.05
0.11
0.16
0.22
0.25
0.25
0.25

28
39
17
34
26
27
27
27

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.06
0.04
0.10
0.09
0.09
0.09

7.74
8.55
6.83
7.07
7.12
8.21
8.21
8.21

4.17
3.63

17.87
12.51
22.73
25.16
25.16
25.16

51.16
63.53
74.70
79.77
83.54
86.22
86.36
86.10

Recreation and 
green space

1995
2001
2005
2010
2015
2020
2025
2030

0.02
0.04
0.03
0.19
0.30
0.45
0.45
0.45

25
67

106
347
804

1,291
1,291
1,291

0.01
0.02
0.04
0.13
0.30
0.48
0.48
0.48

0.01
0.03
0.02
0.09
0.09
0.09
0.09
0.09

4.07
6.41
6.84

11.42
20.79
28.50
28.50
28.50

1.81
1.55
0.79
1.45
1.02
0.94
0.94
0.94

64.62
72.27
77.29
77.48
72.71
68.84
61.69
56.19

Water surface

1995
2001
2005
2010
2015
2020
2025
2030

2.38
2.61
2.30
2.96
2.97
2.91
2.91
2.91

458
593
554
708
729
887
887
887

0.17
0.22
0.21
0.26
0.27
0.33
0.33
0.33

1.55
1.64
1.33
1.64
1.55
1.47
1.47
1.47

25.50
28.38
29.73
33.65
34.57
36.80
36.80
36.80

14.02
11.83
11.20
11.26
10.97
8.83
8.83
8.83

33.12
37.75
52.99
54.51
56.80
63.31
65.51
66.93

Unused land

1995
2001
2005
2010
2015
2020
2025
2030

6.64
2.73
6.45
9.30

10.13
9.22
7.71
6.73

6,346
4,360
7,324
6,595
7,152
8,616
7,397
6,340

2.36
1.62
2.72
2.45
2.66
3.20
2.75
2.35

0.24
0.10
0.29
1.15
1.63
0.79
0.79
0.51

87.63
70.75
90.14
86.88
85.72
90.33
83.81
76.58

2.82
1.68
2.37
3.80
3.81
2.88
2.81
2.86

38.99
55.99
50.55
58.98
54.59
50.84
49.47
47.92
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cline until 2030, while the NP and AREA_
MN fluctuated. The PLAND always account-
ed for the largest proportion in the landscape 
(over 65%), and the LPI and AREA_MN were 
also much higher than the rest classes, while 
its NP is smaller than that of agriculture with 
annual plants (AA), and unused land (UL). 
It showed that AP was the dominant class 
in terms of the area and size of the patches. 
Since 2010, there has been a trend of gradu-
ally decreasing dominance and increasing 
dispersion (PLAND, LPI, and AREA_MN 
decreased, and NP and IJI increased), but 
the degree of dominance and aggregation 
was still high, and the shape of the patch 
was gradually less complex (LSI decreased).

Agriculture with annual plants: The PLAND 
of AA was steadily decreasing from about 
20.0 percent in 1995 to 3.29 percent in 2020 
and to 2.62 percent in 2030. Its LPI, AREA_
MN, and NP showed a strong downward 
trend. The NP was reduced but still high-
er than the rest classes except for the UL. 
Meanwhile, the IJI increased, and LSI de-
creased. This showed that AA was increas-
ingly decreasing in area, and at the same 
time, the degree of fragmentation was high. 
The shape of patches of AA was the most 
irregular compared to other classes, but it 
tended to become more regular over time.

Urban: The PLAND of urban grew rapidly 
from 0.19 percent in 1995 to 12.36 percent in 
2020 and is forecasted to be 21.79 percent in 
2030. The LPI, NP, and AREA_MN increased. 
This revealed two parallel processes in this class 
including (1) A gradual expansion from the 
edge of existing cities and interconnection be-
tween urban regions, which increased clumping 
and aggregation (LPI and AREA_MN increased 
and IJI decreased) and (2) The formation of new 
discrete urban areas (NP increased). Thus, the 
dispersion here was due to the second process, 
not division from existing urban patches. In 
addition, these two processes also caused the 
shape of patches to fluctuate (LSI fluctuated).

Mining site (MS) and Recreation and Green 
space (RG): These were two rare classes in the 
landscape accounting for a small proportion  
(< 0.5%). However, they also showed an in-

creasing trend over the years in terms of 
PLAND and LPI. For the RG class, NP in-
creased, AREA_MN decreased, IJI changed 
slightly, and LSI increased. They revealed that 
RG areas were formed more, and they were 
more discrete and less connected. Furthermore, 
the shape of its patches more complicated. 
Similar to the urban class, the fragmentation 
here was mainly due to new formations, not 
division from existing patches. Meanwhile, 
for the MS class, NP fluctuated, AREA_MN 
increased, IJI increased, and LSI decreases 
slightly. This showed that the area of quarries 
was gradually expanding and was more dis-
persed with a more regular shape.

Water surface: The PLAND slightly in-
creased, NP increased, AREA_MN de-
creased, IJI increased, LSI increased, and LPI 
was relatively stable over the years. This re-
vealed that the new water surface areas were 
formed separately and more irregularly.

Unused land: This class had special charac-
teristics. It was an intermediary for conversion 
between other classes, so the indices of this 
class often fluctuated strongly over the years.

In general, from 1995 to 2020, the study area 
experienced an intense change in the direction 
of increasing the fragmentation and dispersion 
of natural and semi-natural landscapes. These 
changes might be largely influenced by two 
parallel processes of urban landscape includ-
ing aggregation and dispersion. These chang-
ing trends are forecast to continue. Clearly, 
changes in land use, and consequent changes 
in landscape pattern, are often aimed at serv-
ing the needs of socio-economic development. 
However, the fragmentation and dispersion 
of natural and semi-natural landscapes can 
have negative impacts on the ecological en-
vironment, ecosystem services, and benefits 
humans derive from them (Estoque, R.C. and 
Murayama, Y. 2016; Tolessa, T. et al. 2017), 
and, thus, may influence the sustainable devel-
opment goals. Some of the major environmen-
tal conflicts that will arise in the next decade 
in the study area may include (1) a decline in 
provisioning services (food, raw material) due 
to the decline in agricultural land, (2) a de-
cline of the regulating services (climate, water/
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water flow, erosion and fertility, purification 
and detoxification of water, air, and soil) due 
to an increase in impervious surfaces, and (3) 
a decline in supporting services (ecosystem 
process maintenance) due to fragmentation 
of natural and semi-natural habitats. Due to 
the limitation of the objective of this study, we 
did not quantify these aspects. For a more de-
finitive assessment, further studies are needed

Conclusions

Based on land-use maps of previous peri-
ods, this study used the LCM application of 
IDRISI software to forecast land use in Binh 
Duong province, Vietnam to 2030, mainly 
the transition from agricultural-land types 
to urban-land types. The Markov chain and 
the Decision Forest algorithm were used to 
predict future land-use allocation in terms 
of quantity and location, respectively. Vari-
ous drivers were assessed. The research re-
sults revealed that the drivers of distances 
to province centre, district centres, existing 
residential areas, and main road and mean 
population density had an impact on the con-
version from agricultural land to residential 
land, while the transition from agricultural 
land to industrial and commercial areas was 
driven by the factors of distances to water 
sources, district centers, existing industrial 
areas, planned industrial zones, and trans-
portation ports. The selected model has been 
validated with the accuracy of the hard pre-
diction being Kappa = 0.71, Kappa location 
= 0.72, Kappa histogram = 0.99, fuzzy Kappa 
= 0.77, and FoM = 30.77 percent and the ac-
curacy of the soft prediction being AUC = 
0.96. This result indicated that the model was 
suitable to predict the future land use in the 
study area. The simulation results showed 
that, in the period from 2020 to 2030, there 
will be 253.8 km2 of agricultural land urban-
ized. The residential areas and the industrial-
commercial zones are expected to expand to 
395.9 km2 and 190.8 km2, respectively. These 
areas will expand in the direction of gradu-
ally expanding from the edge of the existing 

zones and filling the newly planned areas 
from south to north and northeast.

This study also measured landscape pat-
tern change caused by land-use change using 
landscape metrics calculated on FRAGSTATS 
software. At the landscape level, the results 
revealed that the studied landscape was 
increasingly decreasing in dominance and 
increasing diversity and heterogeneity. In ad-
dition, the processes of dispersion and ag-
gregation are taking place at the same time. 
At the class level, the classes of agriculture, 
mining, and greenspace were increasingly 
dispersed, but the shape of patches was be-
coming more regular. Meanwhile, the urban 
class had similar characteristics to the entire 
landscape in terms of two parallel processes 
including dispersion and aggregation. The 
water class increased the dispersion and the 
irregularity of the patch shape. Finally, the 
landscape metrics of the unused land fluctu-
ated over time.

This study provides insight into the causes 
and consequences of land-use change, especial-
ly in emerging urban areas in developing coun-
tries where sustainable development often has 
to trade-off with economic development goals. 
Changes in land use and landscape can affect 
the ecological environment, ecosystem servic-
es, and the benefits humans derive from them. 
Further studies on these issues are needed.
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