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Introduction

Water erosion is one of the most dangerous 
processes due to the transformation of cli-
matic conditions and anthropogenic impacts. 
Erosion of agricultural lands and subsequent 
fertility decline is one of the reasons for the 
abandonment of lands (Baude, M. et al. 2019; 
Suleymanov R. et al. 2020a). This is especially 
true for the southern regions of Russia, where 
degradation processes proceed at an acceler-
ated pace (Kattsov, V.M. 2017). The Republic 
of Bashkortostan is located in the southern part 

of the Ural Mountains and characterized by 
actively occurring processes of water and wind 
erosion (Sobol, N.V. et al. 2015; Gabbasova, 
I.M. et al. 2016; Suleymanov, R. et al. 2019). 
The size of erosion rates can be judged by the 
following data: the land fund of the republic is 
142,970 km2, agricultural land occupies 73,430 
km2 (51.37%), 36,000 km2 are erosion-hazard-
ous (25.18%), 33,000 km2 are exposed to water 
erosion (23.08%), wind erosion – 10,500 km2 
(7.35%), the joint action of water and wind ero-
sion – 120 km2 (0.08%) (Gabbasova, I.M. et al. 
2016; Suleymanov, R. et al. 2020b).
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Abstract 

This study aimed to map soil organic carbon under erosion processes on an arable field in the Republic of 
Bashkortostan (Russia). To estimate the spatial distribution of organic carbon in the Haplic Chernozem topsoil, 
we applied Sentinel-2A satellite data and the linear regression method. We used 13 satellite bands and 15 calcu-
lated spectral indices for regression modelling. A regression model with an average prediction level has been 
created (R2 = 0.58, RMSE = 0.56, RPD = 1.61). Based on the regression model, cartographic materials for organic 
carbon content have been created. Water flows and erosion processes were determined using the calculated Flow 
Accumulation model. The relationship between organic carbon, biological activity, and erosion conditions is 
shown. The 13C-NMR spectroscopy method was used to estimate the content and nature of humic substances of 
different soil samples. Based on the 13C-NMR analysis, a correlation was established with the spectral reflectiv-
ity of eroded and non-eroded soils. It was revealed that the effect of soil organic carbon on spectral reflectivity 
depends not only on the quantity but also on the quality of humic substances and soil formation conditions.
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Remote sensing (RS) is a useful tool in soil 
researches (Mulder, V.L. et al. 2011; Savin, I.Yu.  
et al. 2019). Multi- and hyperspectral images 
from unmanned aerial vehicles, aircraft, and 
space satellites are used for different scientific 
tasks. The active use of satellite data in last years 
is facilitated by improved spatial resolution, a 
large data set (multi-year image archives), a 
short interval, free access to satellite images 
(Sentinel, Landsat, and others) (Prudnikova, 
E.Yu. and Savin, I.Yu. 2015; Angelopoulou, T. 
et al. 2019). RS methods are more cost-effective 
and allow to cover large areas. 

The integration of RS and GIS is a valuable 
tool for research, digital mapping, and model-
ling of erosion processes (Leh, M. et al. 2013; 
Guo, B. et al. 2018; Nampak, H. et al. 2018; 
Suleymanov, A.R. 2019; Yang, X. et al. 2020). 
Study soil erosion based on RS and GIS methods 
are currently being actively studied throughout 
the world (Desprats, J.F. et al. 2013; Wang, L. 
et al. 2013; Panagos, P. et al. 2015; Yermolaev, 
O.P. 2017; Golosov, V. et al. 2018; Frankl, A.  
et al. 2018; Sepuru, T.K. and Dube, T. 2018; 
Phinzi, K. and Ngetar, N.S. 2019; Magliulo, 
P. et al. 2020). Erosion processes are directly re-
lated to soil organic carbon (SOC) content. In a 
review article by Angelopoulou, T. et al. (2019), 
about evaluating SOC based on RS data, the au-
thors conclude that recent advances in machine 
learning can help improve the overall accuracy 
and reliability of models. Thus, many studies 
confirm the successful use of satellite data in the 
study of transformation processes and automat-
ed mapping of SOC content (Mouazen, A.M.  
et al. 2007; Bartholomeus, H. et al. 2008; Dube, 
T. et al. 2018; Gholizadeh, A. et al. 2018; Bhunia, 
G.S. et al. 2019; Castaldi, F. et al. 2019; Chen, 
D. et al. 2019; Dou, X. et al. 2019; Vaudour, E. 
et al. 2019).

According to some studies (Ben-Dor, E.  
et al. 1997; Viscarra Rossel, R.A. et al. 2006b; 
Nocita, M. et al. 2015; Castaldi, F. et al. 2018, 
2019), in order to model and predict the 
SOC content, recommended to use spectral 
characteristics located in the visible range at  
450, 590, 664 nm, as well as the characteristics 
of the invisible range in the short-wave infrared 
SWIR range – between 1,600 and 1,900 nm and 

about 2,100 and 2,300 nm. At satellite Sentinel-
2A, the bands of the visible spectrum B2, B3, 
B4 (490, 560, and 665 nm, respectively) and the 
invisible range in the SWIR region are B11 and 
B12 (1,610 and 2,190 nm, respectively). Thus, 
as Sentinel-2A has a close correspondence of 
the spectral characteristics, it allows the use of 
data for the estimation and modelling of SOC 
content in topsoil. 

Soil colour is one of the key indicators for 
digital SOC mapping using RS (Mulder, V.L. 
et al. 2011). The qualitative and quantitative 
composition of humic acids in turn, affects the 
colour of the soil (Viscarra Rossel, R.A. et al. 
2006a). Thus, humic substances are an indica-
tor of the spectral reflectivity of the soil, with 
which a remote evaluation is possible. At the 
same time, soil organic matter (SOM) plays an 
important role in maintaining a good soil struc-
ture and directly affects the nature of erosion 
processes. SOM is responsible for the content 
of organic substances, nutrients, the activity of 
microorganisms, moisture retention.

Nuclear Magnetic Resonance (NMR) spec-
troscopy is a highly accurate physical and 
chemical tool for determining the composition 
and structure of soil organic matter (Quideau, 
S.A. et al. 2000; Chukov, S.N. et al. 2017, 2018; 
Polyakov, V. and Abakumov, E.V. 2020). The 
13C-NMR spectroscopy method allows to study 
the structural and compositional features of hu-
mic acid preparations of eroded soils, which 
will help to understand the ongoing processes 
of humification, degradation, and SOC trans-
fer on eroded lands (Simpson, M.J. et al. 2008; 
Abakumov, E.V. et al. 2013; Rumpel, C. et al. 
2014; Conte, P. et al. 2017).

Currently, in conditions of active anthropo-
genic impact, it is necessary to conduct local 
studies to understand the processes of trans-
formation and degradation of SOC. Thus, our 
work aims to map SOC content, estimate and 
study transport processes on an eroded agri-
cultural field, using Sentinel-2A satellite data, 
13C-NMR spectroscopy, and geomorphologi-
cal methods. The developed methodology will 
allow us to simulate and evaluate the SOC 
content in the topsoil of agricultural land for 
monitoring and mapping.
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Materials and methods

Site description

The study area is cropland (1,400 hectares) 
in long-term agricultural use located in the 
south of Russia, in the Zilair region of the Re-
public of Bashkortostan (Figure 1). The site is 
characterized by ploughing with a turnover 
of the soil layer at a depth of 10–15 cm. Wheat 
(Triticum aestivum) is predominantly growing 
on the plot. The cropland is located on gentle 
slopes of various exposures. According to ge-
omorphometric analysis based on digital el-
evation model (DEM), the height of the study 
area varies from 460 m in the north-western 
part of the site to 377 m above sea level in 
the south-eastern part. The area mainly con-
sists of slopes of up to 4°. The steepest sites 
are located in the southern, south-western, 
and northern parts of the site. The water ero-
sion processes take place in the southern and 
northern parts of the territory. Wind erosion 
processes are also observed at the site.

The climate of the region is arid or slightly 
arid. The average annual air temperature 
is 1.4 °C, the average annual rainfall is 379 
mm. According to the World Reference Base 
(WRB) for soil resources (IUSS Working 
Group WRB, 2014), the soil of the study site 
is characterized as Haplic Chernozems. The 
parent rocks are the eluvial-deluvial carbon-
ate clays and heavy loams, as well as the elu-
vium of sandy schists. 

Soil samples

The soil sampling work was carried out in 
October 2018 (49 full-profile sections and 5 
pits). The soil samples were identified by sat-
ellite images to choose areas with different 
spectral reflectivity and erosion conditions. 
The exact coordinates of each soil point were 
identified using a global positioning system 
(GPS) with an accuracy of ±3 m. The crop has 
already been harvested at this time. Samples 
for the analysis SOC content were taken from 

Fig. 1. Map of the study area (left) and spatial distribution of soil samples (n = 54). – a = elevation map in metres 
a.s.l.; b = slope map in degrees. Arrows and numbers (1–3) indicate samples for 13C-NMR spectroscopy analysis.
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the topsoil (0–10 cm). The carbon content was 
determined using the Tyurin method with 
colourimetric termination, according to Or-
lov and Grindel (Arinushkina, E.V. 1970; 
Sokolov, A.V. 1975). The microbiological 
activity of soils, the basal respiration, using 
incubation chambers was determined by 
standard protocol (Lal, R. et al. 2001). Soil 
basal respiration is defined as the steady rate 
of respiration in soil, which originates from 
the mineralization of organic matter.

Remote sensing data

The Sentinel-2 satellite free-access data-
set (Level-2A processing) was used for the 
study. The satellite data contains 13 spectral 
bands with a spatial resolution of 10 to 60 m.  
(Table 1). The cloud-free scenes from 02.10.2018 
were selected for the study. This scene time is 
selected for work with bare soil and reduce 
vegetation impact. Then images went through 
the stages of atmospheric and radiometric cor-
rection using the module “Semi-Automatic 
Classification Plugin” in QGIS 3.6.0.

For more complex analysis, the most 
popular spectral indices for predicting soil 
attributes have been selected. The follow-
ing indices based on the combination of 
Sentinel-2A satellite bands were calculated: 
Normalized Difference Vegetation Index 
(NDVI), Transformed Vegetation Index 

(TVI), Enhanced Vegetation Index (EVI), Soil 
Adjusted Total Vegetation Index (SATVI), Soil-
Adjusted Vegetation Index (SAVI), Moisture 
Stress Index (MSI), Green Normalized 
Difference Vegetation Index (GNDVI), Green-
Red Vegetation Index (GRVI), Land Surface 
Water Index (LSWI), Modified Soil Adjusted 
Vegetation Index (MSAVI), the Second 
Modified Soil Adjusted Vegetation Index 
(MSAVI2), Brightness Index (BI), the Second 
Brightness Index (BI2), Redness Index (RI), 
Color Index (CI). The index formulae and de-
scriptions are presented in Table 2.

Vegetation indices are important predic-
tors and are actively used in the modelling 
and mapping of soil properties. For exam-
ple, Bhunia, G.S. et al. (2019) successfully 
applied NDVI and BSI indices using a mul-
tivariate regression approach for SOC map-
ping. Gholizadeh, A. et al. (2018) showed 
that GNDVI and SATVI indices provided the 
strongest correlation with SOC on agricultural 
plots. Also, several studies conclude that vege-
tation indices are the most important variables 
in predicting soil properties (Gopp, N.V. et al. 
2017; Chen, D. et al. 2019; Emadi, M. et al. 2020).

13C-NMR spectroscopy

Soil samples for spectroscopy were selected 
according to the following parameters: a sam-
ple from a site of study area without water 

Table 1. Sentinel-2A bands specifications

Band Spectral range, nm Spatial resolution, m Spectral position, nm Bandwidth, nm
B1
B2
B3
B4
B5
B6
B7
B8
B8a
B9
B10
B11
B12

433–453
458–523
543–578
650–680
698–713
733–748
773–793
785–900
855–875
935–955

1,360–1,390
1,565–1,655
2,100–2,280

60
10
10
10
20
20
20
10
20
60
60
20
20

443
490
560
665
705
740
783
842
865
945

1,380
1,610
2,190

20
65
35
30
15
15
20

115
20
20
30
90

180
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erosion processes, with erosion processes and 
erosion sediment. Samples from the site with-
out water erosion were taken at the top in the 
northern part of the site. Samples from the plot 
of erosion processes and sediment were taken 
at the southern part of the field (see Figure 1).

Humic acids (HAs) were extracted according 
to a published IHSS protocol (Swift, R.S. 1996). 
Solid-state CP/MAS 13C-NMR spectra of HAs 
were obtained by Bruker Avance 500 NMR 
spectrometer. The repetition delay was 3 sec-
onds. The number of scans was 6,500–29,000. 
Contact time is 0.2 µs.

Various molecular fragments were iden-
tified by CP/MAS 13C-NMR spectroscopy 
(Table 3): carboxyl (–COOR); carbonyl (–C=O); 
CH3–, CH2–, CH–aliphatic; –C–OR alcohols, 
esters, and carbohydrates; phenolic (Ar–OH); 
quinone (Ar=O); aromatic (Ar–), which in-
dicates the great complexity of the structure 
of HAs and the poly-functional properties 
that cause their active participation in soil 
processes (Lodygin, E.D. et al. 2014).

To standardize the quantitative character-
istics of humic acid macromolecules, the fol-
lowing parameters were used: carbon ratio 
of aromatic structures to aliphatic structures, 
the decomposition rate of organic matter 
(C-Alkyl/ О-Alkyl), and humic acid hydro-
phobicity integral index (AL h,r + AR h,r, %).

Geomorphometric analysis

The geomorphometric analysis of the ter-
ritory was carried out using the QGIS and 
SAGA GIS based on a digital elevation model 
(DEM) with a resolution of 30 m – NASA’s 

Shuttle Radar Topography Mission (SRTM) 
(https://www2.jpl.nasa.gov/srtm). Maps of 
heights, slopes, and flow accumulation mod-
els were created. The Flow accumulation 
model determines the natural water direction 
for every pixel in a DEM. Flow accumulation 
operation calculates the total number of pix-
els that will drain into certain areas (Jenson, 
S.K. and Domingue, J.O. 1988).

Statistical analysis

Linear Least Squares Regression analysis was 
used to establish relationships between the 
values of satellite data and SOC content. A 
model was built separately for each band and 
index. Due to the limited number of soil sam-
ples available, a leave-one-out cross-validation 
procedure was applied (Khan, J. et al. 2010; 
Vaudour, E. et al. 2019). The advantage of 
leave-one-out is that each sample participates 
exactly once in control from all ‘n’ samples 
within the dataset. This procedure was re-
peated for all n samples (Gomez, C. et al. 2012).

Prediction accuracy was evaluated by the 
RMSE and the R2 values. The model with 
the lowest RMSE and highest R2 values was 
considered as the most applicable or ideal 
model (Jaber, S.M. et al. 2011). The R2 was 
determined by the following classification 
(Vaudour, E. et al. 2019): models with R2 < 
0.4 show a poor or very low level of predic-
tive ability; values of 0.5 < R2 < 0.7 indicate 
models with an average level of forecasting; 
models with R2 > 0.7 are highly predictive.

The accuracy of the model was also deter-
mined by the classification, where RPD (re-

Table 3. Chemical shifts of atoms of the 13C molecular fragments of humic acids

Chemical shift, ppm The type of molecular fragments
0–46
46–60
60–110

110–160
160–185
185–200

C, H-substituted aliphatic fragments
Methoxy and O, N-substituted aliphatic fragments
Aliphatic fragments doubly substituted by heteroatoms (including carbohydrate) 
and methine carbon of ethers and esters
C, H-substituted aromatic fragments; O, N-substituted aromatic fragments
Carboxyl groups, esters, amides, and their derivatives
Quinone groups; Groups of aldehydes and ketones
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sidual prediction deviation) was calculated. 
RPD values < 1.0 indicate a poor predictive 
model; 1.0 < RPD < 1.4 indicate a weak mod-
el; 1.4 < RPD < 1.8 indicate a good model that 
can be used for evaluation; 1.8 < RPD < 2.0 
indicate a good model; 2.0 < RPD < 2.5 show 
a very good model and values RPD > 2.5 in-
dicate the excellent quality of the predictive 
model (Chang, C.-W. et al. 2001; Viscarra-
Rossel, R.A. et al. 2006b).

The statistical analysis was performed 
using the “caret” package in R 4.0.3 (R 
Development Core Team, 2015) and RStudio 
(version 1.3.1093) (RStudio, 2015). The IDW 
and ordinary kriging interpolation maps 
were created using standard tools in QGIS.

Results and discussion

General statistics of soil properties: mean, 
minimum, maximum, standard deviation 
(SD), coefficient of variation (CV) are shown 
in Table 4. The values of SOC changed in the 
range from 1.93 to 5.52 per cent. The depth 
of the humic horizon is 20 to 70 cm, mean 
value – 46.32 cm. Spearman’s correlation (R) 
between SOC content in the 0–10 cm layer 
and the topsoil is 0.59. 

The regression analysis (Figure 2) showed 
that the maximum values of correlation co-
efficients R = 0.78, R2 = 0.61 were detected at 
the invisible range B12 band (SWIR, the spa-
tial resolution of 20 m and a spectral range of  

2,190 nm). The SWIR band of Sentinel-2A for 
SOC mapping shows good results in other 
croplands studies. Thus, in the Gholizadeh, 
A. et al. (2018) study in the Czech Republic, the 
authors obtained the highest correlation values 
(R) of B4, B5, B11, and B12 bands. The correla-
tion of the B12 band ranged from 0.29 to 0.69, 
depending on the field. 

The calculated spectral indices (see Table 2) 
showed less reliable correlation results (see 
Figure 2). The highest correlations were ob-
tained using NDVI (R = 0.68, R2 = 0.46), TVI 
(R = 0.67, R2 = 0.45), and EVI (R = 0.60, R2 
= 0.36), which use bands of visible red and 
near-infrared range in their equations. 

Attempting to diagnose the spatial distri-
bution of the topsoil using bands and indices 
did not lead to reliable results. Since there is 
a correlation between the SOC content and 
the topsoil depth, the highest values in re-
gression analysis are also shown by the B12 
band (R = 0.51, R2 = 0.26). 

Table 4. Statistics description of Corg in the 0–10 cm 
layer and the depth of the humic horizon

Parameter Corg, % Depth of humic 
horizon, cm

n = 54
Mean
Min
Max
SD
CV, %

3.72
1.93
5.52
0.88

23.65

46.32
20,00
70,00
9.49

20.49

Fig. 2. The correlograms (Spearman correlation) of SOC and topsoil at bands of Sentinel-2A and calculated 
spectral indices. The correlation coefficients are significant at a level of 0.05.
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The B12 band is the most appropriate vari-
able for prediction SOC, according to RMSE 
and R2 values (Table 5). We obtained the 
model with RMSE = 0.56, RPD = 1.61, and 
R2 = 0.58. According to the classification, this 
model characterizes as a good model with 
an average prediction level (Vaudour, E.  
et al. 2019). The RPD values in Gholizadeh, 
A. et al. (2018) were 1.60–1.92 depending on 
the territory; similar results using Sentinel-2 
data were obtained by Vaudour, E. et al. 
(2019) on the study territory of France – 1.51. 
The RPD results of Castaldi, F. et al. (2019) 
were values 1.1–2.6 on the study areas in 
Germany, Belgium, and Luxembourg.

All other Sentinel bands and spectral in-
dices are characterized by a very low level 
of predictive ability using a cross-validation 
procedure. However, the vegetation indices 
NDVI and TVI show values R2 = 0.42. This ap-
proximation of the model to the average pre-
diction level can be considered in future stud-
ies in similar areas and with a larger dataset.

The SOC content map based on the ob-
tained regression equation was created using 
the B12 band of the satellite. Additionally, 
the SOC maps were created using the IDW 
and ordinary kriging methods to verify the 
spatial distribution based on the regression 
equation (Figure 3).

The comparative analysis of three models 
(regression analysis, IDW, ordinary kriging) 

showed that the largest areas with the high-
est SOC content (4.5–5.5%) are concentrated 
in the western, north-western, and northern 
parts of the investigated field. These areas 
are characterized by the highest elevation 
elements with slopes up to 4°. Based on re-
gression analysis, we can also observe small 
areas with high SOC values in the north and 
central parts. The areas with the smallest SOC 
content are located in the south-east, north-
east, and central parts of the cropland. These 
areas are mainly located at heights between  
≈ 420 and 377 m. The areas of maximum top-
soil values are located at the top of the plot 
in the western part and also small areas in 
the central part. Analysis of SOC and topsoil 
maps revealed a spatial correlation: areas with 
layer thicknesses of 50 to 70 cm are equiva-
lent to areas of SOC content 3.5–5.5 per cent  
(see Figure 3). 

The water flows have been identified using 
the Flow Accumulation model (Figure 4). The 
main powerful flows gather throughout the 
site, forming the main “arteries”. The nature 
and direction of water flows are fully compa-
rable with the nature of the territory relief: the 
main flows are concentrated in the centre of the 
site (direction from north-west to south-east), 
as well as in the northern and southern parts.

When verifying the Flow Accumulation 
model with field surveys, it was found that 
the strongest degradation processes occur in 
the southern part of the territory. This distri-
bution is explained by the lowest part of the 
site and an increase in slope steepness (up 
to 6°). However, based on the analysis and 
maps obtained, the SOC content is not de-
fined as homogeneous in the southern part of 
the area. The southern area is predominantly 
characterized by an average thickness surface 
horizon (up to 50 cm) and not high SOC con-
tent (1.5–3.5%). The study region (Trans-Ural 
steppe zone) is characterized by active wind 
erosion processes (Khaziev, F.Kh. 1995). Thus, 
we can observe small plots with high SOC con-
tent (3.5–5.5%) in areas closer to and along the 
road due to the accumulation of soil on the 
leeward side of these barriers (see Figure 3). 
Nevertheless, this distribution can also be 

Table 5. Cross-validation performance statistics

Band RMSE R2 Index RMSE R2

B1
B2
B3
B4
B5
B6
B7
B8
B8a
B9
B10
B11
B12

0.81
0.81
0.86
0.88
0.89
0.86
0.85
0.85
0.84
0.85
0.89
0.76
0.56

0.11
0.14
0.04
0.00
0.22
0.03
0.05
0.05
0.07
0.06
0.02
0.23
0.58

NDVI
GNDVI
EVI
CI
BI
BI2
TVI
SAVI
SATVI
RI
MSI
LSWI
GRVI

0.66
0.77
0.72
0.89
0.87
0.89
0.66
0.74
0.82
0.87
0.76
0.76
0.87

0.42
0.21
0.31
0.04
0.02
0.00
0.42
0.26
0.10
0.02
0.23
0.24
0.00
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caused by the influence of vegetation. We have 
masked areas with vegetation and roads, but 
the spatial resolution of the B12 band (20 m) 
can still account for this information.

The small areas of high SOC content (3.5% 
and more) are observed in the northern part, 
near the boundary of the field, which may 
well be consistent with the transfer of SOC 

Fig. 3. The SOC content (0–10 cm) maps created using methods: a = Regression analysis based on satellite band 
B12; b = IDW; c = Ordinary kriging, and topsoil depth map using IDW method; d = Areas with vegetation and 

roads are masked by white colour. 
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from the upper elements of the relief: this 
area is also characterized by lowering the re-
lief and slopes up to 6–8°. Moreover, water 
erosion processes are actively occurring in 
this part of the field.

The lowest value of the microbiological ac-
tivity of soils in the topsoil was detected in 
erosion sediment – 12.6 CO2 g /100 g day-1. 
Whereas in a non-erosive sample located a few 
meters from the erosion sediment, basal respi-
ration is equal to 18.8 CO2 g /100 g day-1. The 
highest values are determined on the upper 
non-erosion elements of the terrain on average 
25 CO2 g /100 g day-1 (n = 7, SD = 5). Thus, the 

high microbiological activity is noted in not 
degradation process areas with the largest SOC 
content. The lower values of basal respiration 
are detected in an area vulnerable to erosion 
processes and the erosive sediment sample.

Verification of eroded and non-eroded 
soil samples of the south area of the field 
by 13C-NMR spectroscopy revealed the fol-
lowing results (Table 6). The sample No 1 
(erosion sediment) is characterized by an in-
crease in the aliphatic and oxygen-containing 
group compared to other samples; the ratio 
of AR/AL is 0.67. The erosion process led to 
a decrease in the aromaticity of HAs and the 

Fig. 4. Flow accumulation model map (left) and examples of rill erosion (right)

Table 6. Percentage of carbon in the main structural fragments of HAs from the studied surface soil horizons*

Sample
Chemical shifts, ppm

AR AL AR/AL AL h,r + 
AR h,r, %

C,H – AL / 
O,N – AL0–46 46–60 60–110 110–160 160–185 185–200

1
2
3

25
23
25

6
6
6

24
22
25

30
33
27

10
12
11

5
4
6

40
45
38

60
55
62

0.67
0.82
0.61

79
78
77

0.83
0.82
0.81

*According to 13C-NMR data. Note: AR = Aromatic fraction; AL = Aliphatic fraction; AL h,r + AR h,r = 
Hydrophobicity degree in per cent; C,H – AL/O, N – AL = The degree of decomposition of organic matter.
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removal of stable soil carbon. The formation 
of aromatic components in the soil is a long-
term thermodynamic process. We assume 
that under conditions of water erosion, the 
formation of long carbon chains (–C–C–) and 
oxygen-containing fragments (O–CH–) oc-
curs. This distribution also occurs in water-
logging conditions (Lodygin, E.D. et al. 2001, 
2014). Water flows prevent the processes of 
decomposition of plant residues in the soil 
due to erosion processes. It leads to the ac-
celeration of the transformation processes. 

The sample No 2, which is not affected by 
degradation processes, has more aromatic frag-
ments in its composition than in the samples 
No 1 and 3. It is distinguished by the accumu-
lation of aromatic and carboxylic fragments; 
the ratio of AR/AL is 0.82. The increase of these 
structures in the composition of HAs is associ-
ated with the transformation of humification 
precursors, especially lignin-containing plant 
residues. In the decomposition of plant resi-
dues, up to 30 per cent of lignin enters the soil, 
which during transformation is included in the 
composition of HAs in the form of aromatic 
structural units and carboxylic groups.

The eroded areas are characterized by a de-
crease in the aromaticity of SOC. There is the 
removal of dark-coloured materials of SOM 
and fine soil particles from such areas. They 
are characterized by less active processes of 
decomposition of plant residues and micro-
biological processes, and thus have lower 
HAs values and are visualized as lighter ar-
eas according to maps constructed by regres-
sion analysis and interpolation. Such areas of 
the field are also well identified according to 
the Flow Accumulation model, which deter-
mines the rate of water flow.

The sample No 3 is represented by a little 
clayey top of the area from which the sheet 
erosion started. According to NMR spectros-
copy, more aliphatic fragments of HAs are 
formed here – AR/AL (0.61). Clay formations 
have a high heat capacity and moisture re-
tention capacity (Abu-Hamdeh, N.H. 2003; 
Rozhkov, V.A. 2006). However, such forma-
tions are often quite dense aggregates in dry 
places. This soil structure affects the pene-

tration and development of the root system, 
soil water and air movement, CO2 emission, 
erosion, nutrient retention, and biological 
activity (Ciric, V. et al. 2012). Clayey parti-
cles capture nutrients from the environment 
well, but without sufficient moistening, they 
become inaccessible to the plants. We assume 
that moisture does not accumulate here, and 
there is no saturation of this area because of 
the location on top of the studied area. Thus, 
there is an oppression of the soil microbiota, 
which affects the lower degree of humifica-
tion relative to the rest of the studied areas, 
which is confirmed in Figure 5.

From this diagram, we can observe the fol-
lowing distribution: sample No 1 (erosion 
sediment) has a higher degree of humifica-
tion than sample No 2, which is not prone 
to erosion. Such a change of parameters 
is related to the dynamic re-deposition of 
small particles of soil. SOM binds well with 
the clay due to its large specific surface area 
of soil aggregates. Chemically bound orga-
nomineral compounds are removed from 
the soil profile under the influence of water 
erosion and accumulate in newly formed 
water flow areas. Prolonged hydration of 
such particles favourably affects the humi-
fication processes in soil and the formation 
of hydrophobic macromolecules. Thus, there 
is a thermodynamic selection of condensed 
HAs macromolecules and their stabilization.

Fig. 5. The diagram of integrated indicators of the mo-
lecular composition of humic acids. AL h,r + AR h,r in-
dicates the total number of un-oxidized carbon atoms.
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Verifying the obtained results of NMR 
spectroscopy with remote sensing and ge-
omorphometry data, it can be stated that 
non-eroded areas with high SOC content 
are characterized by darker colouration and 
intensive light absorption. This is due to the 
high decomposition of plant residues, mi-
crobiological activity, and a high degree of 
aromatic humic substances in our condition. 
Such areas are located on top of the site, as 
well as areas along roads, forest plantations, 
and in some low-lying areas of the terrain, 
where valuable soil structures are transferred 
through water and wind erosion.

The processes of rill water erosion are shown 
on space images mainly as darker and spots 
of SOC high values due to the re-deposition of 
the upper fertile fractions from the top relief 
elements. At the same time, the darker colour-
ation of such areas is also affected by mois-
tening, as such deep relief elements can retain 
wet soil for longer, which affects the spectral 
reflectivity of the soil. However, rill erosion 
zones do not always look like darker ones, as 
a movement of water flows, and repositioning 
of fractions is affected by micro-relief. Digital 
models with an ultra-high spatial resolution to 
identify micro-reliefs are needed. 

Conclusions

To date, the method of application of RS and 
13C-NMR spectroscopy in the investigations 
and digital mapping of SOC is insufficiently 
studied. Based on the comprehensive study 
of the field in long-term agricultural use with 
ongoing erosion processes and slopes of up 
to 8 degrees, it can be concluded that:

1. Sentinel-2A data can be successfully 
used for mapping SOC content and their un-
certainty in topsoil. In our study, the highest 
correlation values were shown by the SWIR 
B12 band with a spatial resolution of 20 m 
and a spectral range of 2,190 nm. The devel-
oped linear regression model has an average 
level of prediction. The maps created allowed 
us to estimate the spatial distribution of SOC 
content on the study plot.

2. Geomorphometric analysis of the ter-
ritory allowed to define more precisely the 
relief character and directions of water flows 
that determine the development of erosion 
processes. We can conclude that in the ero-
sion areas, due to the active movement of soil 
sediments by water flows, the territory is not 
homogeneous in SOC content. There is an 
active transfer of soil fractions, which forms 
areas of washing away and accumulation of 
soil sediments. In most cases, areas along 
forest plantations, roads, and low elevation 
elements are characterized by the accumula-
tion of SOC transported by water and wind 
streams from the upper parts of the relief. 

3. 13C-NMR analysis has shown that the 
non-eroded areas have a developed humic 
acid structure due to the complete process of 
decomposition of vegetation and microbial 
activity. Together, this has a direct impact on 
soil colouration and thus determines the na-
ture of the spectral reflectance of soils. Areas 
vulnerable to sheet erosion are characterized 
by reduced aromaticity of SOC. These areas 
define such areas as less dark on space imag-
es. Despite less developed processes of SOC 
formation in areas of rill erosion, these areas 
are characterized by a darker colour of soils 
due to the re-deposition of fertile fractions 
and moisture accumulation.
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