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Introduction

Current geographic studies attempt to follow 
as accurately as possible the different natural 
and anthropogenic phenomena in the world. 
In this direction, different geographic branch-
es develop techniques for processing and in-
terpreting geographic information, such as 
satellite data. A good example would be the 
European Space Agency (ESA) data acquired 
by the remote sensing satellites, Sentinel-1 
and Sentinel-2. European satellite data pre-
sents the best performance regarding open-
source multispectral images at a spatial reso-
lution of 10 m. ESA occupies an important 
position, and its data are being studied and 
analysed by various researchers (Koppel, K. 
et al. 2015; Khalil, R.Z. and Haque, S.U. 2017; 

Zakeri, H. et al. 2017) to approach the results 
of high-resolution Synthetic Aperture Radar 
(SAR) platforms. Therefore, extensive studies 
were accomplished using different types of 
classifications (e.g., Corbane, C. et al. 2017) 
and exploiting Landsat multispectral images 
and Sentinel SAR images for the global map-
ping of human settlements, using Global Hu-
man Settlement Layer, which includes global 
multi-temporal evolution (1975, 1990, 2000 
and 2014) of built-up surfaces.

Studying the expansion of the built areas, 
different methods have been applied. One of 
these methods is represented by the normal-
ized difference indices: Normalized Difference 
Built-up Index (NDBI) and Normalized 
Difference Vegetation Index (NDVI) (Zha, Y. 
et al. 2003). Then the technique evolved, creat-
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Abstract

The anthropic and natural elements have become more closely monitored and analysed through the use of 
remote sensing and GIS applications. In this regard, the study aims to feature a different approach to produce 
more and more thematic information, focusing on the development of built-up areas. In this paper, multispec-
tral images and Synthetic Aperture Radar (SAR) images were the basis of a wide range of proximity analyses. 
These allow the extraction of data about the distribution of built-up space on the areas with potential for 
economic and social development. Application of interferometric coherence and supervised classifications 
have been accomplished on various territories, such as metropolitan areas of the most developed region of 
Romania, more specifically Transylvania. The results indicate accuracy values, which can reach 94 per cent for 
multispectral datasets and 93 per cent for SAR datasets. The accuracy of resulted data will reveal a variety of 
city patterns, depending mainly on local features regarding natural and administrative environments. In this 
way, a comparison will be made between the accuracy of both datasets to provide an analysis of the manner 
of built-up areas distribution to assess the expansion of the studied metropolitan areas. Therefore, this study 
aims to apply well-established methods from the remote sensing field to enhance the information and datasets 
in some areas lacking recent research. 
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ing new indices based on either the thermal 
band (As-Syakur, A.R. et al. 2012) or on the 
analysis of built-up areas on extended sur-
faces using a group of built-up indices (Li, H. 
et al. 2017) or combining several vegetation, 
water and built-up indices to reduce confu-
sions (Xu, H. 2010). Afterwards, these vali-
dated indices begin to be used in studies for 
measurements of the built space (Kaimaris, 
D. and Patias, P. 2016).

Another variant of emphasizing the built-up 
areas is the one in combination with other land 
use classes (Yuan, F. et al. 2005; Dewan, A.M. 
and Yamaguchi, Y. 2009). In this category, 
most of the studies (Sekertekin, A. et al. 2017; 
Forkour, G. et al. 2018) generated maps using 
supervised classification method (Maximum 
Likelihood Classification, MLC) based on 
Landsat scenes, then comparing the results 
with Corine Land Cover (CLC). Apart from us-
ing land cover datasets, other digital resources 
may be used for mapping urban areas, such as 
high-resolution imaging studies, orthophoto 
maps, the Google Earth data catalogue or even 
images acquired by the drones. The approach 
based on supervised classifications was de-
veloped even on large surfaces (Ma, Y. and 
Xu, R. 2010) or on long-term models of maps 
(Padmanaban, R. et al. 2017) using optical data.

Similar to the trend of the universal sci-
entific literature in the field, the tendencies 
from Romania approaches the same remote 
sensing elements for studying space in the 
extra-atmospheric environment. On this 
subject, a bunch of research concentrated 
on the biggest city, the capital of the state, 
Bucharest. The main trend in the Romanian 
literature was to analyse urban expansion us-
ing supervised classifications from Landsat 
scenes and then comparing with CLC data 
and applying buffers every 5 km to observe 
the evolution of all elements in the terri-
tory (Mihai, B. et al. 2015), but there were 
authors who also relied on high-resolution 
panchromatic and multispectral images, like 
CORONA and IKONOS imagery (Sandric, I. 
et al. 2007). In the same period, more complex 
subjects were applied by other authors, such 
as the Principal Component Analysis (PCA) 

method on Landsat and SPOT multispectral 
images or SAR data (Zoran, M. and Weber, 
C. 2007). Another example is the comparison 
of Bucharest city with French Guyanese areas, 
using the fusion of optical data and SAR data 
with high-resolution (Corbane, C. et al. 2008).

The MLC is a supervised method, which as-
sumes that the user identifies by visual analy-
sis, polygons of pixels or groups of pixels, de-
fining the ranges of spectral values that have 
a correspondent in phenomena or objects in 
the real environment. Then, the classifier de-
termines according to statistics which pixel is 
assigned to a certain class that has the highest 
probability to be normally distributed. Other 
supervised methods (Lillesand, T.M. and 
Kiefer, R.W. 1994) use mean vectors, such as 
Minimum Distance method and classifies pix-
els to the nearest class based on Euclidean dis-
tance or such as Parallelepiped classification 
based on n-dimensional parallelepiped, where 
each pixel is assigned to a certain class defined 
by the standard deviation threshold from the 
mean of each identified class. The MLC is pre-
ferred by some authors for several of regions 
from Romania, such as the Iași Metropolitan 
Area (Cîmpianu, C. and Corodescu, E. 2013), 
the Brașov Metropolitan Area (Vorovencii, 
I. 2017) or the Constanța Metropolitan Area 
(Corodescu, E. and Cîmpianu, C. 2014). Also, 
the use of NDVI or NDBI is appropriately ac-
complished on small human settlements, such 
as Lugoj Municipality and surrounding area 
(Copăcean, L. et al. 2015) and for those located 
in various natural conditions, in the mountain-
ous area or the areas with a temperate marine 
climate, near the Black Sea lagoons (Huzui, 
A.E. et al. 2012). Besides, optical data is also 
used to identify agricultural land conversions 
to Argeş County (Kuemmerle, T. et al. 2008).

Various elements of cartographic represen-
tation methods have been treated in other re-
search papers, such as cartograms and buff-
ers. (EEA, 2006; Grigorescu, I. et al. 2012). It 
is in regard to cartogram maps with annual 
surface growth rates of the built-up area at 
administrative-territorial unit (ATU) level 
within the Metropolitan Area of Bucharest 
(Grigorescu, I. et al. 2014). For better at-
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tainment of this method, this study will use 
cartogram maps for comparing the built-up 
area percentages resulted from processing 
multispectral datasets and also SAR datasets. 

Regarding the most important studied 
area, which is in full economic and social 
growth, Cluj-Napoca Metropolitan Area, 
this is more intensively studied through the 
perspective of the national university center 
present in this city. Thus, in this area, it en-
counters various spatial-space studies such 
as the spatial-temporal expansion of imper-
meable surfaces using the Landsat data for 
supervised classifications (Ivan, K. 2015) or 
the extraction of built-up areas using tex-
ture analysis of SAR images combined with 
unsupervised classification Sentinel images 
(Holobâcă, I.H. et al. 2019).

Other studies (Mucsi, L. et al. 2017) are 
focusing on using more precise instruments 
(e.g., hyperspectral aerial image) for accu-
rate detection of anthropogenic elements. It 
has reached a level where SAR images are 
increasingly exploited in geographic and 
interdisciplinary studies by using interfero-
metric coherence (Koppel, K. et al. 2015). The 
access to data that provides such SAR infor-
mation has become insignificant, achieving 
even semi-automatic and fully automated 
urban area classification (Urban Footprint 
Processor, UFP) methods using SAR im-
ages with TanDEM X (Esch, T. et al. 2013). 
However, the current trend is to produce the 
highest degree of accuracy using all types of 
data made available, of good and very good 
precision. Sentinel and Landsat satellites are 
the main providers of such data. Processing 
these spatial data, standards of accuracy can 
be achieved with a small number of classes, 
urban – non-urban and through more com-
plex methods. This type of technique can be 
performed using advanced computer algo-
rithms such as Symbolic Machine Learning 
– SML (Pesaresi, M. et al. 2016).

This study aims to highlight natural and 
human influences on the development of dif-
ferent urban settlements. This purpose was 
achieved using methods such as Maximum 
Likelihood and coherence backscattering, 

which can offer a practical comparison be-
tween two fields of remote sensing, optical/
multispectral and radar. But the main signa-
ture lies in the proximity analysis with which 
it was able to notice under what natural con-
ditions the methods succeeded in identify-
ing properly built-up areas and which of the 
metropolitan areas managed to create exam-
ples of efficient structures for urban sprawl. 

Study area and data

Study area

Study areas were represented by 6 metro-
politan areas: Baia Mare Metropolitan Area, 
Brașov Metropolitan Area, Cluj-Napoca Met-
ropolitan Area, Oradea Metropolitan Area, 
Satu Mare Metropolitan Area and Târgu 
Mureş Metropolitan Area (Figure 1). These 
metropolitan areas were chosen on the basis 
of consulting different scientific articles, tech-
nical and scientific reports, development strat-
egies, and information from sites managed by 
metropolitan associations (FZMAUR, 2013).

The completion of the status of every stud-
ied territory is proved both in the specialised 
literature (Mitrică, B. and Grigorescu, I. 2016) 
and in the legislation of the country (Law no. 
351/2001), which is regarding the approval 
of the National Spatial Plan of Romania. 
Moreover, the ruling from local public admin-
istration describes the principle of functioning 
as intercommunity development association 
(Law no. 215/2001). But the current legislation 
was modified (Law no. 264/2011) and states 
that the metropolitan area has been defined 
as an “intercommunity development associa-
tion established on a partnership agreement 
between the Romanian Capital City or the 
first rank cities or the county capitals, and the 
territorial administrative units from the sur-
rounding area.” (Table 1).

Overall, these six functional metropolitan ar-
eas contain 113 ATU covering 9,228 km2. These 
populated areas extend on varied landforms: 
plain areas, intermountain basins, hill and pla-
teau areas or at the foot of the peaks (Table 2).
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Fig. 1. The location of studied areas: The Romanian metropolitan areas with the three historical regions and 
metropolitan areas studied in Transylvania overlapping the natural environment.

Table 1. Administrative-territorial units within the metropolitan areas of this study

Metropolitan areas Associated municipalities Associated cities
Baia Mare, 19 members

Brașov, 18 members
Cluj-Napoca, 20 members
Oradea, 12 members
Satu Mare, 30 members
Târgu Mureș, 14 members

Baia Mare

Brașov, Codlea, Săcele
Cluj-Napoca
Oradea
Satu Mare, Carei 
Târgu Mureș

Baia Sprie, Cavnic, Seini, Șomcuta Mare, 
Tăuții-Măgherăuș
Ghimbav, Predeal, Râșnov, Zărnești
–
–
Ardud, Livada, Tășnad
Ungheni

Table 2. Main socio-demographic indicators of the case study areas
Metropolitan area Area, km2 Average elevation, m Population, 2018* Established

Baia Mare
Brașov
Cluj-Napoca
Oradea
Satu Mare
Târgu Mureș

1,400
1,694
1,741
750

2,241
657

763
1,471
745
220
401
414

243,611
477,344
435,693
277,687
262,690
224,021

2012
2005
2008
2005
2013
2006

*National Institution of Statistics (NIS).’
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The chosen areas are located in the histori-
cal region named Transylvania. It is known 
that due to the domination of the Hungarian 
Kingdom and then of the Habsburgs, this re-
gion has had a different economic and social 
development than the Trans-Carpathian re-
gions. For this reason, it can observe a differ-
ent architecture of buildings, differences in 
community behaviour and, thus, in the way 
of territorial organisation.

The Baia Mare Metropolitan Area is devel-
oping more in a North–South direction, in 
an open field of the inside of the Carpathian 
arch. Major concentrations of the population 
are in the Lower Someș Plain and the Baia 
Mare Basin, at the foot of the Igniș-Gutâi-
Lăpuș mountain range. The central munici-
pality is located at 47° 39’ 37”N, 23° 34’ 23”E 
(centroid of the city which was determined 
from the “Digital Romania” database, more 
precisely from the point dataset with the 
localities in Romania), crossed by the Săsar 
River. The main feature of this city is that it 
has based on the exploitation and processing 
of gold and silver ores and of other metals 
(Cu, Pb, Zn, Al), becoming an important in-
dustrial centre during the communist period.

The most developed area of this study is 
the Brașov Metropolitan Area. This study 
area presents an asymmetric relief with a 
lower basin area (Brașov Basin) in the north-
ern part and with a mountainous relief that 
exceeds 2,000 m in the South. This area turns 
the natural elements of mountain tourism 
(Poiana Brașov and Predeal resorts) and 
the medieval culture to its advantage. The 
Brașov city is located at 45° 39’ 34”N, 25° 35’ 
48”E, in a scenic area with a breezy climate 
of intra-mountainous basin.

The Cluj-Napoca Metropolitan Area con-
sists of two rows of communes in an approxi-
mately circular-concentric direction around 
the city at 46° 46’ 6”N, 23° 35’ 28”E along 
the Someșul Mic River in the western part 
of the Transylvanian Basin. The city has one 
of the most developed transportation infra-
structures in the country, managing to attract 
numerous industrial and service companies 
around it, noting the IT component. At the 

same time, it also holds one of the best per-
forming university centres in the country. 

Although it has the lowest number of 
members, the Oradea Metropolitan Area 
is one of the most advanced in terms of ac-
cessing European funds for urban develop-
ment. The central municipality is located at 
47° 3’ 31”N, 21° 55’ 47” E and crossed by the 
Crişul Repede River. The surrounding urban 
area is located on a low-altitude ground and 
slightly higher in the eastern part due to the 
piedmont plains and the penetration of hilly 
relief. The Oradea city has learned that the 
absorption of European Union funds is vital 
for the urban development of the area. 

The largest studied area is the Satu Mare 
Metropolitan Area. This is mostly extended 
over a low relief stage, a flood plain (Someș 
Plain) with a few hills in the southern part 
and with mountainous features in the north-
east (Oaș-Gutâi Mountains). It consists of  
30 members, most of which support the 
county capital with a median position in the 
territory (47° 47’ 9” N, 22° 52’ 32”E). With 
the exception of tourism due to thermal and 
cultural resources, this area has more estab-
lished for a better using of over 70 per cent of 
agricultural land of the total area.

Being among the first metropolitan areas 
established, the Metropolitan Area of Târgu 
Mureş has the smallest area of the six stud-
ied cases and the lowest human resources. 
The central city, which has the same name, is 
located at 46° 31’ 51” N, 24° 32’ 17” E and is 
crossed by one of the longest rivers in Romania 
(Mureș). The area extends into a section of 
hilly subunits of the Transylvanian Plain and 
Târnavelor Plateau with the Mureş and Niraj 
Valley. At the moment, this union of localities 
tries to forget the socialist period and to devel-
op commercial and recreational components 
combined with the presence of the machine, 
chemical and woodworking industry.

Data

A wide range of data from different sources 
was used for applying the established meth-
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odology. The first of these were multispectral 
images with a spatial resolution of 10 m, be-
ing acquired by the satellites of the European 
Space Agency, Sentinel-2A and Sentinel-2B 
(Copernicus Open Access Hub – https://sci-
hub.copernicus.eu/). One of these remote sens-
ing data was represented by the scenes with a 
cloud cover of 0 percent at different dates for 
every study area, depending on the availabil-
ity of the chosen criteria. The earliest image 
was obtained from 21 April 2018 for the metro-
politan area of Braşov and the most advanced 
one – 6 October 2018 for metropolitan areas of 
Cluj-Napoca and Târgu Mureş (Table 3). 

The second dataset was the Sentinel-1. For 
each metropolitan area, one pair of SAR imag-
es was downloaded at a difference of 12 days, 
captured by the Sentinel-1A satellite. Every 
image is an SLC (Single Look Complex – for 
radar interferometry applications), incorporat-
ing signal phase information and covering a 
250 × 250 km global field and a 5 × 20 m spatial 
resolution (Table 4).

Also, demographic data was used for the 
year of this study – 2018. The information 
was obtained from the National Institute 
of Statistics (NIS – http://www.insse.ro). 
A digital elevation model (DEM) of 25 m 
spatial resolution was used to position the 

primary information in a consistent and 
well-documented whole and for the execu-
tion of different maps (location, physical-
geographic, cartograms etc.). This DEM was 
downloaded from the Copernicus database of 
the European Environment Agency (https://
www.eea.europa.eu/data-and-maps/data/
copernicus-land-monitoring-service-eu-dem). 

To make different thematic maps, vec-
tor data was used (administrative bound-
aries, localities, etc.), being available in 
OpenStreetMap (OSM – https://www.open-
streetmap.org/) database and in the Google 
Earth data imagery as well as a series of or-
thophoto maps were acquired from 2012 and 
2015 from the National Agency for Cadastre 
and Land Registration (ANCPI) to assess the 
accuracy of the classifications.

Methodology

Multispectral images had to run through a 
series of atmospheric and radiometric cor-
rection pre-processing. Downloaded satellite 
scenes are Level 1C datasets, and therefore 
the Bottom-of-Atmosphere (BOA) mode had 
to be calculated. BOA mode represented the 
actual reflectance of the areas on the surface 

Table 3. Technical details of data sets used in the study – Optical field

Metropolitan area Acquisition date Orbit Pass Satellite type
Baia Mare
Brașov
Cluj-Napoca
Oradea
Satu Mare
Târgu Mureș

07.05.2018
21.04.2018
06.10.2018
07.05.2018
07.05.2018
06.10.2018

136
50
93

136
136
93

Ascending
Descending
Ascending
Descending
Ascending
Ascending

Sentinel-2A
Sentinel-2A
Sentinel-2B
Sentinel-2A
Sentinel-2A
Sentinel-2B

Table 4. Technical details of data sets used in the study – Radar field
Metropolitan area Acquisition date Orbit Pass Satellite type

Baia Mare
Brașov
Cluj-Napoca
Oradea
Satu Mare
Târgu Mureș

07.05.2018 – 19.05.2018
12.04.2018 – 24.04.2018
28.09.2018 – 10.10.2018
29.04.2018 – 11.05.2018
07.05.2018 – 19.05.2018
28.09.2018 – 10.10.2018

29
51
29
80
29
29

Descending
Ascending
Descending
Descending
Descending
Descending

Sentinel-1A
Sentinel-1A
Sentinel-1A
Sentinel-1A
Sentinel-1A
Sentinel-1A
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and was calculated from the TOA(Top-of-at-
mosphere) values, which is already included 
in Level 1C datasets. This pre-processing step 
was carried out by using Sen2Cor tool within 
the SNAP software. Both types of images (op-
tical and SAR) were co-registered and were 
re-projected in the official coordinate refer-
ence system of Romania (Stereographic 1970 
– Stereographic azimuthal projection line per-
spective 1970 with secant plan). To complete 
the maps, satellite datasets were transferred 
to the ArcGIS software, where the maps were 
reclassified to obtain quantitative area data. 
After that, areas were calculated, providing 
them cartographic features to complete maps 
editing. Although many other techniques are 
superior, such as Object-based Image Analysis 
(OBIA), Deep learning, Support Vector Ma-
chine (SVM) etc., these two main methods of 
the study, MLC and experimental SAR pro-
cessing, present a combination of reliability.

For SAR data, every image had to go 
through a number of steps (Ferretti, A. et al. 
2008) using the Sentinel-1 Toolbox (SNAP): 

 – Splitting the satellite scene for the study 
area by first choosing the appropriate lon-
gitudinal band, followed by the level of 
coordinates of the analysed area; 

 – Apply orbit – improving orbital information; 
 – Calibration – conversion of digital values 
into physical values, which refers to the 
retro-reflected signal; 

 – Deburst – removing no data values; 
 – Multi-looking – create square pixels of the 
same size, using one look in range and 
three looks in azimuth, reducing the noise 
of radar images and making a virtual band 
with signal in decibels (dB) to change the 
contrast of the image using the histogram; 
in addition, this step will approximate pix-
el spacing after being converted from slant 
range to ground range, resulting a mean 
ground range pixel size of 10 m;

 – Terrain correction – applying the Range-
Doppler technique, the image will be 
overturned because initially it has been 
acquired by the satellite in the mirror, de-
pending on the pass orbit of the satellite; in 
this step, the image is associated with the 

country-specific cartographic projection, 
Stereographic 70 (Figure 2).
Supervised classification represents one 

of the main techniques being applied to 
multispectral images. This involves that the 
user selects pixel samples or pixel groups by 
visual analysis. The user defines the ranges 
of spectral values that correspond with phe-
nomena or objects to the real environment. 
In this study, the probability method named 
Maximum Likelihood was used (Deng, Y.  
et al. 2012). All processes were performed 
with the ERDAS Imagine 2016 software. 
Fifty pixel samples per land cover were taken 
for training, resulting in a number of four 
to six classes. These classes can be assigned 
to a number of general land cover classes: 
built-up area, agricultural land, vegetation 
– broad-leaved forests or coniferous forests, 
industrial waste, water and snow.

After performing these procedures within 
SNAP Desktop, two final images will be pro-
duced for each Sentinel-1 scene (required 
for the pair of SAR images). The products of 
the first two stages will be co-registered in 
a stack, resulting in a product to which the 
interferometric coherence will be calculated. 
After this step, this image will have to per-
form the deburst, multi-looking and terrain 
correction stages again. For the final image, it 
will be making a conversion of the Vertical to 
Vertical (VV) polarisation band (Abdikan, S. 
et al. 2016) from a linear scale to a logarithmic 
scale. By deriving a signal in decibels (dB), 
the histogram of the image can be modified.

Furthermore, the mean signal and the 
difference signal will be calculated, both of 
them in decibel units, followed by creating 
an RGB image, where for the red channel, 
interferometric coherence will be used, for 
the green channel – the mean and for the 
blue channel – the difference. These prod-
ucts can be observed in Figure 3. The urban 
footprint of the localities, including the built-
up areas, will be achieved by creating a new 
raster through a conditional expression. This 
will assign two types of pixel value, 0 and 1, 
depending on certain thresholds of the aver-
age signal in decibels, respectively, accord-
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Fig. 3. Final products of pre-processing SAR data sets: a = RGB image; b = urban footprint; c = coherence estimation; 
d = mean dB; e = difference dB for Cluj-Napoca city

Fig. 2. Methodology flow chart of the study
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ing to interferometric coherence. The result 
will be brought to ArcGIS and reclassified to 
get maps with two classes: urban and non-
urban/built-up and unbuilt.

After getting the supervised classifications 
in the ERDAS Imagine 2016 software, an 
assessment of the accuracy of classification 
has performed within the same program, a 
necessary operation to validate the results. 
Thus, the software has randomly assigned 
a number between 200 and 350 points (50 
points/class) per classification, depending on 
the number of detected land cover classes. 
These points have been transposed to ortho-
photo maps and georeferenced Google Earth 
images for validation. For SAR images, the 
accuracy assessment classification has per-
formed in the ArcGIS software by producing 
the number of points for two classes. Then, 
reference values have given and extracted su-
pervised classification values have added to 
join data in the attribute table to get a matrix 
of errors (Figure 4). According to the literature 

(Congalton, R.G. and Green, K. 2009), the 
minimum number of points taken to validate 
the classification should be 50 per category. 

Also, a proximity analysis was created in this 
paper, which is referring to the built-up space 
from the total area of the metropolitan areas. 
Once the maps of multispectral images and 
SAR data have been reclassified, the built-up 
areas and the areas of the ATUs were calculated 
and were intersected. In addition, it has traced 
10-km, 20-km and 30-km buffers for a more in-
depth analysis. The distance of 30 km from the 
central municipality is the maximum limit of 
the metropolitan areas specified in the special-
ised legislation in Romania (Law no. 264/2011). 
Thus, the Romanian legislation has taken eco-
nomic relations (between the members of the 
area) more into account than natural barriers. 
The following 20 km and 10 km buffers become 
reference thresholds in this study to observe 
whether metropolitan areas have been prop-
erly established and to monitor the degree of 
development of the built-up areas.

Fig. 4. Distribution of reference points on supervised classifications data in the six metropolitan areas (MA):  
a = Brașov MA; b = Cluj-Napoca MA; c = Oradea MA; d = Satu Mare MA; e = Târgu Mureș MA; f = Baia Mare MA
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Results

Most classifications have been able to iden-
tify at least four classes of land cover to 
which some classes were added depending 
on positioning in a certain landscape or due 
to the existence of other natural or anthropic 
factors. This is the case of the Oradea Met-
ropolitan Area, where the industrial waste 
(ashes and slag) of the Central Heating and 
Power Station was identified in the north-
west part of the city. For the Brașov Metro-
politan Area, there is a distinction of veg-
etation, broad-leaved forests and coniferous 
forests, plus snow from the highest peaks of 
the Bucegi Mountains or the Piatra Craiului 
Mountains. The appearance of the snow class 
may be due to the acquisition date of the op-
tical image – 21 April 2018, in a mountainous 
area, between 2,000 m and the maximum al-
titude (2,462 m). Also, some small confusions 
were observed in these high areas where the 
recently deforested land was considered as 
built-up space. In all cases, in addition to the 
residential space and the most visible build-
ings, the communication network of locali-
ties could be well observed (Table 5).

Regarding the accuracy of the classifica-
tion, all the cases managed to exceed 80 per 
cent. According to the literature (Congalton, 
R.G. 1991), if this value exceeds 80 per cent, 
there is a high concordance between the 
classified data and the reference data. The 
highest values were achieved for Oradea 
Metropolitan Area, which is the smallest 
area (see Table 5). For the other larger areas, 
the values fluctuate from 80 to 87 per cent. 
This may be due to some identified confu-

sions: relatively recently deforested land was 
considered a built-up area (Figure 5, a and f), 
certain disorders with the slope processes, 
such as landslides or soil erosions (Figure 5, 
b and e), which they were identified on ag-
ricultural land and which were defined as 
built-up areas.

Regarding the assessment of accuracy at 
each category of land cover, the results pro-
vide various information about the identified 
elements. The agricultural land class offers 
percentages of accuracy between 70 and 80 
per cent, because it occupies, in most cases, 
the largest area of land in metropolitan ar-
eas. In contrast, less extensive classes such 
as water, industrial areas or snow have val-
ues of over 84 per cent (Table 6). The areas 
covered with vegetation offer both efficient 
results, as in the case of Brașov or Oradea, 
but also less efficient as in Baia Mare or Cluj. 
The low percentages mentioned above are 
due to confusions with agricultural areas, ob-
served especially in rural areas. The accuracy 
of the built-up areas is close to the overall 
accuracy, in some places even exceeding it, 
such as Oradea and Târgu Mureș. The values 
that exceed a slight 80 per cent belong to the 
metropolitan areas with a hilly relief (Cluj) or 
to the predominance of the areas with little 
very urbanised settlements (Satu Mare).

Also, a proximity analysis of the built-up 
areas was made at the level of every ATU. It 
took the form of cartograms in which again, 
buffers with a radius of 10 km, 20 km, and  
30 km are illustrated (Figure 6).

This type of analysis highlights points re-
lated to the distribution of the built-up areas 
in the three deployed boundaries and the 
natural or spatial causes (the location of set-
tlements within the metropolitan area) that 
led to these results. Thus, only the Brașov 
Metropolitan Area managed to exceed 20 
per cent of the built-up area (23.7%) of the 
total area of land within a radius of 10 km. 
The other areas have a percentage between 
10–19 per cent. Up to the 20 km limit, the 
percentage of built-up area does not exceed  
8 per cent for the other areas except the 
Brașov Metropolitan Area.

Table 5. Accuracy assessment of metropolitan areas 
of this study – Supervised classification method

Metropolitan 
area

Overall User’s Producer’s 
accuracy, %

Baia Mare
Brașov
Cluj-Napoca
Oradea
Satu Mare
Târgu Mureș

94
82
86
80
87
83

88
64
74
60
76
68

100.00
100.00
97.37

100.00
97.44
97.14
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The highest values belong to the central 
municipality of every area with the maxi-
mum values of over 40 km2, in Cluj-Napoca 
and Brașov, which also have the highest av-
erage values. Most of the studied ATUs are in 
the average category of 3–6 km2 due to weak 
economic development in member com-
munes, where rural areas still predominate.

Regarding the SAR images, the representa-
tion of the built-up area had less conclusive 

results. This is also due to certain limitations of 
SAR data, more precisely, not identifying the 
horizontally built-up area (such as roads, car 
parks, squares, runways) due to plain textured 
SAR data and specular backscattering. In ad-
dition to this problem, some confusions with 
marshlands, high humidity areas are added 
or depending on the slope directions, exactly 
in the direction of the pass of satellite. These 
can cause lower values of accuracy, as in the 

Fig. 5. Supervised classifications (Maximum Likelihood) of the six metropolitan areas (MA): a = Brașov MA;  
b = Cluj-Napoca MA; c = Oradea MA; d = Satu Mare MA; e = Târgu Mureș MA; f = Baia Mare MA

Table 6. Accuracy assessment of metropolitan areas on land cover classes

Metropolitan 
area

Overall Built-up 
area

Agricultural 
land Vegetation Water Snow Industrial 

waste 
accuracy, %

Baia Mare
Brașov
Cluj-Napoca
Oradea
Satu Mare
Târgu Mureș

86
80
94
83
82
87

82
79
97
81
84
92

78
73
90
74
77
75

87* 90**
75
94
82
78
86

98
93
96
96
92
95

86
–
–
–
–
–

84
–
95
–
–
–

*Broad leaved forest; **Coniferous forest.
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case with Oradea Metropolitan Area and Satu 
Mare Metropolitan Area. These two areas are 
located in the floodplains, which can produce 
confusions. For other areas, the situation is 
acceptable, so that the best values of accu-
racy were achieved for the areas offering dis-
tinct natural elements, such as the Baia Mare 
Metropolitan Area. Baia Mare city is located 
in a basin at the foot of the Igniş Mountains, 
which are covered with broad-leaved forests 
(Figure 7). The Brașov Metropolitan Area is 
another excellent example with an overall ac-
curacy of 93 per cent and where the localities 
in the Brașov Basin are at a short distance from 
the high peaks of the mountains. The elevation 
difference is reaching 1,000 metres between 
the Brașov town and the Tâmpa Hill, which 
is in the immediate surrounding.

Referring to the proximity analysis, the 
built-up areas have lower values than the 

supervised classification method. For the first 
10 km, Oradea Metropolitan Area has the 
highest percentage of built-up area (18.8%), 
followed by Baia Mare and Brașov. In the 
case of this method, there are also isolated 
values exceeding 10 per cent of the built-up 
area of the total surface, up to 20 km and 
even up to 30 km. This is because of confu-
sion between the analysed category and nu-
merous slope processes with landslides or 
surface erosions (Figure 7, b and e).

The previously mentioned information is 
derived from the presentation of data in the 
form of cartograms. The maximum values 
are lower than for the other used datasets, 
more exactly over 20 km2 in the same terri-
tories of Cluj-Napoca and Brașov. The de-
gree of confusion can be seen in the case of 
Cojocna ATU, located in the eastern of Cluj 
ATU. This fact is due to slope processes, 

Fig. 6. Distribution of built-up areas at the level of administrative territorial units using Sentinel-2 data:  
a = Brașov MA; b = Cluj-Napoca MA; c = Oradea MA; d = Satu Mare MA; e = Târgu Mureș MA; f = Baia Mare MA
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which cause placing it into the same category 
of over 20 km2 of built-up area. The mean of 
the values decreases to 2–5 km2, which is bet-
ter observed in the Satu Mare Metropolitan 
Area, with a rare built-up area because of the 
dominance of agricultural land.

Discussions

In this paper, two methods of processing sat-
ellite imagery have been approached having 
direct applicability. As a result, both Senti-
nel-2A and Sentinel-2B multispectral images, 
as well as SAR spatial data acquired by Sen-
tinel-1A, could provide specific information 
about the built-up areas. In this way, accurate 
information could be achieved monitoring 
the level of built-up area in the Transylva-
nian metropolitan areas in 2018.

Following the accuracy assessment of 
classification, multispectral images, which 
were processed by supervised classification 
have had more reliable results. They have 
succeeded in identifying certain objects with 
an impact on the environment – industrial 
waste, but also to present more precisely 
street networks and roads. Using specular 
backscattering and interferometric coher-
ence, the study could get urban footprints 
with an acceptable degree of accuracy, but 
also, there are still opportunities for further 
enhancements. Limitations of SAR data are 
of a technical nature, mostly confusions with 
wetlands, slope processes, and the addition 
of unidentified horizontally built-up areas.

If there is a possibility to compare the re-
sults of this study with other studies from 
different regions but using similar methods, 
then there are many examples. For exam-

Fig. 7. Distribution of built-up areas at the level of administrative territorial units using Sentinel-1 data:  
a = Brașov MA; b = Cluj-Napoca MA; c = Oradea MA; d = Satu Mare MA; e = Târgu Mureș MA; f = Baia Mare MA
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ple, the values of the overall accuracy of su-
pervised classifications can be analysed in 
comparison with several Landsat process-
ing results of Brașov (Vorovencii, I. 2017): 
88 per cent compared to the 86 per cent of 
this study. A more practical comparison can 
be achieved with a study that uses the MLC 
algorithm on Cluj-Napoca ATU (Holobâcă, 
I.H. et al. 2019). Thus, the study achieved an 
accuracy of 89 per cent over 80 per cent of 
this work. So, larger-scale analysis reduces 
the chances of a higher degree of accuracy, as 
reported in a study of Okara district, Pakistan 
(4,419 km2) (Khalil, R.Z. and Haque, S.U. 
2017). Thus, in the study mentioned above, 
although a similar methodology is used to 
exploit the interferometric coherence based 
on Sentinel-1 data, the degree of accuracy of 
the built-up area is only 68 per cent (user’s 
accuracy) and 45 per cent (producer’s accu-
racy). By applying a similar methodology, a 
much more convincing comparison can be 
resulted when analysing areas with approxi-
mately similar areas. In this regard, studies 
of the built-up class of two areas in Estonia 
(Koppel, Z. et al. 2015) manage to achieve val-
ues of accuracy between 84 and 88 per cent. 
In comparison, this study achieved varied 
and positive values of 78–93 per cent.

Conclusions

The proximity analysis proved to be broader 
and efficient to illustrate the current state of 
development of the Romanian metropolitan 
areas. Cartograms, buffers, and urban foot-
prints have improved the quality and inter-
pretation of information. Thus, two phenome-
na are observed. The first one is the concentra-
tion of the built-up areas in the proximity of 
the development poles, achieving an increase 
in the average built-up area for some regions 
and, thus, an approach of the member com-
munes to the metropolitan character of the 
area (Braşov, Oradea, Cluj-Napoca). The other 
one is the scattering of the built-up space area 
by the overall average relatively low due to 
the slow progress of the other communes for 

the development of the metropolitan area, 
and because of the predominance of activities 
in the primary and secondary sectors: agricul-
ture, forestry and industry for Satu Mare, Baia 
Mare, Târgu Mureş.

The results indicate moderate to high de-
grees of accuracy values, which are able to 
reach 94 per cent for multispectral datasets 
and 93 per cent for SAR data. The supervised 
classification and the interferometric coher-
ence techniques were applied in an effective 
manner to studied areas, but the used meth-
odology on multispectral data manage to 
achieve superior results due to more complete 
applicability on the characteristics of the data.

Therefore, Romanian metropolitan areas 
are a source of analysis, not only in terms 
of administrative, demographic or econom-
ic aspects but also from a scientific point of 
view, in order to highlight the information 
that contributes to development according 
to the functioning principles of the cities in 
the modern world.
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