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Introduction

Today there are a number of tools available to 
translate climate model outputs into vegeta-
tion distribution patterns (see e.g., bioclimatic 

classification methods: Prentice, K.C. 1990; 
correlative vs. mechanistic biome models: 
Yates, D.N. et al. 2000; species distribution 
models: Elith, J. and Leathwick, J.R. 2009). 
Bioclimatic classification methods (BCMs) 
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Abstract

Bright sunshine duration (BSD) data are required for simulating biomes using process-based vegetation models. 
However, monthly global paleoclimate datasets that can be used in paleo data–model comparisons do not 
necessarily contain BSD or radiation data. Considering the theoretical and practical aspects, the scheme of Yin, 
X. (1999) is here recommended to estimate monthly time series of relative BSD using only monthly climate 
and location data. As a case study for the Carpathian Region, the efficiency of both the original and a variant 
of that scheme is analysed in this paper. The alternative scheme has high applicability in paleoenvironmental 
studies. Comparison of the estimated and observed BSD data shows that from May to August, the value of 
relative root mean squared error in more than 90 percent of the study area does not exceed the threshold of 
20 percent, indicating an excellent performance of the original estimation scheme. It is also found that though 
the magnitude of overestimation for the alternative algorithm is significant in the winter period, the proposed 
method performs similarly well in the growing season as the original. Furthermore, concerning modelling 
the distribution of biomes, simulation experiments are performed to assess the effects of modifying some 
configuration settings: (a) the generation of relative BSD data, and (b) the algorithm used to create quasi-daily 
weather data from the monthly values. Under both the recent humidity conditions of the study region and the 
spatial resolution of the climate dataset used, the results can be considered sufficiently robust, regardless of 
the configuration settings tested. Thus, using monthly temperature and precipitation climatologies, the spatial 
distribution of biomes can be properly simulated with the configuration settings proposed here.
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are tools used to transform a set of climate 
and soil variables into an index-class that can 
be directly related to biome-level vegetation 
units (Tapiador, F.J. et al. 2019). Correlative 
models determine a statistical relationship 
between vegetation distribution and environ-
mental variables (e.g., climate, soil, etc.); then 
this link is applied to simulate the potential 
distribution of vegetation under the altered 
conditions (Yates, D.N. et al. 2000; Elith, J. 
and Leathwick, J.R. 2009). From this point of 
view, therefore, BCMs (e.g., Köppen, W. 1936) 
can be considered the simplest correlative 
biome models. Mechanistic biome models, 
in contrast, focus on mechanisms determin-
ing survival and performance of plants by 
simulating processes in soil–vegetation–at-
mosphere systems, such as water, carbon and 
nutrient cycles (Prentice, I.C. et al. 2007).

Paleoclimatological and paleoenvironmen-
tal studies often use both outputs from cli-
mate model simulations and proxy archives 
such as fossil pollen records in a common 
framework. These studies represent a special 
area of called paleo data–model comparisons 
(Harrison, S.P. 2013) that have essentially 
two distinct purposes: (a) to understand the 
mechanisms of past climate and environmen-
tal shifts (e.g., Miller, P.A. et al. 2008; Mauri, 
A. et al. 2014), and (b) to provide feedback on 
the performance of climate/environmental 
reconstruction approaches (e.g., Prentice, 
I.C. et al. 1998; Webb, III T. et al. 1998). These 
comparisons can be made in two ways, ei-
ther by collating pollen-inferred climate 
with that simulated by climate models (e.g., 
Webb, III T. et al. 1998; Mauri, A. et al. 2014), 
or by comparing biome/species distribution 
estimated using paleoclimate model outputs 
with vegetation reconstructed from pollen 
assemblages (e.g., Prentice, I.C. et al. 1998; 
Miller, P.A. et al. 2008).

Currently, more and more global datasets 
are made publicly available that provide bias-
corrected monthly climatologies (multi-year 
averages) from paleoclimate simulations in 
order to support distribution modelling ex-
periments in various research areas (e.g., 
paleobiogeography, archaeology). However, 

these datasets differ significantly in terms of 
spatial resolution, temporal coverage and 
time step, and in terms of which climate vari-
ables they contain information on. Beyer, R.M. 
et al. (2020), for example, published a monthly 
global dataset (hereinafter HadCM3-120k), 
with a horizontal resolution of 0.5°, for tem-
perature, precipitation, cloud cover, relative 
humidity, and wind speed, and additional 
parameters related to bioclimatic and biogeo-
chemical conditions, covering the last 120,000 
years at a temporal resolution of 1,000–2,000 
years. For this, medium-resolution simula-
tions generated by the HadCM3 general circu-
lation model (GCM) for the last 120,000 years 
were combined with high-resolution simula-
tions prepared by the HadAM3H GCM for the 
last 21,000 years and a recent observational 
dataset. (For details of the above-mentioned 
GCMs, see Valdes, P.J. et al. 2017.) Then, 
Krapp, M. et al. (2021) extended access to 
the climate variables in question for the last 
800,000 years by performing a statistical-based 
reconstruction using the above-mentioned 
simulations. And recently, Karger, D.N. et al. 
(in review) shared with the scientific commu-
nity their dataset, called CHELSA-TraCE21k 
v1.0, that includes monthly climatologies for 
both temperature and precipitation, and other 
bioclimatic variables, with a spatial resolution 
of 30 arc-sec at a 100-year time step for the last 
21,000 years. For this, a transient simulation 
generated by the CCSM3 GCM (He, F. 2011) 
was downscaled considering the temporal 
change of orography.

The HadCM3-120k was specifically gener-
ated to feed mechanistic biome models, while 
the CHELSA-TraCE21k v1.0 was clearly de-
veloped to support paleoecological studies 
using correlative species distribution models 
(SDMs). In SDMs (e.g., MaxEnt: Phillips, S.J. 
et al. 2006), bioclimatic variables, i.e., annual 
and seasonal measures derived from monthly 
values of temperature and precipitation, are 
generally used as environmental predictors, 
besides topographic variables. In contrast, 
due to the simulation of energy and water 
fluxes, for applying mechanistic biome mod-
els, a meteorological variable directly related 
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to radiation (e.g., cloud cover, sunshine dura-
tion) is also required, besides temperature and 
precipitation data. Beyer, R.M. et al. (2020) 
and Krapp, M. et al. (2021), relying on their 
own datasets, also estimated the evolution of 
the global biome distribution using one of the 
best-known mechanistic biome models, called 
BIOME4 (Kaplan, J.O. 2001). The BIOMEn 
models (e.g., BIOME: Prentice, I.C. et al. 
1992; BIOME4) estimate the net radiation as 
a function of latitude, temperature, and bright 
sunshine duration (BSD). Thus, to apply the 
above-mentioned vegetation model to their 
own datasets, the authors used different em-
pirical linear relationships (Doorenbos, J. and 
Pruitt, W.O. 1977; Hoyt, D.V. 1977) to convert 
cloud cover data to the percentage of possible 
sunshine hours. Unfortunately, the CHELSA-
TraCE21k v1.0 does not contain cloudiness 
or BSD data, so it is not directly suitable for 
feeding the above-mentioned BIOMEn mod-
els. However, estimating BSD data from com-
monly available meteorological variables may 
be a solution to overcome the lack of data.

Although there are several estimation meth-
ods for calculating monthly values of BSD 
(Kandirmaz, H.M. et al. 2014), in this study, the 
use of a method developed by Yin, X. (1999) 
is recommended. Yin, X. (1999) used monthly 
data of 729 worldwide stations for finding a 
generic algorithm that captures global variabil-
ity of BSD data in relation to temperature, pre-
cipitation, and geographic location. Regression 
models for estimating monthly mean daily 
values of BSD are usually set only for smaller 
regions due to limited access to reliable station 
data (e.g., Italy: Stanghellini, C. 1981), and/or 
use parameters that are not readily available 
from global gridded climate datasets (e.g., the 
number of wet days per month: Castellvi, F. 
2001). Thus, what makes the method proposed 
by Yin, X. (1999) special is that it is globally 
parameterized and uses only monthly climate 
and location data that are widely available.

To our knowledge, by means of gridded cli-
mate datasets, the performance of the estima-
tion scheme proposed by Yin, X. (1999) has not 
yet been evaluated. Our current level of knowl-
edge would indicate that there is currently no 

global gridded observational dataset to which 
the following three statements are true with-
out exception: (i) it contains monthly values 
for BSD, temperature, and precipitation; (ii) 
it contains monthly meteorological data for a 
long period without time averaging; and (iii) it 
was developed based on station observations. 
Currently, there is only access to global data-
sets that also use remotely sensed and reanaly-
sis data to produce gridded climate informa-
tion, and for which values of BSD can only be 
derived from another meteorological variable 
(e.g., incoming solar radiation: TerraClimate, 
Abatzoglou, J.T. et al. 2018; cloud cover: CRU 
TS v4, Harris, I. et al. 2020). However, two re-
gional climate databases are known that pro-
vide station-based meteorological fields for the 
above-mentioned three variables for continu-
ous periods: CarpatClim (Spinoni, J. et al. 2015) 
and HadUK-Grid (Hollis, D. et al. 2019).

In consideration of the literature discussed 
above, the first objective of this study is to as-
sess the accuracy of the scheme under discus-
sion using the monthly climate data provided 
by the CarpatClim dataset. The second goal 
of this paper is to test how the quality of esti-
mates changes as a result of proposed modifi-
cations of the approach, which are justified by 
its applicability in paleoenvironmental stud-
ies. The amount of incoming and outgoing 
radiation influences the growing conditions 
of plants, so the error in estimating the rela-
tive BSD can cause problems in the modelling 
of the biome distribution. Therefore, as a case 
study for the Carpathian Region, evaluation 
of the impact of the estimated relative BSD on 
simulation of energy and water fluxes and bi-
ome designation is the third aim of this study.

Materials and methods

Estimation of monthly mean relative sunshine 
duration

The monthly mean daily values of relative BSD 
(RSD, dimensionless) for a given month is esti-
mated using the following parametric regres-
sion model as recommended by Yin, X. (1999):
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where p is the station atmospheric pressure in 
relation to the pressure at sea level, fo represents 
global trends, fi gives regional modifications, 
∑fi is the summation of values of any regional 
functions that are applicable to a particular lo-
cation, RE is the monthly average of hourly solar 
irradiance for cloudless-sky conditions (in MJ 
m−2 hr−1), P is the monthly mean precipitation 
intensity (in mm dy−1), T is the monthly mean 
air temperature (in °C), EP is the monthly aver-
age of daily potential evapotranspiration (in 
mm dy−1), ϕ is the latitude (in decimal degrees), 
IT<0 is a temperature indicator (1 if T ≤ 0 °C, and 
0 if T > 0 °C), Tam is the annual mean tempera-
ture (in °C), EPam is the annual average of daily 
potential evapotranspiration (in mm dy−1), Tmin 
is the lowest monthly mean air temperature 
(in °C), P7 is the monthly mean precipitation 
intensity (in mm dy−1) in the warmest month 
(fixed at July for the Northern Hemisphere, 

and January for the Southern Hemisphere), P1 
is the monthly mean precipitation intensity (in 
mm dy−1) in the coldest month (fixed at January 
for the Northern Hemisphere, and July for the 
Southern Hemisphere), Pam is the annual mean 
precipitation intensity (in mm dy−1), Tar is the 
annual range of monthly mean air temperature 
(annual diurnal range) (in °C).

The values of RE are calculated as proposed 
by Yin, X. (1997a), with a minor modification, 
using the daytime means of optical air mass 
and cosine zenith. The former is computed 
as recommended by Yin, X. (1997a), while 
the latter is estimated by using Eq. 5 of Yin, 
X. (1997b). Furthermore, in contrast to the 
original approach, where the solar constant 
was fixed at 4.9212 MJ m−2 hr−1, its value is 
corrected, according to Yin, X. (1999), by cal-
endar day for the variable ellipticity of the 
Earth’s orbit using the scheme of Brock, T.D. 
(1981). In these calculations, the values of so-
lar declination and daylength are derived by 
using the approach of Brock, T.D. (1981). The 
values of EP are computed using Eq. A10 of 
Yin, X. (1998). The value of EPam is calculated 
as a weighted mean of the EP values using the 
number of days in months as weights.

Simulation of biome distribution

In this study, the BIOME model (Prentice, 
I.C. et al. 1992) is applied to simulate the 
spatial distribution of biome-level vegeta-
tion units. First, the presence of each plant 
functional type (PFT) that is a group of plant 
types with similar ecophysiological behav-
iour is estimated under given climatic con-
ditions. To do this, it is necessary to check 
which of the 14 PFTs defined can occur con-
sidering the environmental constraints as-
sociated with their climatic tolerances and 
requirements (Table 1). After this, the domi-
nance class value (D) of each PFT is exam-
ined and only those in the highest class (with 
lowest D) present are retained. Finally, to 
infer the biome type, retained PFTs are com-
bined with each other by taking into account 
rules formalized in Table 2.

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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In the BIOME model, the plant-available 
moisture is characterized by the Priestley–
Taylor coefficient (α, dimensionless). Here, 
the values of α at an annual time scale are 
computed by using the SPLASH v.1.0 model 
(Davis, T.W. et al. 2017), through the simula-
tion of seasonal changes in both surface en-
ergy fluxes and climatic water balance. In the 
BIOME model, in order to quantify heat re-
quirement, the growing degree-days (GDD, 

in °C day) is used, which can be obtained 
by summing the values of daily tempera-
ture above a certain base temperature. To 
calculate values of GDD, the values of daily 
mean temperature are required; furthermore, 
besides temperature and precipitation data, 
the relative BSD must also be used in the 
SPLASH v.1.0 model, on a daily basis. The 
methods for generating these daily values 
are described in more detail below.

Table 1. Dominance class (D) and environmental constraints* for each plant functional type used in the model

Abbre-
viation Plant functional type D

TC GDD0 GDD5 TW α
min max min min min min max

tr.e.t
tr.r.t
w-te.e.t
te.s.t
c-te.c.t
bo.e.t
bo.s.t
sb.suc
wa.g.s
cl.g.s
cd.g.s
h.d.s
c.d.s
p.d

Tropical evergreen tree
Tropical rain-green tree
Warm temperate evergreen tree
Temperate summer-green tree
Cool temperate conifer tree
Boreal evergreen conifer tree
Boreal summer-green tree
Sclerophyll/succulent
Warm grass/shrub
Cool grass/shrub
Cold grass/shrub
Hot desert shrub
Cold desert shrub
Polar desert

1
1
2
3
3
3
3
4
5
6
6
7
8
9

15.5
15.5
5.0

−15.0
−19.0
−35.0

–
5.0
–
–
–
–
–
–

–
–
–

15.5
5.0

−2.0
5.0
–
–
–
–
–
–
–

–
–
–
–
–
–
–
–
–
–

100
–

100
–

–
–
–

1,200
900
350
350
–
–
500
–
–
–
–

–
–
–
–
–
–
–
22
–
–
22
–
–

0.80
0.45
0.65
0.65
0.65
0.75
0.65
0.28
0.18
0.33
0.33

–
–
–

–
0.95

–
–
–
–
–
–
–
–
–
–
–
–

*TC = mean temperature of the coldest month (in °C); GDD0 = growing degree-days above a 0 °C base (in  
°C day); GDD5 = growing degree-days above a 5 °C base (in °C day); TW = mean temperature of the warmest 
month (in °C); α = Priestley–Taylor coefficient at an annual time scale (dimensionless).

Table 2. A list of biome types used in the model and their generation rules

Abbreviation Biome type Plant functional types
TRRA
TRSE
TRDR
WAMX
TEDE
COMX
COCO
TAIG
CLMX
CLDE
XERO
WAST
COST
TUND
HODE
SEDE
PODE

Tropical rain forest
Tropical seasonal forest
Tropical dry forest/savannah
Broad-leaved evergreen/warm mixed forest
Temperate deciduous forest
Cool mixed forest
Cool conifer forest
Taiga
Cold mixed forest
Cold deciduous forest
Xerophytic woods/scrub
Warm grass/shrub
Cool grass/shrub
Tundra
Hot desert
Semi-desert
Polar desert

tr.e.t
tr.e.t + tr.r.t
tr.r.t
w-te.e.t
te.s + c-te.c.t + bo.s.t
te.s.t + c-te.c.t + bo.e.t + bo.s.t
c-te.c.t + bo.e.t + bo.s.t
bo.e.t + bo.s.t
c-te.c.t + bo.s.t
bo.s.t
sb.suc
wa.g.s
cl.g.s + cd.g.s
cd.g.s
h.d.s
c.d.s
p.d

Note: Each biome type is arising as a combination of dominant plant functional types.
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Evaluation methodology

Monthly time series of the temperature, pre-
cipitation and sunshine duration, along with 
location data, are required for evaluating the 
performance of the procedure proposed by 
Yin, X. (1999). The CarpatClim dataset pro-
vides access to the three meteorological vari-
ables relevant to the assessment for the time 
period 1960–2010, with a horizontal resolu-
tion of 0.1°, covering nine countries with 
5,895 grid cells (Figure 1). For this reason, 
using data derived from this dataset, RSD 
values for each year in the period 1961–2010 
are estimated using the scheme developed 
by Yin, X. (1999), and the estimates are com-
pared to the observed data. Observed values 
of RSD are determined by a two-step proce-
dure, following Spinoni, J. et al. (2015): (i) the 
monthly amount of BSD to which the Car-

patClim dataset provides access is divided 
by the number of days in a given month to 
calculate the monthly mean for BSD, and 
then (ii) this value is divided by the monthly 
mean for daylength that is calculated using 
Eq. 8.5.3 of Iqbal, M. (1983). Finally, in each 
grid cell, values of the root mean square error 
normalized by the mean value of observed 
data (RRMSE, in percentages) are computed 
between the observed and estimated 50-year 
time series of RSD, separately for each month.

To apply the parametric regression model 
proposed by Yin, X. (1999) to monthly glob-
al paleoclimate datasets already described 
in the introduction, two modifications are 
needed to use. A feature of such paleoclimate 
datasets is that they represent climatic con-
ditions averaged over a longer period (typi-
cally 30 or 50 years) at each time step. For 
this reason, it is considered necessary to in-

Fig. 1. Topography of the Carpathian Region based on the CarpatClim dataset (Spinoni, J. et al. 2015)
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vestigate how the scheme performs when ap-
plied to multi-year averages instead of single 
year time series. Furthermore, the regression 
model of Yin, X. (1999) also uses the monthly 
mean of hourly solar irradiance to estimate 
the global trend, but uses an algorithm to es-
timate the value of RE that cannot be applied 
without modification in paleoclimatological 
studies because it does not consider changes 
in the Earth’s orbital parameters. For this rea-
son, here, it is recommended that the value of 
RE be calculated using the algorithm used in 
the SPLASH v.1.0 model, with the addition 
that orbital parameters are calculated using 
the method of Berger, A. and Loutre, M.F. 
(1991). In this approach, first, the daily solar 
radiation at the top of the atmosphere is cal-
culated (Eq. 7 in Davis, T.W. et al. 2017), and 
then this value is multiplied by the atmos-
pheric transmissivity to obtain the value of 
daily surface radiation. In this case, as well, 
cloudless conditions are assumed, i.e., the 
transmission coefficient is taken into account 
with a universal value of 0.75, however, its 
value is modified as a function of elevation 
by using the scheme of Allen, R.G. (1996). 
The daylength is calculated via Eq. 1.6.11 in 
Duffie, J.A. and Beckman, W.A. (1991), using 
the sunset hour angle (Eq. 8 in Davis, T.W. 
et al. 2017). Finally, the mean hourly surface 
radiation is derived as the quotient of the 
daily surface radiation and the daylength. 
In this study, using the CarpatClim dataset, 
values of RSD for the period 1981–2010 are 
computed in two ways: (A) by averaging the 
time series estimated using the initial scheme 
for each year, and (B) by applying the scheme 
to 30-year averages, with the provision that 
the values of RE are calculated for year 1995 
using the algorithm described above.

When modelling the distribution of bi-
omes, monthly climatologies must be con-
verted to daily values, in order to simulate 
seasonal changes in both surface energy 
fluxes and climatic water balance. In the de-
scription of the water balance module used 
in the initial version of the BIOME model, 
Prentice, I.C. et al. (1993) have recommended 
for this that monthly values are interpolated 

linearly between mid-month days. However, 
this approach is unsound because it is not 
mean-preserving (the monthly means of the 
interpolated daily values will generally not 
match the original monthly values). When 
presenting the SPLASH v.1.0 model, Davis, 
T.W. et al. (2017) simply suggested that 
monthly mean values are assumed constant 
over each day of the month. This procedure 
is suitable in terms of the monthly averages, 
but it generates unrealistic time series. In the 
1990s, several mean-preserving methods (see 
e.g., Epstein, E.S. 1991; Lüdeke, M.K.B. et al. 
1994) were developed to address this issue. 
Here, quasi-daily values are constructed in 
two ways: (a) monthly averages of tempera-
ture and RSD are assumed constant, and the 
monthly precipitation sum is divided equal-
ly across each day of the month; and (b) for 
temperature and RSD, the ‘harmonic’ inter-
polation technique described by Epstein, E.S. 
(1991) is used, with a correction of physically 
impossible values, and in the case of precipi-
tation, the temporal scaling using an iterative 
interpolation technique described by Lüdeke, 
M.K.B. et al. (1994) is applied, with a damp-
ing variable of 0.7 for each month.

In this study, we assess the effects of the 
choice of the method used to generate the 
quasi-daily values and of the source of the 
BSD data on the results in terms of the spatial 
distribution of the bioclimatic variables used 
in the BIOME model. Finally, biome maps 
simulated under various model configura-
tion settings are compared using the Kappa 
statistic (Cohen, J. 1960), which value ranges 
from 0 to 1, with 0 representing totally dif-
ferent patterns and 1 indicating complete 
agreement.

Results and discussion

One of the key objectives of this study is to 
attempt to evaluate the performance of the 
estimation procedure for RSD using data 
provided by the CarpatClim database. The 
performance of the scheme proposed by 
Yin, X. (1999) is assessed based on the root 
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mean square error normalized by the mean 
value of observed data (RRMSE, in percent-
ages) calculated between the observed and 
estimated values for the period 1961–2010, 
separately for each month (Figure 2). From 
May to August, the RRMSE value in more 
than 90 percent of the study area does not ex-
ceed the threshold of 20 percent below which 
the model performance can be considered 
excellent, according to Bellocchi, G. et al. 
(2002). In the period from April to October, 
in nearly 99 percent of the grid cells with el-
evation smaller than 500 m a.s.l., the value of 
RRMSE is less than 40 percent, which is the 
limit of the model performance still consid-
ered acceptable based on the work of Belloc-
chi, G. et al. (2002). In the summer months, 
the RRMSE value in almost 90 percent of the 
lower regions (elevation < 500 m a.s.l.) does 
not even exceed the threshold of 15 percent. 
Interestingly, in the winter months, the esti-
mation scheme performs better in the higher 
than in the lower elevation areas (66 ± 3% and 
45 ± 28% of the regions at elevations above 
and below 500 m a.s.l., respectively, with a 
threshold of 40%). Although not within the 
scope of this study, it should be pointed out 
that the inconsistency between the measured 
and estimated values found in the Ukrain-
ian section of the Carpathians suggests (see 
Figure 2) that one or even more of the climate 
fields used in the assessment may contain 
significant errors in this region. However, an 
explanation of this requires a more detailed 
analysis.

An important objective of this paper is 
to assess how the accuracy of the estimates 
changes when the scheme is adapted for ap-
plying to paleoclimate datasets. To study this, 
values of RSD for the period 1981–2010 are 
calculated in two ways (Figure 3): (A) by aver-
aging the time series estimated using the ini-
tial scheme for each year, and (B) by applying 
the scheme to 30-year averages. The estimated 
results are compared to the averages of the 
measured values over the period 1981–2010 
(Figure 3, b). For the time window used here, 
we can see that in the period from March to 
September, the estimation method proposed 

here performs even better than the initial algo-
rithm. In these months, i.e., in the most impor-
tant period in terms of the evapotranspiration 
processes, with one exception, the value of 
RRMSE calculated for the whole study area 
does not exceed the threshold of 10 percent 
(see the second row in Figure 3, b), which in-
dicates a very good quality of the estimates. 
(As previously indicated, the Ukrainian part 
of the Carpathians is the main contributor to 
the observed discrepancies.)

In the context of Figure 3, it is important to 
underline that when applying the modified es-
timation scheme to 30-year averages, the over-
estimation is very high in the winter months (in 
January, its value exceeds the value of 0.15 over 
almost half of the region), which, combined 
with a low (around 0.254 in January) bench-
mark, results in very high values of RRMSE: 
60.8 percent in January and almost 30 percent 
in February. For both estimation methods, 
the difference in winter months, which is also 
highlighted above in relation to the Figure 2, 
is probably related to the formation of condi-
tions for cold-air pool (CAP), which is a typi-
cal weather situation in the Carpathian Basin 
(Szabóné André, K. et al. 2021). Namely, the 
CAP conditions are extremely favourable for 
the formation of fog which lead to less surface 
solar radiation. Considering that the model is 
globally parameterized, it is impractical to ex-
pect it to capture such local effects, but fortu-
nately, this model weakness has little relevance 
in simulating important processes for plants, as 
it will also be shown later.

The ultimate goal of this study is to examine 
how sensitive the BIOME model is to change 
configuration settings. We are interested in 
how the results change when on the one hand, 
the measured time series of RSD are replaced 
by estimates produced by different algo-
rithms, and on the other hand, the technique 
for generating daily weather data is made 
more sophisticated. For the latter aspect, the 
simulations are performed in two ways: (a) 
monthly means are assumed constant over 
each day of the month, and (b) different 
mean-preserving interpolation techniques are 
applied (for details, see evaluation methods).
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Fig. 2. Performance of the regression model developed by Yin, X. (1999) to estimate monthly time series of 
the relative sunshine duration (RSD, dimensionless), based on the root mean square error normalized by the 
mean value of observed data (RRMSE, in percentages). RRMSE values are calculated between the observed 

and estimated values for the period 1961–2010 using the CarpatClim dataset, separately for each month.

The presence of PFTs is fundamentally 
dependent on the plant-available moisture, 
which in the BIOME model is characterized 
by the α ranging from 0 to 1.26. Its value 
for the period 1981–2010 is calculated at an 
annual time scale using the SPLASH v.1.0 
model, with a total of six settings (Figure 4). 
The simulation performed using the mea-

sured values of RSD and assuming constant 
monthly means of each meteorological vari-
able over each day of the month is consid-
ered as a reference (Figure 4, a). Based on 
this, it can be concluded that there is suffi-
cient moisture in the study area for all woody 
PFTs related to mid-latitudes (cf. Figure 4, a, 
and Table 2), with the spatial resolution and 
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time window used here. The change 
in the methodology for generating 
daily weather data has little effect on 
the spatial distributions of this bio-
climatic index over the study period: 
for only 13 out of the 5,895 grid cells, 
the value of α changes by more than 
0.005 when the daily data required 
for the simulation are generated us-
ing more sophisticated techniques 
(see the first row of the second col-
umn in Figure 4, b). Regardless of the 
settings, the value of α for the period 
1981–2010 does not change over at 
least one-third of the target domain, 
however, the spatial distribution of 
these unchanged areas varies de-
pending on the choice of source for 

Fig. 4. Spatial distributions of the Priestley–
Taylor coefficient (α, dimensionless) in the 
Carpathian Region for the period 1981–
2010: (a) the values of α are simulated by 
the SPLASH v.1.0 model using the ob-
served values of monthly means of relative 
sunshine duration (RSD, dimensionless), 
assuming monthly means for each mete-
orological variable to be constant over each 
day of the month; and (b) the differences of 
α values modelled by the initial algorithm 
and estimated under various model con-
figurations. In each cell of the panel (b), the 
references are derived from the panel (a). In 
each row of the panel (b), the estimates are 
calculated using the RSD values derived 
from various sources: (O) by averaging the 
single year time series of the observations; 
(PA) by averaging the time series estimated 
using the initial scheme for each year; and 
(PB) by applying the scheme to 30-year av-
erages. In each column of the panel (b), the 
estimates are calculated using quasi-daily 
values of each meteorological variable gen-
erated by different approaches: (constant) 
monthly means are assumed constant over 
each day of the month; and (interpolated) 
different mean-preserving interpolation 
techniques are applied (for details, see 
evaluation methodology). In the panel (b), 
the root mean square error normalized by 
the mean value of reference data (RRMSE, 
in percentages) over the whole target do-

main is shown above each map.
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the RSD data. When using the model driven 
by sunshine data estimated using multi-year 
averages, the unchanged areas are limited to 
the Carpathians that are the wettest regions 
of the target domain (see the third row in 
Figure 4, b). At this setting, wetter conditions 
compared to the reference are simulated 
over more than two-thirds of the study area 
(66.9% and 63.2%, respectively, for constant 
and interpolated daily data). While simula-
tions using estimated single year time series 
of RSD show an underestimation in an area 
of a similar extent (see the second row in 
Figure 4, b). Overall, changing the configura-
tion settings does not have a significant effect 
on this bioclimatic index, with the RRMSE 

for this index hovering around 1.5 percent, 
considering all simulation experiments.

Considering all five bioclimatic indices 
used in the BIOME model, in addition to α, 
the growing degree-days can also be signifi-
cantly influenced by the approach used to 
generate daily temperature values. Thus, a 
sensitivity analysis is also performed for these 
two indices. Values of GDD5 and GDD0 for the 
period 1981–2010 are calculated using the two 
approaches described above, and their spatial 
distribution (Figure 5) is plotted (mostly) us-
ing the thresholds used in the BIOME model 
(see Table 1). Except for the highest peaks 
of the Carpathians, in the target domain, 
the value of GDD5 exceeds the threshold of 

Fig. 5. Spatial distributions of growing degree-days above base temperatures of 5 °C and 0 °C (GDD5 and GDD0, 
in °C day) in the Carpathian Region for the period 1981–2010. Panels (a) and (b) show the spatial distribution 
of respectively GDD5 and GDD0 depending on how the quasi-daily temperature values required to compute 
these bioclimatic indices are constructed: (constant) monthly means are assumed constant over each day of the 
month; and (interpolated) the ‘harmonic’ interpolation technique described by Epstein, E.S. (1991) is applied. 
Panels (c) and (d) show the spatial distributions of the differences between growing degree-days calculated 

from interpolated and constant daily values, respectively, for GDD5 and GDD0.
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1,200 °C day, regardless of the settings (see 
Figure 5), and thus, in these regions, the PFT 
“temperate summer-green tree” (te.s.t) can 
occur (see Table 2), due to the availability of 
sufficient moisture (see Figure 4). Although, 
in relation to the spatial distribution of these 
indices (Figure 5, a and b), a large difference 
between the two approaches cannot be ob-
served, inter alia due the thresholds used to 
plotting, but the distribution maps for the 
differences (Figure 5, c and d) provide ad-
ditional valuable information. In the case of 
GDD5 (GDD0), the areas with a difference of 
greater than 30 °C day are mostly located at 
altitudes lower (higher) than 500 m a.s.l. (cf. 
Figure 5, c and d, and Figure 1). For growing 
degree-days, the difference between the two 
algorithms is greater in grid cells where the 
monthly mean temperatures in the first and 
last months of the growing season are spread 
around the given base temperature and the 
annual diurnal range is relatively large. It is 
easy to understand that under a typical an-
nual temperature course, in cases where the 
monthly mean temperature is equal to or 
slightly greater than 5 °C in both April and 
November, for the GDD5, a larger amount of 
heat can be generated from interpolated val-
ues than from constant daily data.

As a final step in this study, it is checked 
how changing the configuration settings af-
fects the biome designation. Thus, the main 
results of this study include the distribution 
maps of biomes under different configura-
tion settings (Figure 6). Here again, the refer-
ence simulation is prepared using the meas-
ured values of RSD and assuming constant 
monthly means (the first row of the first col-
umn in Figure 6). For the period 1981–2010,  
5 out of the 14 extratropical biome types used 
by the BIOME model can be observed in the 
Carpathian Region, at a horizontal resolution 
of 0.1°. More than half (55%) of the target 
area is covered by the biome type “temperate 
deciduous forest” (TEDE), mostly limited to 
the lowlands (elevation < 250 m a.s.l.). With 
an areal proportion of 40.7 percent, the sec-
ond most dominant biome type in the target 
domain is the “cool mixed forest” (COMX), 

covering significant areas in Slovakia, Ukraine 
and the mountains of Romania. The types 
“taiga” (TAIG) and “cool conifer forest” 
(COCO) together cover a total of 4.2 percent 
of the study area. As shown in Figure 6, these 
types appear most markedly in the Eastern 
Carpathians. The type “tundra” (TUND) cov-
ers slightly more than 0.1 percent of the target 
area (7 grid cells). Comparing the simulation 
experiments, it can be found that the choice 
of source for the time series of RSD has no 
effect on the biome distribution under giv-
en space and time conditions: values of the 
Kappa statistic between the maps derived 
from the reference simulation and from the 
remaining two experiments are equal to one, 
i.e., the spatial distribution patterns of biomes 
are completely identical (see the first column 
in Figure 6). Biome maps generated using in-
terpolated daily values are consistent with 
each other (see the second column in Figure 6). 
Comparing them to the reference map, only a 
slight mismatch can be found (Kappa statistic 
= 0.9923). There is a disagreement between 
biome maps for only 24 of the 5,895 grid cells 
derived using different daily weather data. 
In all cases, this mismatch is explained by 
the discrepancy in the spatial distribution of 
GDD5 (see Figure 5, c). The difference is ulti-
mately due to the fact that in some grid cells 
of the Carpathians, certain heat-demanding 
woody PFTs (e.g., te.s.t) can occur in the case 
of the reference simulation, in contrast to the 
experiments using interpolated daily values. 
In summary, the BIOME model is not sensi-
tive to modify configuration settings consid-
ered here.

Conclusions

In this paper, as a case study for the Carpathi-
an Region, we inspect the efficiency of biome 
distribution simulation using only monthly 
temperature and precipitation climatologies. 
The biome maps were constructed by using a 
simple process-based vegetation model, the 
BIOME model, with one minor amendment: 
the water balance module of the model was 
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Fig. 6. Spatial distribution patterns of biomes simulated by the BIOME model in the Carpathian Region for 
the period 1981–2010. In each row, the biomes are derived using the sunshine duration data derived from 
different sources: (O) by averaging the single year time series of the observations; (PA) by averaging the time 
series estimated using the initial scheme for each year; and (PB) by applying the scheme to 30-year averages. 
In each column, the biomes are derived using quasi-daily values of each meteorological variable generated 
by different approaches: (constant) monthly means are assumed constant over each day of the month; and 
(interpolated) different mean-preserving interpolation techniques are applied (for details, see evaluation meth-
odology). Above each map, the Kappa statistic reflecting the degree of similarity of the distribution patterns 
is shown, using the map in the first column of the first row as a reference in each case. The abbreviations of 

biome types can be found in Table 2.
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replaced by the SPLASH v.1.0 model, thus 
switching to analytical expressions for cal-
culating daily radiation, evapotranspiration 
and soil moisture. Monthly temperature and 
precipitation data, which were required to 
create the biome maps, were taken from the 
CarpatClim dataset for the period 1981–2010. 
The relative BSD data required to run the 
SPLASH v.1.0 model were taken from the 
CarpatClim dataset and also estimated by 
the scheme proposed by Yin, X. (1999) us-
ing the above-mentioned temperature and 
precipitation data. Comparisons between the 
observed and estimated relative BSD time 
series for the period 1961–2010 showed that 
the estimation procedure performed rela-
tively well from late spring to early autumn, 
i.e., in the most important period in terms of 
the evapotranspiration processes. It was also 
examined the effects of two modifications 
justified by the applicability of the estima-
tion method to paleoclimate datasets: (a) to 
apply the scheme of Yin, X. (1999) to multi-
year averages instead of single year time se-
ries, and (b) to calculate the term related to 
the solar irradiance in the scheme by apply-
ing the algorithm used in the SPLASH v.1.0 
model under changing orbital parameters 
of the Earth. It was found that although the 
magnitude of overestimation for the modi-
fied algorithm is significant in the winter 
period, the proposed procedure performs 
similarly well as the initial procedure in the 
period from March to October. When mod-
elling the distribution of biomes, simulation 
experiments were performed to assess the 
effects of modifying some configuration 
settings of the model: (a) the generation of 
relative BSD data, and (b) the algorithm used 
to create quasi-daily weather data from the 
monthly climatologies. We found that under 
both the recent humidity conditions of the 
study region and the spatial resolution of 
the climate dataset used, the results can be 
considered sufficiently robust, regardless of 
the configuration settings tested. The choice 
of source for BSD data had no effect on the 
results, while the choice of the method for 
temporal downscaling of monthly tempera-

ture data had little effect on the distribution 
patterns of biomes. Thus, the main message 
of this paper is that using climate data avail-
able for Quaternary studies (i.e., monthly 
temperature and precipitation climatolo-
gies), the spatial distribution of biomes can 
be properly simulated via more sophisticated 
biome models than BCMs. We believe that by 
applying the modelling framework outlined 
here to the data provided by the CHELSA-
TraCE21k v1.0, the evolution of biomes over 
the past millennia can be properly mapped.
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