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Introduction

The relationship between precipitation and 
elevation is a well-known topic in the field 
of geography and meteorology (Henry, A.J. 
1919; Duckstein, L. et al. 1973; Basist, A.  
et al. 1994; Weisse, A.K. and Bois, P. 2001; 

Sasaki, H. and Kurihara, K. 2008; Haiden, 
T. and Pistotnik, G. 2009). Climatological 
precipitation maps of diversified terrains can 
be prepared using the connections among 
measured precipitation data at hydromete-
orological stations. Nowadays, precipitation 
data can be accessed in high spatial and tem-
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Abstract

The relationship between precipitation and elevation is a well-known topic in the field of geography and 
meteorology. Radar-based precipitation data are often used in hydrologic models, however, they have several 
inaccuracies, and elevation can be one of the additional parameters that may help to improve them. Thus, our 
aim in this article is to find a quantitative relationship between precipitation and elevation in order to correct 
precipitation data input into hydrologic models. It is generally accepted that precipitation increases with 
elevation, however, the real situation is much more complicated, and besides elevation, the precipitation is 
dependent on several other topographic factors (e.g., slope, aspect) and many other climatic parameters, and 
it is not easy to establish statistically reliable correlations between precipitation and elevation. In this paper, 
we examine precipitation-elevation correlations by using multiple regression analysis based on monthly cli-
matic data. Further on, we present a method, in which these regression equations are combined with kriging 
or inverse distance weighting (IDW) interpolation to calculate precipitation fields, which take into account 
topographic elevations based on digital terrain models. Thereafter, the results of the different interpolation 
methods are statistically compared. Our study areas are in the hilly or low mountainous regions of Hungary 
(Bakony, Mecsek, Börzsöny, Cserhát, Mátra and Bükk montains) with a total of 52 meteorological stations. Our 
analysis proved that there is a linear relationship between the monthly sum of precipitation and elevation. For 
the North Hungarian Mountains, the correlation coefficients were statistically significant for the whole study 
period with values between 0.3 and 0.5. Multivariate regression analysis pointed out that there are remarkable 
differences among seasons and even months. The best correlation coefficients are typical of late spring-early 
summer and October, while the weakest linear relationships are valid for the winter period and August. The 
vertical gradient of precipitation is between one and four millimetres per 100 metres for each month. The 
statistical comparison of the precipitation interpolation had the following results: for most months, co-kriging 
was the best method, and the combined method using topography-derived regression parameters lead to only 
slightly better results than the standard kriging or IDW.
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poral resolution due to radar measurements. 
However, these radar-derived precipitation 
data require correction. The use of digital 
terrain data can be an essential step in this 
data correction process (Crochet, P. 2009). 
Precipitation is an important input data in 
hydrological models, thus, the main reason 
for studying the relationship between pre-
cipitation and topography is to make hydro-
logical models more accurate.

We often simplify the relationship of pre-
cipitation and elevation by stating that the 
amount of precipitation increases with eleva-
tion. However, this relationship is an over-
simplification, because elevation, rise, expo-
sure and orientation are equally important 
in defining this relation (Spreen, W.C. 1947).

Already a century ago, Henry, A.J. (1919) 
presented a statistical analysis of several 
sites with high amount of precipitation (e.g., 
Hawaii, India, Indonesia), in which he con-
cluded that the increase of precipitation cor-
relates mostly with slope steepness. Spreen, 
W.C. (1947) correlated the mean annual pre-
cipitation with elevation and other param-
eters, and it turned out that elevation itself 
determines only 30 per cent of precipitation 
variance. However, when he used multivari-
ate regression including aspect, terrain, and 
the line of drift of the mountains, it turned 
out that these parameters together deter-
mine 85 per cent of precipitation variance. 
According to Duckstein, L. et al. (1973), it is 
important to examine whether the increasing 
precipitation in mountainous areas comes 
from the growing number of rainfall events 
or from the increasing amount of precipita-
tion in each rainfall event. According to their 
observations, the amount of precipitation 
moderately increases with elevation during 
each rainfall event, and the seasonal amount 
of precipitation also increases linearly with 
elevation. 

Basist, A. et al. (1994) stated that the best 
determining factors are combined topographic 
factors, while elevation itself does not corre-
late well with precipitation according to their 
regression analysis. Because of the cooling 
of air temperature, the maximum humid-

ity decreases with higher elevation, therefore 
there is a theoretical ’elevation of maximum 
precipitation’ (Alpert, P. 1986), thus, precipi-
tation can increase only up to this elevation. 
However, due to the rarity of upland stations, 
it is hard to determine this ’elevation of maxi-
mum precipitation’, but in the region of Alps it 
is estimated to be at 3,500 m a.s.l. (Schwarb, M. 
2000), therefore a linear correlation between 
precipitation and elevation can be used only 
below this elevation, while above this eleva-
tion, the precipitation-elevation relationship 
can be modelled only by higher order poly-
nomials. Sasaki, H. and Kurihara, K. (2008) 
examined this relationship for the months of 
June and July in Central Japan. In this case, 
they used raster-based precipitation data in-
stead of station data to find a connection with 
elevation. Their results demonstrated that 
there is a statistically significant relationship 
between precipitation and elevation, but the 
correlation is low (r = 0.3-0.4). According to 
Smith, C.D. (2008), there is a strong linear re-
lationship between the monthly sum of pre-
cipitation and elevation in the cold periods of 
the year in the Canadian Rocky Mountains, 
but in summer, this relation is much weaker. 
Cambi, C. et al. (2010) examined the central 
part of the Apennines in Italy from a hydro-
geological perspective, but they also used sta-
tion data of precipitation and temperature. 
Their research came to a conclusion that there 
are relationships between elevation and pre-
cipitation, and also between elevation and 
temperature, but the correlation is weaker  
(R2 = 0.88) in the case of precipitation than in 
the case of temperature (R2 = 0.93).

Several authors studied the horizontal 
trends in the spatial distribution of precipita-
tion, which are often reflected in ecosystems 
as well. Ha, K.J. et al. (2007) investigated di-
rectional features of rainfall distribution over 
the Korean Peninsula, and they found that 
apparent band-type rainfall tends to be domi-
nant with a SW–NE tilted pattern in July and 
August. Millett, B. et al. (2009) pointed out 
that the Prairie Pothole region has a strong 
NE–SW precipitation trend. Lauenroth, W.K. 
et al. (1999) emphasized that W–E gradient in 
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precipitation and the N–S gradient in tempera-
ture result in corresponding gradients in plant 
community types of the Prairie. Ruiz Sinoga, 
J.D. et al. (2011) mentioned that precipitation is 
very irregular but generally decreases in a W–E 
gradient in southern Spain. Cortesi, N. et al. 
(2012) described that the annual precipitation 
concentration index shows a NW to SE gra-
dient for Europe. Goodwell, A.E. (2020) pre-
sented the dominant directions of precipitation 
influence in the USA using longterm precipi-
tation data and information theory. Although 
directional trends are often incorporated into 
interpolation methods, they can also be more 
directly examined by regression analysis.

The correction of precipitation data via 
digital elevation models is also a well-known 
field of research. Daly, C. et al. (1997) devel-
oped the method of PRISM where the pre-
cipitation field was corrected by an effective 
height grid which was a smoothed large-
scale representation of the topography of 
the USA. In this case, the ’effective height’ 
was calculated for each pixel as the differ-
ence between the real and the smoothed ter-
rain. This model used several parameters to 
estimate the amount of precipitation, for in-
stance, slope exposure, wind speed and wind 
direction data. Goodale, C.L. et al. (1998) 
developed a method for Ireland, in which 
precipitation data were mapped and cor-
rected using digital terrain models (DTMs), 
polynomial regression and quadratic trend 
surfaces. The application of the quadratic 
trend surfaces allowed them to estimate the 
change in precipitation and in temperature 
in a regional scale, while the actual elevation 
allowed them to estimate the difference be-
tween the elevation and the trend surface. 
Weisse, A.K. and Bois, P. (2001) developed 
the method named AURELHY, which con-
centrated on rainfall events. In this model, 
the precipitation variables are connected to 
local topography using ’kriging’ regression 
residuals and multivariate linear regression. 

Szentimrey, T. and Bihari, Z. (2007) 
worked out a compound interpolation 
method for the Hungarian climatologi-
cal studies called MISH. This method uses 

multiplicative interpolation formula for the 
lognormally distributed precipitation along 
with homogenization (called MASH), local 
statistical parameters and other background 
information (e.g., satellite, radar and pre-
dicted data) for the interpolation. Haiden, 
T. and Pistotnik, G. (2009) used station pairs 
across the Alpine region with a horizontal 
distance of about 4 km and a vertical distance 
of 1 km with 12-h precipitation observation 
intervals alongside with correction factors 
like precipitation intensity, wind speed and 
wet-bulb temperature (i.e. the temperature 
read by a thermometer covered in water-
soaked cloth). This method can be used for 
making high-resolution precipitation maps 
in a mountainous area with a temporal reso-
lution of 1 day or lower. Mair, A. and Fares, 
A. (2010) compared interpolation methods 
for Hawaii using 3 years of data measured 
by 21 meteorological stations. They came to 
the conclusion that the method named ’ordi-
nary kriging’ was the best interpolator. Ly, S.  
et al. (2011) also compared geostatistical in-
terpolation methods for Belgium. They tested 
the following methods: ’Thiessen polygons’, 
’inverse distance weighting’ and various 
types of ’kriging’. Elevation was used as an 
additional factor during the interpolation, 
and they had the conclusion that the best 
methods were the ’inverse distance weight-
ing’ and two types of ’kriging’. Noori, M.J. 
et al. (2014) used precipitation data meas-
ured at 21 meteorological stations in Duhok, 
North Iran for comparing the ’inverse dis-
tance weighting’ method with its improved 
versions. They found that ’inverse distance 
weighting’ can be used for interpolating 
precipitation data – with certain settings – 
because the correlation coefficient between 
the measured and predicted precipitation 
exceeded the value of 0.74 in most cases.

In Hungary, it is stated that the yearly sum 
of precipitation increases with 35 millime-
tres every 100 metres of elevation, but this 
gradient shows a decrease from southwest 
to northeast (Bartholy, J. and Pongrácz, R. 
2013, OMSZ). In the case of Mátra Mountains 
Roncz, B. (1982) examined the precipitation-
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elevation relationship, and he used precipita-
tion data from 64 stations. The research led to 
a conclusion that the relationship between el-
evation and precipitation can be described as 
a stochastic linear connection with a higher 
value of correlation coefficient in the period 
of spring and October, and a lower value in 
the period of winter and August.

The aim of our research is to study the 
relationship between precipitation and el-
evation in Hungary, thus, we examine areas 
where the topographic differences are rela-
tively high (in a Hungarian context), namely 
Bakony, Mecsek, Börzsöny, Cserhát, Mátra 
and Bükk mountains. We use monthly sums 
of station-measured precipitation data be-
cause according to our hypothesis, there are 
significant differences in correlation among 
months. As for daily and rainfall event data, 
they have a higher random 
component, thus, statistical 
relationships are less recog-
nizable. We apply simple 
and multivariate regres-
sion analysis to examine 
the relationship between 
precipitation and elevation 
and location coordinates. In 
the following, we also pre-
sent how the results of the 
regression analysis and the 
DTM can be used in a com-
bined interpolation process 
to derive topographically 
corrected precipitation ras-
ters. Finally, we compare 
these methods to other in-
terpolation methods, such 
as kriging, inverse distance 
weighting (IDW) and co-
kriging. While kriging and 
IDW do not use explicit 
topographic information, 
in co-kriging, the DTM is 
added as a secondary vari-
able. The results of these in-
terpolations are compared 
using independent station 
data.

Data and study area

The data used for our work is provided by the 
Hungarian Meteorological Service (Országos 
Meteorológiai Szolgálat, OMSZ), the Hun-
garian General Directorate of Water Man-
agement (Országos Vízügyi Főigazgatóság, 
OVF) the Central Danubian Valley Water 
Management Directorate (Közép-Duna-
völgyi Vízügyi Igazgatóság, KDVVIZIG) and 
the North Hungarian Water Management 
Directorate (Észak-magyarországi Vízügyi 
Igazgatóság, ÉMVIZIG). We used data from 
52 stations found at six hilly and low moun-
tainous study areas, of which 10 were locat-
ed in Bakony, 8 in Mecsek, 8 in Börzsöny, 
3 in Cserhát, 12 in Mátra and 10 in Bükk 
mountains (Figure 1). The combined North 
Hungarian Mountains study area extent is 

Fig. 1. Location of the applied meteorological stations (red crosses) in the 
North Hungarian Mountains (a), in the Bakony Mountains (b), and in the 

Mecsek Mountains (c)
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marked with a red boundary in Figure 1 (a), 
whereas the other study areas are shown in 
Figure 1 (b) and (c). Precipitation data were 
available in monthly, daily and hourly time 
steps between 2011 and 2015. However, due 
to the high randomness of daily (and even 
more hourly) data, we used monthly sums 
of precipitation for each station in the pre-
sent analysis. The mean station density of the 
study area is 1.5 station/100 km2. 

Methodology

Simple and multivariate regression analysis

The first step of our research was to perform 
a simple regression analysis on the monthly 
sums of precipitation. We investigated the re-
lationship of precipitation and elevation for 
each month and each area. As we mentioned 
in the Introduction, several authors pointed 
out that there may be a directional trend in 
precipitation like the decrease of precipitation 
in a continental scale from the oceans to the 
inner parts of continents. Thus, we were also 
curious to know if directional changes can be 
recognized in precipitation patterns or not on 
the scale of Hungarian mountains. For this 
reason, easting and northing were also added 
as further independent parameters, therefore 
multivariate regression models were used.

In the case of simple re-
gression, the relationship 
between precipitation and 
elevation is characterized by 
the following equation:

P = a1z + a0 , 

where P is the amount of 
precipitation measured at 
the station, z is the elevation 
above sea level, while a1 and 
a0 are the coefficients of the 
regression equation.

Thereafter, we added north-
ing and/or easting coordinates 
alongside elevation to see if 

North–South, East–West or other directional 
trend exists in precipitation. According to 
the Hungarian National Grid system (HD72 / 
EOV), x denotes northing and y denotes east-
ing. However, as in most GIS systems, x is 
easting and y is northing, we used this latter 
notation. We tried several combinations. The 
combination of northing and elevation, the 
combination of easting and elevation and fi-
nally, the use of all three parameters. In these 
cases, the equations can be written as below:

P = a2z + a1x + a0 , 

P = a2z + a1y + a0 , 

P = a3z + a2y + a1x + a0 , 

where a3 , a2 , a1 and a0 are the coefficients of 
the equations.

Combination of deterministic and stochastic 
methods in the interpolation of precipitation

The steps following the regression analysis 
are illustrated in Figure 2. In the first step, the 
predicted precipitation is calculated for each 
meteorological station based on the coordi-
nates of the station and the regression equa-
tions mentioned above. Thereafter, either 
kriging or IDW interpolation is used for the 

Fig. 2. Flow chart demonstrating the steps of the combined method

(2)

(3)

(4)



Schneck, T. et al. Hungarian Geographical Bulletin 70 (2021) (1) 35–48.40

difference of the observed and predicted data. 
This is the stochastic element of the method.

In the next step, we calculate a linear trend 
surface by using regression equation (4) and 
the coefficients a2 , a1 and a0 . Thereafter, with 
the inclusion of coefficient a3 , we create a pre-
cipitation field taking into account elevation 
based on a digital terrain model, SRTM (van 
Zyl, J.J. 2001; Rabus, B. et al. 2003) in our case. 
The error of SRTM elevation data is generally 
below 10 m, though random outliers may oc-
cur (Rodriguez, E. et al. 2006), thus, it causes 
little error with respect to several 100 metres 
of elevation differences within the study area. 
Its usability for Hungary in geomorphological 
studies was also thoroughly tested by Józsa, 
E. and Fábián, Sz.Á. (2016). The SRTM is the 
deterministic element of the method. Finally, 
the combined precipitation raster is calculated 
by adding the interpolated difference map to 
the regression-based precipitation raster. 

The final map can be compared to the 
rasters created by kriging or IDW, which 
do not take elevation directly into account. 
Naturally, station precipitation data inher-
ently include the effect of elevation. In the 
present study, we applied kriging using a lin-
ear variogram model and no anisotropy. The 
IDW was used with a power of 2 and without 
smoothing. All rasters had 1 km resolution.

The combined method is basically similar 
to the methods ’kriging with radar-based 
error correction’ in Goudenhoofdt, E. and 
Delobbe, L. (2009) and ’conditional merg-
ing’ in Sinclair, S. and Pegram, G. (2005). 
However, in the present case, the objective 
was not to elaborate a radar-based precipi-
tation correction method but to perform a 
combined interpolation for meteorological 
station data taking elevation into account.

In addition, for comparison purpose, co-
kriging method was also used alongside with 
kriging and IDW. During the co-kriging pro-
cess, the measured precipitation values were 
used as a primary dataset, while the SRTM 
DTM as a secondary dataset. This interpola-
tion method was also used among others by 
Azimi-Zonooz, A. et al. (1989) and Velasco-
Forero, C.A. et al. (2009).

Results

Results of the simple and the multivariate 
regression analysis

All forms of regression equations mentioned 
in the methodology were studied for each 
study areas. The test demonstrated that if 
we use more variables in the model, then 
the value of the correlation coefficient (also 
the value of R2) increases (Figure 3). It is also 
found that the relationship has monthly 
variations, therefore we suggest the use of 
monthly coefficients in the elevation-based 
correction of precipitation data, although 
even the coefficients for the same month in 
different years are varied to some extent.

The correlations based on the data of 
Mecsek and Bakony mountains are only sig-
nificant if all variables are used, and even in 
these cases only few months are characterized 
by statistically significant correlations. In case 
of the merged North Hungarian Mountains, 
the use of only z as an independent variable 
can result significant correlation during the 
spring period, while using more variables re-
sults significant correlations for each month. 
The correlations were the strongest in the pe-
riod of late spring-early summer and October, 
while the weakest correlations can be ob-
served for August (see Figure 3). Thereafter, 
we calculated the precipitation values for the 
North Hungarian Mountains using the best-fit 
multiple regression model for each month. We 
compared the observed and calculated values 
in Figure 4. The point scatters are in agreement 
with the fact that determination coefficients 
are relatively low but significant.

The coefficient of elevation in the regres-
sion equation can be interpreted as the ver-
tical precipitation gradient. Thus, based on 
the regression results, we got that the vertical 
precipitation gradients are between 0.010 and 
0.035 both in simple and multivariate regres-
sions with a peak in spring. This implies that 
in the North Hungarian Mountains monthly 
precipitation increases by 1.0–3.5 mm as el-
evation gets 100 m higher. However, the el-
evation coefficients of Mecsek and Bakony 
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Fig. 3. Values of R2 for each month according to each variable-combination in the regression equations. Variable-
combinations: Z = elevation; ZX= elevation and easting; ZY = elevation and northing; ZYX = elevation, easting 

and northing. The values of R2 are shown numerically where they are significant (at a = 0.05).

Fig. 4. Observed vs predicted (Pred) precipitation for each month using all independent variables for the  
North Hungarian Mountains (34 stations)
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mountains are between -0.06 and +0.04 that 
indicates the lack of a clear relationship be-
tween precipitation and elevation. This might 
be due to the low topographical emergence of 
these mountains or the low density of station 
precipitation data.

As it can be seen in Figure 5, not only the 
strength but also the gradient of the pre-
cipitation-elevation relationship varies by 
month. In order to demonstrate the precipita-
tion gradient by elevation, we hypothesized 
two fictional stations at the geometric centre 
of the study area, one at the lowest and one at 
the highest elevation of the given area. This 
way, the x and y coordinates do not influ-
ence the calculated precipitation values. The 
less steep the orange line in the diagrams of 

Figure 5, the higher the precipitation gradient 
by elevation is. Based on these diagrams, it is 
stated that the elevation influences precipi-
tation more intensely in May, June, March 
and October, while the precipitation gradient 
is much smaller in the August, November, 
September and winter months.

Results of the combined interpolation method

The process is presented based on the exam-
ple of the North Hungarian Mountains for 
the month of October (Figure 6). The process 
was run using 34 stations. October was cho-
sen because this is one of the months with the 
highest correlation coefficients.

Fig. 5. Relationship between precipitation and elevation by month, in the North Hungarian Mountains study 
area. Measured precipitation values are marked with blue dots. Orange lines connect the values calculated for 
the highest and lowest elevation in the centre of the study area. The steepness of the line demonstrates how 
much the elevation influences the amount of precipitation. The more horizontal the line, the more influential 
the elevation is. The numbers in the boxes show the precipitation increment in mm by 100 metres of elevation 

difference. Although elevation is the independent variable, it is plotted on the Y- axis because it is vertical.
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After performing the regression analysis, 
we calculated the difference map from the 
differences of the observed and predicted 
station data by using kriging interpolation 
(linear model, no anisotropy) first, and IDW 
(power 2, no smoothing) in the second turn 
(raster names are KRIG_DIFF, IDW_DIFF). 
Then a trend map (XY-TREND) was created 
using the regression coefficients of easting 
and northing. The trend surface shows us 
that the average precipitation increases in 
the direction of north-northeast. Thereafter, 
a regression-based map (REGR) was calcu-
lated using the SRTM digital elevation model 
(DTM) and the coefficient of z. At last, we 
added the difference map (KRIG_DIFF, 
IDW_DIFF) to the REGR map that resulted 
the combined map (CKRI, CIDW).

Comparison of the interpolation results

The comparison of the combined maps 
(CKRI, CIDW) and the maps resulted by 
kriging and IDW interpolations using the 
observed station data (KRIG_PREC, IDW_
PREC) demonstrates that the combined 

process leads to rasters, which follow more 
closely the small topographic differences (see 
Figure 6 bottom-left and bottom-centre im-
age). Nevertheless, besides visual compari-
son, we carried out a statistical comparison 
of the results.

Precipitation data from 10 stations pro-
vided by the ÉMVIZIG were used for vali-
dation (Figure 7). These measurements are 
independent of the previous datasets. Most 
of these stations are found in different set-
tlements than the original stations, while 
some of them are in the same settlement, 
but at another location. The validation time 
interval was the same as the original, i.e. the 
period of 2011–2015. As Figure 8 presents, the 
measured and predicted precipitation values 
strongly correlate for the combined kriging 
(CKRI) method, because the values of R2 are 
above 0.9 for each month.

Thereafter, we used five different statisti-
cal parameters to compare the interpolation 
results (Table 1). All parameters were calcu-
lated using the differences between the inter-
polation results and the observed values at 
the validation stations. The average shows if 
there is a systematic distortion between the 

Fig. 6. Synthesized results of the combined method using data from October using kriging interpolation and 
applying the SRTM DTM of the North Hungarian Mountains. For further explanation see the text and Figure 2.
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Fig. 7. Location of the meteorological stations (red crosses) used for 
comparison in the North Hungarian Mountains

Fig. 8. Results of the validation using the combined kriging (CKRI) method. The observed data are from 
ÉMVIZIG, while the predicted value (Pred) is the result of our model.

observed and interpolated 
values. The minimum and 
maximum values present the 
largest negative or positive 
errors, finally, the standard 
deviation and the mean abso-
lute error provide a general 
measure of how much the in-
terpolated and observed val-
ues deviate from each other. 
For better visual comparison, 
the mean absolute error sta-
tistics are also shown in the 
diagram of Figure 9. 

As we can see in Table 1 
and Figure 9, where the five 
interpolation methods are 
compared, the precipitation 
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values of the combined interpolation meth-
ods perform slightly better than their original 
counterparts, but not for all months, and the 
differences are small. In addition, in slightly 
more cases, CIDW has less mean absolute 
error than CKRI. However, we experience 
that co-kriging provides the best estimates 
in most cases. Nonetheless, there are certain 
cases, when co-kriging results worse precipi-
tation predictions than the other methods, 
namely in the months October, November 
(partly) and December. Further on, we found 
that all interpolators worked with relatively 
little error for February, March, April as well 
as for September, October and November.

Discussion and conclusions

Based on the above results, it can be stated 
that there is a linear relationship between the 
monthly sum of precipitation and elevation. 
The correlation coefficient of this relationship 
increases, if more observing meteorological 
stations and more spatial variables are taken 
into consideration. The values of the correla-
tion coefficients were statistically significant 
for the whole study period only in case of 
the North Hungarian Mountains, where the 

correlation coefficient val-
ues varied from 0.3 to 0.5 for 
each month. These results 
are similar to the conclu-
sions presented in the study 
of Sasaki, H. and Kurihara, 
K. (2008).

According to the results of 
our multivariate regression 
analysis, there are remarkable 
differences among seasons 
and also among months. The 
best correlation coefficients 
were observed in the period 
of late spring-early summer 
and October, while the weak-
est linear relationships were 
typical for the winter period 
and August. Roncz, B. (1982) 
also came to a similar conclu-
sion that the values of corre-

lation coefficients are higher in the period of 
spring and October. The orographic effect on 
precipitation is also stronger in these months 
in the North Hungarian Mountains. Our re-
sults demonstrate that one to four millime-
tres of precipitation increase can be noticed 
by every 100 metres of elevation increase for 
each month. This is again similar to the val-
ues of Roncz, B. (1982) referring to the Mátra 
Mountains. If the annual average of precipita-
tion gradient by elevation is the question, then 
we get ca. 30-35 mm/100 metres of elevation 
change that is in agreement with the results 
of (Bartholy, J. and Pongrácz, R. (2013) and 
OMSZ (35 mm/100 m).

As Figure 6 suggests, the advantage of the 
combined method over the simple interpola-
tion of station data is the precipitation map, 
which follows more finely the topographic 
relief. However, differently to Goodale, 
C.L. et al. (1998) we came to the conclusion 
that in a regional scale the combined use of 
DTM and polynomial regression has only a 
neglectable advantage over the simple inter-
polations like kriging or IDW. On the other 
hand, co-kriging resulted significantly more 
precise precipitation predictions for most 
months, but not for all cases. 

Fig. 9. Comparison of mean absolute error values for each month.  
CKRI = combined kriging; KRI = kriging; IDW = inverse distance weight-

ing; CIDW = combined IDW; COKR = co-kriging



47Schneck, T. et al. Hungarian Geographical Bulletin 70 (2021) (1) 35–48.

The reasons why there are only minor dif-
ferences between the combined with topogra-
phy and the standard interpolation methods 
are unclear at this stage. A more sophisticated 
distribution of base stations versus validation 
stations may help to answer this question in 
future research. Moreover, larger datasets 
may also contribute to improve interpolation 
methods and determine vertical gradients 
with higher precision. Anyway, if vertical 
precipitation coefficients are determined for a 
given region, then the combined with topog-
raphy methods (and co-kriging as well) can 
help to calculate reliable precipitation rasters 
even if mountain station data is not available.
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