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Introduction

Extreme weather conditions influence the 
hydrological cycle (Szűcs, P. et al. 2015). The 
observed effects are varied (Jakab, G. et al. 
2019). In the measurement-based hydro-me-
teorological datasets both periodic as well as 
stochastic components can be observed. Tel-
econnections can influence the local weather 
conditions over large physical distances. In 
spite of the huge amount of available moni-
toring data, the patterns and periodicities, es-
pecially the latter, are still unsolved problems 
in hydrology (Böschl, G. et al. 2019).

The hydrological cycle is defined as the 
circulation and flow of water on Earth. As 
previously written (IPCC 2012): „The cycle 
in which water evaporates from the oceans 
and the land surface is carried over the Earth 
in atmospheric circulation as water vapour, 
condenses to form clouds, precipitates again 
as rain or snow, is intercepted by trees and 
vegetation, provides runoff on the land sur-
face, infiltrates into soils, recharges ground-
water, and/or discharges into streams and 
flows out into the oceans, and ultimately 
evaporates again from the oceans or land 
surface. The various systems involved in the 
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hydrological cycle are usually referred to as 
hydrological systems.”

One of the hypothetical consequences of the 
common scientific consensus of the climate 
change is that specific humidity increases 
with rising temperatures, and increased evap-
oration is associated with more precipitation.

It is normal to be expected that there will be 
approximately 3.8 percent more precipitation 
per additional degree of temperature. This hy-
pothetical phenomenon is called the intensi-
fication or “acceleration” of the hydrological 
cycle (Del Genio, A. et al. 1991). Huntington, 
T. (2006) provided the first experimental sup-
port for the hypothesis. The study concluded, 
despite a number of uncertainties, that the be-
haviour of most hydrological variables is con-
sistent with the assumed intensification of the 
hydrological cycle. The study (Huntington, 
T. 2006) was supported by others with addi-
tional data sets, to the extent that the intensi-
fication of the hydrological cycle has become 
almost universally accepted. However, in a 
comprehensive analysis, (Koutsoyiannis, 
D. 2020) refuted the claims about one-way 
trends in the elements of the hydrological 
cycle. Instead of monotonous tendencies, he 
showed all kinds of fluctuations in the hydro-
logical cycle (from strengthening to weaken-
ing and vice versa), and in the 21st century, he 
showed the prevalence of weakening. A one-
way trend was observed only in the increase 
in groundwater use, which leads to a small 
increase in sea level on a global scale.

The peculiarities of (Koutsoyiannis, D. 
2020)’s approach are as follows: (1) he ignored 
what the models indicate for the future; (2) he 
used the longest possible time series available 
instead of shorter, selected periods; (3) he did 
not focus on certain limited areas (because it is 
a common experience that a hydrological indi-
cator that becomes more intense in one place 
may simultaneously weaken in another); (4) 
he used a well-defined, transparent process-
ing method; (5) he embraced the Aristotle 
principle “It is the mark of educated man to 
look for precision in each class of things just 
so far as the nature of the subject admits”, 
which also has the necessary consequence 

that (Huntington, T. 2006) the estimated 2 
percent increase in precipitation for the entire 
20th century is below the error of definition.

The very first test point of the hypothesis of 
accelerating the hydrological cycle would nor-
mally be to test claims for an increase in atmos-
pheric water vapor content itself. Long data sets 
(radiosonde measurements) are available from 
the troposphere alone; surface GPS, solar pho-
tometer and satellite data used to measure inte-
grated water vapor of the atmosphere (IWV) go 
back too short a period of time. The question, of 
course, is how much definitional certainty the 
Aristotelian principle allows. According to the 
proponents of the intensification of the hydro-
logical cycle, global warming can cause more 
uneven rainfall distribution, more devastating 
storms, torrential rains and unexpected flash 
floods, regardless of changes in atmospheric 
water vapour content (Szöllősi-Nagy, A. 2018). 
The hypothesis of accelerating the hydrological 
cycle becomes so complex and untraceable that 
it is less and less possible to check their truth-
fulness based on Feyman’s scientific method 
(Feynman, R. 1964). In Feynman‘s interpreta-
tion we could address this by easily saying 
that such hypotheses are no longer scientific. 
The situation is even more complicated: it is 
quite likely that the arguments needed for an 
exact refutation may be lost in the Aristotelian 
swamp. On the one hand, it is necessary to ana-
lyse the most accurate and longest time period 
available in a local, regional and global context 
(e.g. Ilyés, C. et al. 2016) from Hungary), and on 
the other hand, it is necessary to analyze the in-
depth theoretical studies on the characteristics 
of natural time series.

The main objective of this paper is to deter-
mine how various global climatic cycles and 
oscillations can influence the local precipita-
tion, thus, all the other components of the 
hydrological cycle in the Carpathian Basin. 

Sustainable utilization of groundwater 
resources in Hungary

Groundwater resources play a major role in 
Hungary’s drinking water supply system. 
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Hydrogeologists have a responsible role in 
safeguarding the groundwater resources 
and managing their sustainable utilization 
in quantitative and qualitative terms (Szűcs, 
P. et al. 2013). During the past few years hy-
drogeologist experts had to face numerous 
global or local environmental challenges 
that may have significant effect on environ-
mental elements, especially on groundwater 
(Kohán, B. and Szalai, J. 2014). 

The natural replenishment of ground-
water resources is a key factor concerning 
the future aspects of sustainable utiliza-
tion (Szűcs, P. et al. 2015). The demand for 
groundwater resources is continuously in-
creasing in Hungary as well as all over the 
world. Besides the drinking water supply, 
thermal water production is also significant 
in Hungary, which also underlines the impor-
tance of sustainability issues (Buday, T. et al. 
2015). Extreme weather conditions can affect 
some components of the hydrological cycle, 
e.g. groundwater replenishment or natural 
recharge (Fehér, Z.Z. and Rakonczai, J. 2019).

Patterns and periodicities

Patterns and periodicities, especially the latter, 
have been still unsolved problems in hydrol-
ogy (Böschl, G. et al. 2019). The pattern ap-
proach is relatively new. Looking back to the 
history, the weather predictability was based, 
from the beginning, on various – either ob-
served or just assumed – periodicities. Exam-
ples: Indian and Chinese traditional calendars, 
based on a 60-year cycle known in the Indian 
tradition as the Brihaspati (“Jupiter”) cycle, 
the biblical fourteen-year periodicity (Genesis 
41: 18–30), and English folklore (“There is no 
debt so surely met as wet to dry and dry to 
wet”). Below we provide insight into the docu-
mented history of the periodicities.

A brief history of periodicity studies

A solar-weather connection was raised by 
Meldrum, C. (1873), followed by much dis-

cussion. (Marvin, C.F. 1921) introduced the 
term “periodocrite”, in order to be able to 
separate obscure and hidden periodicities.

The mechanism of world-weather was 
found exceedingly complex (W. W. B. 1920). 
Even some bibliography collections were 
made on the possible influence of weather 
on crops. C. E. P. B. (1925) found a 28-month 
periodicity in weather and solar phenomena. 
(Abbot, C.G. 1939) discovered a 23-year pe-
riodicity. Priston, W.R. (1939) corrected it to 
274 months and confirmed the existence of 
the quasi-biannual periodicity of 27 months. 

Atmospheric processes take place through 
spatial waves (i.e. patterns) and/or of tempo-
ral periods as units (Zhang, J-C. 1981). In this 
paper, a 10 years cyclicity in yearly rainfall 
values in Beijing was revealed.

In Burroughs, W.J. (1992), the history of 
cycle-searching was summarized, and a 
mathematical treatment was provided, il-
lustrated with plenty of examples. An in-
sight into extra-terrestrial aspects, including 
celestial mechanics, was given, too. It was 
assumed (C. E. P. B. 1925) that if there is no 
plausible physical earthbound process, the 
cause should be looked for outside Earth. 
Moreover, perturbations propagate down-
wards from high in the stratosphere. 

Due to satellite observations, significant 
oscillations (patterns and periods) were (and 
have been) found, having regional or global 
weather and climate impacts. Various climate 
indices were defined, and a number of tele-
connections were revealed. Below we provide 
a brief summary of the most significant ones.

A brief summary on oscillations

The Southern Oscillation Index (SOI) is one of 
the world most important climate indices. It 
is a common measurement of the El Niño/La 
Nina (ENSO) teleconnection (Power, S.B. and 
Kociuba, G. 2011), and is a standardized in-
dex based on the observed sea level pressure 
differences between Tahiti and Darwin, Aus-
tralia (PSL 2020). During the El Niño event, 
the SOI tends to be negative, and the changes 
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in the ENSO drive major changes in rainfall, 
agricultural production and river flow all 
across the world (Power, S.B. and Kociuba, 
G. 2011). ENSO typically lasts from 6 to 18 
months (Chen, S. et al. 2020), with a 2–7-year 
cycle (Kuss, A.J.M. and Gurdak, J.J. 2014). 

The Atlantic Multidecadal Oscillation 
(AMO), believed to be caused by the North 
Atlantic thermohaline circulation, is de-
fined by the Sea Surface Temperature (SST) 
anomaly over the Atlantic from 0˚N to 70˚N 
(Enfield, D. et al. 2001), characterized by a 
50–70-year period (Dijkstra, H.A. et al. 2006). 
Its effect on the climate of Europe was ex-
amined in the UK (Knight, J. et al. 2006) and 
in Romania (Ionita, M. et al. 2012), as well 
as several other areas around the Atlantic 
(Folland, C. et al. 2001; Knight, J. et al. 2005).

The North Atlantic Oscillation – along with 
the AMO – is the most important phenom-
enon influencing the weather variability over 
Europe (Ionita, M. et al. 2012; Dvoryaninov, 
G.S. et al. 2016), with the periodicity of 3–6 
years (Kuss, A.J.M. and Gurdak, J.J. 2014). 
The NAO index is defined as the difference 
of the normalized sea-level pressure at the 
Azores and Iceland (Mokhov, I. and Smirnov, 
D. 2006) at inter-annual and inter-decadal 
time scales. The changes in circulation as-
sociated with changes in the NAO index are 
determined from the difference in sea-level 
pressure (SLP) between winters with an in-
dex value greater than 1.0 and those with an 
index value less than -1.0 (Hurrel, J. 1995). 

The Arctic Oscillation (AO) is defined as an 
opposing pattern of pressures between the 
Arctic and northern mid-latitudes (Chen, S. 
et al. 2020). When the pressure is high in the 
Arctic, it tends to be low in the northern lati-
tudes. That is called a negative phase, while 
the opposite is called a positive phase. When 
positive, it causes a wetter weather in Alaska, 
Scotland and Scandinavia, and a drier weath-
er in the US and Mediterranean. If reversed, it 
brings stormy weather to the more temperate 
climates (Mokhov, I. and Smirnov, D. 2006). 

The Pacific/North American teleconnection 
pattern (PNA) is one of the most recognized, 
influential climate patterns in the Northern 

Hemisphere mid-latitudes beyond the trop-
ics. It consists of anomalies in the geopoten-
tial height fields (typically at 700 or 500 
mb) observed over the western and eastern 
United States. It varies from intra-seasonal 
(2–90 days) to inter-annual time scales (2–20 
years) (Allan, A.M. and Hostetler, S.W. 
2014). The PNA influences the climate in 
autumn and winter in the whole Northern 
Hemisphere (Soulard, N. and Lin, H. 2017).

The relationship of these teleconnections 
was also thoroughly examined, with the rela-
tion of the ENSO and the AMO (Mokhov, I. 
and Smirnov, D. 2016), and the PNA (Song, J. 
et al. 2009), while all of the major teleconnec-
tions were found to have a relation with the 
ENSO. The NAO (Mokhov, I. and Smirnov, 
D. 2006) and the AO (Chen, S. et al. 2020) are 
also closely linked to each other (Rogers, J. 
and McHugh, M. 2002), and the connection 
between the PNA and the NAO was also in-
vestigated (Soulard, N. and Lin, H. 2017). 
A clear interconnection among them was 
detailed by Lüdecke, H-J. et al. (2021) while 
investigating African rainfall.

Connection with regional hydrological data

The global and regional effects on precipita-
tion and groundwater levels have been exam-
ined thoroughly across the globe. The influ-
ence of NAO on temperature and precipitation 
is a widely studied subject (Hurrel, J. 1995; 
Slonosky, V. and Yiou, P. 2001). The global 
effect of ENSO, as examined in (Sun, X. et al. 
2015), varies substantially by seasons, and the 
extreme precipitation is only affected by one 
phase, and is asymmetric in most of Europe.

In the US, it was found that the ENSO has a 
significant effect in case of precipitation and 
groundwater level fluctuations, with the high-
er frequency climate models showing greater 
ENSO effect (Velasco, E.M. et al. 2017). Other 
results indicate that the groundwater levels 
are partially controlled by interannual to 
multidecadal climate variability, and ENSO 
has a greater effect than NAO or AMO (Kuss, 
A.J.M. and Gurdak, J.J. 2014). In Canada, the 
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effects of ENSO and NAO on streamflow and 
precipitation were examined, and the results 
show that a positive phase reflected drier con-
ditions, with lower amount of precipitation, 
whereas the negative phase reflected wetter 
conditions, and higher amount of streamflow 
(Nalley, D. et al. 2019).

Concerning European groundwater well 
data, it was found, that there are significant 
correlations between NAO, AMO and ENSO 
(Liesch, T. and Wunsch, A. 2019). The average 
coherence for AMO is higher than for NAO, 
while it was the highest for ENSO, meaning 
a larger influence (Lüdecke, H-J. et al. 2021). 
Also, several year-long periods were calculat-
ed, namely, periods of: 4 and 13–14 for NAO; 
15, 23–25 and 60–80 for AMO; and 2–5, 15–18, 
31 and 56 for ENSO (Liesch, T. and Wunsch, 
A. 2019). In the case of AO, in the positive 
phase, higher pressure at mid-latitudes drives 
ocean storms farther north, while changes in 
the circulation pattern bring drier conditions 
to the Mediterranean (Thompson, D.W.J. and 
Wallace, J.M. 1998). It is known that the win-
ters of 2009–2010 and 2015–2016 were affected 
by the NAO (Seager, R. et al. 2010).

According to (Domonkos, P. 2003), the 
winter precipitation in Hungary decreases 
significantly when the NAO index increases. 
(Matyasovszky, I. 2003) showed a nonlinear 
relationship between the climate of Hungary 
and the ENSO.

Periodicities in stochastic time series, such as 
precipitation, were also examined, with several 
local, regional deterministic components de-
fined in rainfall data covering 110 years (Ilyés, 
C. et al. 2017). In the study annual, monthly 
and daily precipitation time series were calcu-
lated using spectral analysis to find determin-
istic patterns in them. With this method several 
regional/countywide periods were defined. 
Detailed studies revealed further local cyclic 
parameters (Ilyés, C. et al. 2018). 

With this research the main objective was 
to find connections between these climatic 
patterns and the periods defined before, in 
order to better understand the main factors 
behind the periodicity of the precipitation in 
Central Europe. These atmospheric oscilla-

tions vary in their time scales and locations, 
and the impacts on local precipitation is com-
plex. In this research paper a correlation and 
spectral analysis were used for determining 
the nature of the connection.

Methods and materials

To implement the investigation, the precipita-
tion data were downloaded from the Hungar-
ian Meteorological Service’s online database 
(HMS 2019), containing 5 different monitor-
ing sites, over the timescale of 1950–2010. 
As the calculations require equidistant sam-
pling, the monitoring site Szeged needed to 
be dropped from one of the calculations due 
to missing data in the 1940s.

The collected precipitation data resembles 
the climatic patterns of the Carpathian Basin, 
as seen in Figure 1. Budapest is located at the 
banks of the Danube River, in the middle 
of the basin, while Szombathely lies at the 
foothills of the Alps mountain range. The 
Debrecen monitoring site represents the 
Hungarian Great Plain and the eastern part 
of the basin, while the climate of the south-
western monitoring site, Pécs, is somewhat 
influenced by the Mediterranean. The Szeged 
monitoring site represents the southern area 
of the basin, with the smallest annual rainfall 
and the warmest climate.

For the calculations, monthly precipitation 
data were used, with an equidistant one-
month sampling rate.

Fig. 1. The location of the monitoring sites in Hungary
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The climatic data of the patterns and os-
cillations were collected from several open-
source databases. The AMO data come from 
the Physical Sciences Laboratory at NOAA 
(PSL 2020), while the AO, NAO, PNA and 
SOI data were downloaded from the National 
Centres for Environmental Information at 
NOAA (NCEI 2020). The data has the January 
1950 – December 2010 time frame in the cas-
es of AO, PNA, NAO, and January 1951 – 
December 2010 in the case of SOI, while the 
AMO data are available from January 1901.

The method for examining a linear con-
nection uses the following expressions to 
obtain the coefficients for correlation and 
cross-spectral analysis results. These meth-
ods were used to examine the connection 
between precipitation and karst water levels 
in several studies (Padilla, A. and Pulido-
Bosch, A. 1995; Darabos, E. 2018) and the 
relation between teleconnections and stream-
flow (Pekarova, P. and Pekar, J. 2007).

Assume two discrete time series (xt, and yt), 
with n samples in each series. The cross-corre-
lation function r obtained with the two series 
is not symmetrical, where k = 0, 1, 2, … m, the 
shift of the two series.

where

where x and ӯ are the averages of the two 
series of xt and yt.

The t significance level of the calculated 
time lag can be examined with the following 
equation (MT18 2019):

where n is the number of samples, and k is 
the time lag. If t is smaller than the calculated 
cross-correlation value, it has a significance 
level (α) of approximately 5 percent.

Because of the asymmetrical cross-correla-
tion function, the spectral-density function 
must be expressed with a complex number:

where i represents √–1, the αxy(f) and the φxy(f) 
are the values of the cross-amplitude in the 
phase functions with f frequency, in details:

where the cross-spectrum,Ψxy(f) and the 
quadrate spectrum, Лxy (f) are:

where Dk is the weighting function which is 
necessary to overcome the distortion caused 
by the two coefficients Yxy(f), and Lxy(f).

For the calculations a custom-made python 
software was developed, featuring the equa-
tions (GH 2020). 

Results and discussion

Our hypothesis was that the teleconnec-
tions mentioned above have a mathemati-
cally calculable effect on the rainfall events 
of the Carpathian Basin. A few important 
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teleconnections were chosen to represent a 
major part of the Earth. Our hypothesis for 
the direction of the connection was that the 
xt teleconnection – calculated with its respec-
tive index – influences the precipitation time 
series yt measured at five different monitor-
ing sites.

The teleconnections are happening on a 
global scale, and in most cases, they repre-
sent climatic patterns far away from Central 
Europe. That means that instead of high cor-
relation coefficients, only minor but calcula-
ble effects are expected.

AMO effects on precipitation in the Carpathian 
Basin

In the case of the AMO, a longer time inter-
val was available, so precipitation data from 
the monitoring point of Szeged was not used 
because of missing values.

The Atlantic Multidecadal Oscillation 
seems to have an immediate effect on the 
precipitation data of the Carpathian Basin. In 
Figure 2, the maximum value is at around the 
0-month mark for most monitoring sites. A 
clear one-year cycle is present, too. Although 
the correlation coefficient is not larger than 
0.1, a clear connection can be identified in 
the graph. 

In Figure 3 a strong maximum amplitude 
is visible at frequency 0.083, corresponding 
to a time period of 1 year. There is another 
maximum value at a frequency of 0.021, cor-
responding to a period of 4 years. The other 
cyclic components are much less intense.

The results for Szombathely differ from 
those for three other ones. The reason for 
that is probably the slightly different precipi-
tation pattern of Szombathely, detected in 
differences in the case of deterministic com-
ponents calculated with spectral analysis of 
the same rainfall data (Ilyés, C. et al. 2017). 

Fig. 2. Cross-correlation between AMO and the precipitation of the Carpathian Basin
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AO effects on precipitation in the Carpathian 
Basin

In the case of the Arctic Oscillation, most of 
the correlation coefficient has a negative peak 
at the 0 month mark, but at 37 month a posi-
tive peak can be detected, as seen in Figure 4. 
The negative significant peak may suggest 
that the direction of the effect is reverse, that 
is, the precipitation and the Arctic Oscilla-
tion have a negative linear connection, which 
would mean that an increase in AO causes a 
decrease in the amount of precipitation. An 
alternative, less probable explanation could 
be that the local time lag for the Carpathian 
Basin is 37 months. Similar to the case of 
AMO, for the monitoring site of Szombathely 
somewhat different results can be seen.

As for the cross-spectral analysis, there 
are clear patterns of periodicity. A strong 
one-year long cycle can be detected from the 
data, with maximum amplitude values at 
frequency 0.083, as well as a half-year long 
one (at frequency 0.166). The 6-month long 

periodicity has a larger amplitude than the 
12-month long one, meaning a stronger cyclic 
pattern. Other major cycles are the 36, 7.7 and 
9 month long ones, as shown in Figure 5.

NAO effects on precipitation in the Carpathian 
Basin

For the North-Atlantic Oscillation data, the 
1950–2010 time interval was used. The cross-
correlation coefficients (Figure 6) are again 
very low, but the connection can clearly be 
seen. As in the case of the AO, the direction 
of the effect is the opposite of what would 
have been guessed: for the correlation coef-
ficient values of each of the five monitoring 
sites significant negative peaks with a larger 
than 0.1 amplitude were obtained at the 0 
month mark. That refers to a negative linear 
connection. In Figure 6, a great volatility can 
also be seen, with no clear sign of periodicity. 
In the case of increasing NAO, precipitation 
in the Carpathian Basin seems to decrease.

Fig. 3. Cross-amplitudes of AMO and precipitation of the Carpathian Basin
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Fig. 5. Cross-amplitudes of AO and precipitation of the Carpathian Basin

Fig. 4. Cross-correlation between AO and the precipitation of the Carpathian Basin
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The cross-spectral analysis (Figure 7) also 
shows irregular or random maximum values. 
Nevertheless, there are some similarities among 
the 5 cross-amplitude datasets. In four of the 
time series, a 3-year long cycle (at frequency 
0.027) is seen, besides the one-year period 
(frequency 0.083), and the 6-month long one 
(frequency 0.166). A 8.3-month long period (fre-
quency 0.12), and 4.9–5.1 month long periods 
(frequency 0.19–0.2) also occur. Szombathely 
again delivers an outlier result, because of a 
stronger local influence in its rainfall events.

PNA effects on precipitation in the Carpathian 
Basin

The Pacific/North American teleconnection 
influences the climate patterns in the North-
ern Hemisphere mid-latitudes beyond the 
tropics. As had been assumed, it does not 
have a significant effect on the precipitation 
of the Carpathian Basin.

The figure of the cross-correlation values 
(Figure 8) is the most volatile one. Time lag 
cannot be calculated, as the correlation coef-
ficients have no common peaks. 

The results of the cross-spectral analysis are 
shown in Figure 8. A few local cycles are seen, 
with some similarities: three of the monitor-
ing stations showed a 12–13.5 month long 
cycle (frequency 0.08), as well as a 36-month 
long one (frequency 0.027). From the data a 
6.5–7.2 month long period and a 5.6–6 month 
long period were calculated.

As seen in Figure 9, the data are too volatile 
to let one estimate a connection. The correla-
tion coefficients are very low, and the effect 
on precipitation is negligible.

SOI effects on precipitation in the Carpathian 
Basin

The Southern Oscillation is the most well-
known teleconnection index, measuring the 

Fig. 6. Cross-correlation between NAO and the precipitation of the Carpathian Basin
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Fig. 7. Cross-amplitudes of NAO and precipitation of the Carpathian Basin

Fig. 8. Cross-correlation between PNA and the precipitation of the Carpathian Basin
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intensity of the El Niño or La Nina effects in 
the Pacific.

The cross-correlation calculations show 
inconclusive results, with low coefficients, 
although 3 of the 5 monitoring stations show 
a minimum value at 22-month time lag. 
According to Figure 10, neither a clear linear 
relation nor any periodicity is visible.

The cross-spectral analysis shows some 
similarities among the 5 monitoring sites. As 
seen in Figure 11, for most of the monitoring 
sites, there is a 1-year long period (frequen-
cy 0.083). Data for 3 sites seems to have a  
4.5-year long period (frequency 0.018), and 
a 1.9–2.2 year long period (frequency 0.04), 
with a 5.4 and 2.5 month long cycle in them. 
Other periods were defined locally with 9–10 
periods in each dataset, respectively.

From all these results it is clearly seen that 
the teleconnections have a minimal, but cal-
culable effect on the precipitation patterns 
of the Carpathian Basin. Most of the studied 
climatic patterns showed some periodicity 

when compared to the precipitation time 
series.

The teleconnections not far from Central 
Europe have an immediate effect on the rainfall 
events, while the Pacific/North Atlantic, and 
the Southern Oscillation index data showed 
no clear relationship. Events happening in the 
Pacific area have minimal effect on this side of 
the planet. It is important to keep in mind that 
teleconnections are interconnected. The PNA 
has been found to be strongly influenced by 
the El Niño-Southern Oscillation (ENSO) phe-
nomenon, which itself is measured by the SOI.

The SOI and PNA results have similarities 
in case of the cross-spectral analysis. In both 
calculations 4.5, 1.5–1.8, 1.1–1.2 year long pe-
riods were defined, along with the one and 
half year long period, which was calculated 
from all of the parameters. The AO, NAO and 
PNA datasets had a 3 year long period, too.

The AO and NAO data also show similari-
ties, with the 3.0, 1.1–1.2, and 0.69 year-long 
cycles in both of them. 

Fig. 9. Cross-amplitudes of PNA and precipitation of the Carpathian Basin
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Fig. 10. Cross-correlation between SOI and the precipitation of the Carpathian Basin

Fig. 11. Cross-amplitudes of SOI and precipitation of the Carpathian Basin
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All the examined datasets have 0.69–0.71 
and 1.1–1.2 year-long periodic components.

In previous research (Ilyés, C. et al. 2017), 
the cyclic components of these precipitation 
datasets were examined with spectral analysis, 
based on the Fast-Fourier transformation, with 
several deterministic components defined in 
them. Some of the cycles can be interpreted 
using the results of the present cross-spectral 
calculations. The 3 and 4–4.5 year-long perio-
dicities with large amplitudes had been pre-
viously discovered using spectral analysis on 
annual precipitation data (Ilyés, C. et al. 2017).

The connection between the ENSO and 
NAO, and some meteorological parameters in 
Hungary, had been investigated previously, 
and a clear relation was found for both indices 
(Pongrácz, R. 2003). The main reason for the 
calculated results can be that the connection 
is not linear in case of these distant patterns.

Similar investigations (Pekarova, P. and 
Pekar, J. 2007) had been carried out for stream-
flow fluctuations in a neighbouring country 
(Slovakia). The effects of several teleconnec-
tions were calculated with the streamflow of 
two rivers in the country. Because of the dif-
ferent time intervals of the measurements, the 
longer periods couldn’t be calculated for both 
of the research projects, but in the case of the 
AO and NAO, the ca. 3 year-long cycles were 
also determined along with the 2.25 year-long 
period from the AO data, meaning similarities 
can be found in the patterns of these data.

Conclusions

In the present study, relationships are de-
tected between AO, NAO, PNA, SOI, AMO 
and precipitation cycles at five monitoring 
sites in the Carpathian Basin. With the ap-
plied method of cross-correlation and cross-
spectral analysis, the correlation coefficient 
and deterministic components are revealed 
from the investigated datasets.

The results show that a minimal but cal-
culable relation can be defined for climat-
ic patterns taking place in the Northern 
Hemisphere, such as AO, NAO and AMO, al-

though the method cannot quantify the con-
nections with patterns from distant regions, 
such as SOI and PNA. The relationships for 
these climatic phenomena (AO, NAO and 
AMO) are quite immediate (Table 1) and can 
be connected to periods previously defined 
from the precipitations of the Carpathian 
Basin (Ilyés, C. et al. 2017). Several cycles, re-
ported in previous studies, can be explained 
via teleconnections of these climatic patterns 
(Ilyés, C. et al. 2018). The results also show 
similarities to other results from Central 
Europe (Pekarova, P. and Pekar, J. 2007), 
and to a very recent cloud-pattern analysis 
(Sfica, L. et al. 2021).

Table 1. Summary of the findings relative to time lag, 
direction, and major detected cycles

Climatic 
phenomena

Time 
lag Direction Major cycles

AMO ~0 positive 1; 4 years

AO 0 negative 0.5; 0.6; 1; 
3 years

NAO 0 negative 1; 3 years; 8.3; 
4.9 month

PNA
No clear linear connection detected

SOI

With the calculated correlation and cyclic 
components, a clear interdependence has 
been revealed in the case of the Carpathian 
Basin rainfall events. As we have found, any 
change in the studied distant climatic pat-
terns will have some precipitation effect in the 
Carpathian Basin, thus, affecting the recharge 
or natural replenishment of its groundwater 
aquifers. The obtained results highlight the 
importance of sustainability issues in the fu-
ture utilization of groundwater resources. 

For the future, a complex Wavelet coher-
ence or partial Wavelet analysis with ground-
water levels and streamflow data can help 
to better evaluate the nature of the defined 
connections of the oscillations and the hy-
drological cycle in Central Europe.
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