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Introduction

The object of geography is to study the dy-
namically changing relationship between 
people and their environment in space and 
time. Cities are key factors in this relational 
system since 54 per cent of the Earth’s popu-
lation (World Urbanization Prospects, 2014) 
lives in urban areas. Increasing urbanization 
generates the dynamic transformation of land 
cover (LC) and land use (LU) types. The pop-
ulation concentrated in a small area extremely 
stresses its surrounding environment (Mucsi, 
L. et al. 2008). Increasing energy consumption, 
heat emission, traffic and waste generation of 

cities are important factors at global level, and 
studying their environment-modifying effect 
is necessary (Small, C. 2003).

The mapping of changing urban land cover, 
especially the continuously increasing built-
up density, is important both on local and 
global scale. The spatial pattern and intensity 
of urban heat island (UHI) is strongly con-
nected to the density of impervious surfac-
es (Gál, T. et al. 2016; Herbel, I. et al. 2016; 
Henits, L. et al. 2017). The primary aim of 
this study is to create an accurate land cover 
map based on the combination of multi- and 
hyperspectral images, field observations, and 
laboratory measurements. Imaging spectrom-
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Abstract

High spatial and spectral resolution aerial images make it possible to develop detailed and large-scale (about 
1:5,000) urban land cover maps. The main objectives of this study are (1) to evaluate the correlation between 
laboratory and hyperspectral image spectra to select proper bands and training samples for classification; 
(2) to develop a classification process to combine the spectral and spatial information of multispectral and 
hyperspectral images and make an urban land cover map for the study area in Szeged, Hungary; and (3) to 
examine the effect of different roof types on the modification of surface temperature. Reference materials 
were collected from the training area and their spectral characteristics were measured by a laboratory spec-
trometer. The hyperspectral image and laboratory spectral data between 500–800 nm showed a very strong 
correlation, the correlation coefficient was 0.99. The urban land cover map was produced by the combination 
of segmentation procedure and Spectral Angle Mapper (SAM) method using the spatial information derived 
from multispectral image and the spectral information of the hyperspectral image. Eight land cover classes 
were identified as impervious surfaces (asphalt, 4 types of tiled roof), water, and green vegetation. The overall 
accuracy of urban land cover map was 87.9 per cent. According to the results, an accurate large-scale urban 
land cover map can be generated from the fusion of multispectral and hyperspectral images. We presented 
that certain roof types have significant effect on surface temperature, which is strongly connected to the urban 
heat island phenomenon, and influences population health.
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etry has been used for more than 30 years in 
numerous researches, and has gone through 
considerable methodical development. By 
the improvement of technology, these sys-
tems (AISA, DAIS, HyMap) are able to cover 
the electromagnetic spectrum in the range of 
400–2,500 nm and in the spectral resolution of 
1–10 nm (Plaza, A. et al. 2009). Several studies 
focused on the mapping of minerals (Kruse, 
F.A. 2012) and soil surfaces (Lagacherie, P. 
et al. 2008), studying water depth and quality 
(Jay, S. and Guillaume, M. 2014), snow, ice, 
and tree species (Goetz, A.F.H. 2009) in the 
last fifteen years. As for urban applications, 
for example, the mapping of asbestos-contain-
ing roofs, Bassani, C. et al. (2007) and Szabó, 
Sz. et al. (2014) should be mentioned. Segl, K. 
et al. (2003) made statements about the sepa-
ration of different artificial materials by us-
ing laboratory and field measurements. They 
highlighted that the application of hyperspec-
tral images in contrast with time-consuming 
field validation is promising for ecological 
urban planning. However, a relatively small 
number of spectral libraries are available for 
urban land cover (Bassani, C. et al. 2007) and 
the commonly used materials have different 
spectral characteristics in different regions.

The derivation of spectral curves can be 
implemented by different methods: they can 
be established by using the mean reflectance 
curve of training samples extracted from hy-
perspectral images, or by field or laboratory 
measurements (van der Meer, F. et al. 2001). 
As outer physical effects influence aerial sur-
vey, the spectrum is slightly different from 
the spectrum obtained in laboratory circum-
stances (Heiden, U. et al. 2007). The settings of 
the measurements are device specific and de-
pend on the demands of the users (Jung, A. et 
al. 2012). The laboratory measurements can be 
applied in the processing of images acquired 
by different sensors at different time. Because 
roof angles, illumination effects, shadows 
and various land cover make the selection of 
training samples difficult and subjective in the 
image, we collected laboratory spectra from 
the study area. Furthermore, the analysis of 
spectra is necessary to decrease the number 

of bands used in the classification procedure, 
which makes the method capable to apply for 
bigger city parts. Only the necessary bands or 
band ranges should be applied (Herold, M. 
and Roberts, D.A. 2010; Wu, B. et al. 2013).

In urban studies the objects in the avail-
able hyperspectral aerial image are not easily 
separable, additional information (high reso-
lution multispectral aerial photo) is needed 
to define the geometry of objects. Numerous 
researches were performed data fusion using 
multispectral data with radar (Chen, C.M.  
et al. 2003), with Light Detection and Ranging 
(LIDAR: Alonzo, M. et al. 2014), with popu-
lation census data (Jin, H. and Mountrakis, 
G. 2013), and hyperspectral images (Gevaert, 
C.M. et al. 2014). Our solution is a consecu-
tive segmentation and Spectral Angle Mapper 
Classification with the combined use of aerial 
photos (both multi- and hypespectral) and 
laboratory measurements.

Segmentation is a well-known solution to 
derive the borders of certain objects from 
high resolution images. Object Based Image 
Analysis (OBIA) was used previously to map 
forests (Chubey, M.S. et al. 2006), natural ca-
tastrophes (effects of an earthquake: Gusella, 
L. et al. 2005) and cities as well (Chen, Y. et 
al. 2007). It has been established that un-
der appropriate conditions OBIA could be 
more accurate than pixel-based methods  
(Al Khudairy, D.H. et al. 2005). The OBIA 
method emphasizes the spatial relation be-
tween neighbouring pixels. As a result, pixels 
being closer in space are more likely to be 
classified into the same class (Blaschke, T. 
2010). It should be mentioned that perfect 
parameters cannot be defined for segmen-
tation. Räsänen, A. et al. (2013) tested more 
than 200 segmentation results using differ-
ent input parameters. They assumed that the 
best result should be determined by the suit-
ability of the application. The segmentation 
method was supplemented by Spectral Angle 
Mapper (SAM), which is the most appropri-
ate method for the application of laboratory 
measurements in the classification since it al-
lows the comparison of two spectra (Kruse, 
F.A. et al. 1993).
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Numerous studies have been carried out to 
investigate the relationship between land cover 
and surface temperature. Most of the research-
es used low and medium resolution images, 
e.g. Landsat and MODIS images (Zhou,W. 
2014). Only a few studies applied high resolu-
tion thermal imagery for this purpose (Bitelli, 
G. et al. 2015). Previously, for example Roman, 
K.K. et al. (2016) described the temperature 
modification effects of roofs. Since our goal 
was to make recommendations for the mitiga-
tion of the effects of urbanization, we used a 
thermal aerial photo and our land cover map 
to analyse the differences between temperature 
values of the land cover types.

The main objectives of our study were (1) 
to evaluate the correlation between laboratory 
and the hyperspectral image spectra to predict 
the value of laboratory measurements in the 
classification procedure (dimensionality re-
duction, training sample selection); (2) to use 
a multispectral and a hyperspectral image to 
perform an accurate land-cover classification 
using the spectral information of hypespectral 
and the spatial information of multispectral 
image; and (3) to analyse the land surface tem-
perature (LST) of different land cover classes.

Study area

Szeged is the third largest city in Hungary 
(165,000 inhabitants – Hungarian Central 
Statistical Office, 2016), and the administra-
tive area of city is 281 km2. 95 per cent of the 
city buildings were destroyed by the flood in 
1879, therefore a new structure with boule-
vards and avenues was built in Szeged (Lech-
ner, L. 1891). The reconstruction was carried 
out by using a complex urban planning de-
sign based on the work of Lajos Lechner. 
This radio-concentric structure of the city 
has remained unchanged in the last 135 years.

The built-up density of Szeged varied from 
densely built-up areas (City Centre) through 
suburban areas to housing estates with blocks 
of flats and industrial areas. Green areas (for-
ests on the riverbanks) and parks are located 
among the built-up areas (Mucsi, L. 1996).

In our study, a representative part of this 
functional unit was selected, which can also 
be found in other small- and middle-sized 
Hungarian towns.

In the last 130 years, the characteristics 
of buildings have significantly changed. 
Original buildings (houses with the sun-
beam motif) can only be found in some 
cases. Today newly-built detached houses 
and condominiums are located on most of 
the lots, and the density of built-up areas has 
significantly increased. Two blocks of hous-
es, which proved to be appropriate for land 
cover mapping, were chosen for our study. 
During field survey and sampling of refer-
ence data we found that the selected blocks 
represented the suburban-like built-up den-
sity well (Figure 1).

Data

Hyperspectral aerial surveys

Hyperspectral aerial surveys were carried 
out several times using an AISA DUAL hy-
perspectral instrument (359 spectral bands in 
the range of 400–2,500 nm, and in 2.3 and 5.8 
nm bandwidths, Table 1). The chosen hyper-
spectral image was acquired in September, 
2010 with a spatial resolution of 1.5 m. Pixel 
values were converted to reflectance values 
using radiometric and atmospheric correc-
tion procedures (Mucsi, L. et al. 2008) using 
field reflectance measurements at the time of 
image acquisition.

Multispectral aerial image

In addition, a high spatial resolution (< 1 
m) natural-colour aerial photo (Table 1) was 
used to improve the classification results be-
cause it has higher spatial resolution, and it 
provides more detailed object border than 
the hyperspectral image. The image was ac-
quired within the framework of the national 
aerial survey in August, 2011, and it has a 
spatial resolution of 0.4 m. 
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Fig. 1. Study area

Table 1. Summary of the data used in this study

Spectral resolution Spatial resolution Spectral resolution
Multispectral 
aerial image Autumn, 2011 0.4 m 3 bands (true color)

Hyperspectral 
aerial image September, 2010 1.5 m 359 bands (400–2,500 nm)

Thermal aerial 
image August, 2008 2.5 m 1 band, -40 °C– 500 °C

Laboratory 
measurements 2013–2014 –

Master 350–850 nm >2,000 bands
Slave 525–1,165 nm >2,000 bands

Laboratory measurements 

Land cover samples were collected for the 
laboratory measurements during field sur-
vey. The laboratory measurements were per-
formed by an Avantes DH2000 spectrometer 
at the Department of Medical Physics and In-
formatics, University of Szeged (Figure 2, Table 
1). The device provides data in two ranges: 
between 350–850 nm (master) and 530–1,150 
nm (slave). The bandwidth of the spectrometer 
varies between 0.27–0.37 nm and the number 

of bands is above 2,000. The reflectance values 
were calculated as averages of 25 sampling.

Thermal aerial image

For the environmental application, we used 
thermal images, which were obtained by the 
thermal camera of Lower Tisza District Water 
Directorate (ATIVIZIG) and were acquired 
on 12 and 14 August 2008 (Table 1). The sen-
sor can record data in the range between  
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-40–500 °C and the image has a spatial reso-
lution of 2.5 m. More information about the 
calibration was presented by Unger, J. et al. 
(2010).

Methods

Spectral Libraries: training samples and 
dimension reduction

The following main land cover materials 
were collected for laboratory measurement: 
red clay roof tiles, asphalt, and vegetation. 
Other roof types were examined (e.g. purple 
clay roof, claret concrete tile, plastic tiles) but 
only the red clay tile is explained in more 
detail, because this is the most common roof 
type in the study area.

Firstly, we analysed the proper set-
tings of spectrometer and the correlation  
between laboratory and hyperspectral image. 
Measurements of all samples were imple-
mented in the aforementioned two partially 
overlapping ranges (master and slave). These 
two ranges provided total reflectance curves 

from the visible light to the mid-infrared for 
each material. The standard deviation of 
the data was high at the edges of relatively 
wide ranges. In addition, the bandwidth of 
these two ranges is different and switching 
between the channels makes the implemen-
tation of the measurements difficult. 

The geographic coordinates of the collect-
ed samples were recorded during the field 
surveys. Corresponding image pixels were 
determined on the geo-corrected hyperspec-
tral image using GPS coordinates. The labo-
ratory reflectance spectra of collected sam-
ples and the reflectance values derived from 
pixel values were compared. We determined 
the widest possible spectral range in which 
the correlation between laboratory spectrum 
and hyperspectral data is the highest.

After that we analysed the correlation 
between laboratory and image spectra. It 
is an important step, since the laboratory 
spectra should be used as training sample 
for Spectral Angle Mapper Classification, 
instead of selecting pure pixels in the image. 
The flowchart of the entire data processing 
is shown in Figure 3.

Fig. 2. Avantes spectrometer and sampling
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Segmentation and data fusion

Geometric transformation was performed to 
align the two images: multi- and hyperspec-
tral images with different spatial resolution. 
We transformed the natural-colour aerial 
photo with Ground Control Points (GCPs), 
and the Root Mean Square Error (RMSE) was 
lower than 0.5 pixel.

The segmentation module of ERDAS 
Imagine was applied to the multispectral 
aerial image. The segmentation parameters 
were selected with a trial-and-error method 
approach based on the compute settings pa-
rameters function in ERDAS Imagine until 
satisfactory results were achieved. Edge de-
tection was performed on the multispectral 
image, and the minimum segment size was 
set to 25 pixels (4 m2). The minimum spec-
tral distance and the variance factor values 
were modified to extract separate segments. 
Higher minimum spectral distance value 
results in the smaller number of segments. 
When the spectral distance between neigh-
bouring pixels are less than the selected 
value, pixels are assigned to the same seg-
ment. Variance is a very important parameter 

because larger variance increases the hetero-
geneity within the segment. Larger variance 
reduces the number of segments (ERDAS 
Field Guide, 2013). 

During the data fusion process, the multi-
spectral image was segmented, and average 
reflectance values derived from the hyper-
spectral image bands were assigned to each 
segment separately. As a result the spectral 
parameters of the hyperspectral image were 
assigned to the spatial objects of multispec-
tral image (Figure 4). Finally, an image seg-
ment containing a lot of pixels has only one 
average reflectance curve, which makes the 
classification process faster.

Classification: Spectral Angle Mapper (SAM)

After the average reflectance curves were 
computed for each segments, we applied 
the SAM method to classify segments to the 
proper class based on the similarity of curves 
of the segments to laboratory curves. By us-
ing this method, pixels can be set in an n-di-
mensional space (n is the number of bands). 
The algorithm selects those pixels which are 

Fig. 3. Flowchart of data processing and analysis
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within the user-defined deviation range of 
vectors. A great advantage of this method 
is that it is only sensitive to the direction of 
the vector and not to the length of the vector 
(Kruse, F.A. et al. 1993). 

Results and discussion

Correlation of laboratory measurements and 
hyperspectral image spectra

The influence of the distance between the 
sensor and the material sample was tested at 
the beginning of laboratory measurements. 
It was observed that increasing distance in-
creased the deviation in the range of shorter 
and longer wavelengths. Therefore, we used 
2 cm subject distance to measure the reflec-
tance for all samples.

The analysis of the total spectra of mas-
ter and slave channels showed that high 
correlation coefficient occurred only in the 
master channel for clay roof tile and vege-
tation (R=0.98), while this relationship was 
not so strong (R=0.52) for asphalt (Table 2). 
Significantly smaller values were obtained in 
the slave channel for each land cover mate-
rial. The values of the correlation coefficients 
increased by narrowing the spectral range. 
High and significant relationship was calcu-
lated in the overlapping bands of the master 
and slave channels between 525–800 nm for 
each material. Since the reflectance curves of 
each material were quite similar at 525 nm, 
we chose the spectral range between 500–800 
nm which was a wider range but it gave a 
slightly lower value for asphalt. In addition, 
the reflectance value of the vegetation was the 
lowest in the range between 500–525 nm and 
at 525 nm it exceeded the reflectance value of 
red clay roof tiles and asphalt. 

The shape of the reflectance curve derived 
from selected ranges provided important in-
formation about the features of the materi-
als. The reflectance curve of red clay roof tile 
was monotonically increasing in the range 
between 500–800 nm (Figure 5). As opposed 
to this, the curve of the asphalt showed a con-
stant value. The characteristics of the veg-
etation curve were the most distinct. It had 
a local maximum at 550 nm (there are two 
minimums at 450–680 nm because of chlo-
rophyll absorption), and the red edge band 
could be observed at 775 nm after a decrease 
of the values. Plant species can be differenti-
ated by determining the inflection point of 
the reflectance curve in this range (Vane, G. 
and Goetz, A.F.H. 1988). 

Lots of land cover types can be found in 
the study area, especially the roof types are 

Table 2. Correlation between the sample and the corresponding pixel in different spectral ranges

Master Slave
Wavelenght (nm)
Red clay roof tiles
Vegetation
Asphalt

350–850
0.987
0.983
0.519

500–800
0.991
0.988
0.857

525–800
0.990
0.988
0.885

525–1,165
-0.240
0.642
0.303

525–800
0.982
0.993
0.950

Fig. 4. Result of segmentation and data assignment 
(RGB: 50,24,12)
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heterogeneous. The classes are not sepa-
rated well in the multispectral images, thus 
additional information is required for pre-
cise classification. Using hyperspectral data, 
spectral differences between the vegetation 
and artificial surfaces are so specific that 
misclassification is mostly expected only  
between different roof types or other artifi-
cial surfaces (e.g. asphalt, greenshouses).

Strong relationship between laboratory and 
survey spectra is shown in Figure 5. The spec-
tral features determined by laboratory meas-
urements are represented in the hyperspectral 
image as well, with smaller shifts caused by the 
aforementioned effects. The local maximum of 
the vegetation appears at 550 nm both in the  
image and the laboratory spectra, but the labora-
tory spectrum is slighter and the inflection point 
in the red edge range can also be observed. The 
increasing reflectance values of clay roof tiles 
and the nearly identical values of asphalt are 
represented both in laboratory measurements 
and in hyperspectral image spectra.

After comparing the laboratory and hy-
perspectral image data, the spectral bands 
between 500–800 nm were selected for the 
separation of the main land cover classes. 67 
bands can be found in this range on the hy-
perspectral image.

Evaluation of built-up map

The urban land cover map was created based 
on the result of SAM classification (Figure 6)  
A high spatial resolution aerial photo ob-
tained from the Department of Physical 
Geography and Geoinformatics, University 
of Szeged, was used for the accuracy assess-
ment procedure. The natural-colour aerial 
photo was acquired in March, 2012, and has 
0.1 m spatial resolution. We used Google 
Earth images to classify uncertain reference 
points because the acquisition date of the 
reference image differs from the hyperspec-
tral image (due to different vegetation pe-
riod). We selected a total of 380 points for the 
study area using stratified random sampling 
method (Table 3). The accuracy assessment 
showed that the overall accuracy of the land 
cover map was high (87.9%). The accuracy 
value of the least accurate class (asphalt) was 
67.2 per cent. Five different roof types, wa-
ter bodies, roads, and vegetation were sepa-
rated. Some segments remained unclassified 
due to the shadow effect and the mixture of 
different land cover types within the pixels.  

Fig. 5. Reflectance curves of laboratory measurements 
and derived from the hyperspectral image

Fig. 6. Land cover map of the study area
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The vegetation class had high producer’s 
(92.8%) and user’s accuracy (98.1%). The pro-
ducer’s and user’s accuracy of water was 100 
per cent. White roof, red concrete tile, pur-
ple clay tile had high producer’s accuracies 
ranging from 87.5 to 96.3 per cent and high 
user’s accuracies ranging from 86.7 to almost 
100 per cent. Gray tile had lower producer’s 
(77.8%) and user’s accuracy (82.4%). Red clay 
tile had low user’s accuracy (69.2%)

Comparison of land cover classes and surface 
temperature

First, the differences between the tempera-
ture of the start and the end point of the flight 
track were adjusted. Because of the strong 
correlation between the two images acquired 
on different dates, we chose the image ac-
quired on 14 August, because this image had 
higher contrasts. The statistical parameters of 
surface temperature were calculated for all 
land cover classes and the results were sum-
marized in a box plot diagram (Figure 7). The 
figure shows that the surface temperature of 
roads was remarkably high, and the median 
value was over 30 °C. The surface tempera-
ture of the vegetation class was not as low as 
we expected. Since the pixels of the canopy 
partly cover the roads, the vegetation class 
had higher mean temperature. The difference 

between the temperatures of white roof and 
other roof types originated from the different 
material and the function of the building (e.g. 
the white roof belongs to a cold store). The 
gray tile had the second lowest mean tem-
perature value. The lower deviation value 
for water class is originated from the lower 
number of water pixels in the study area. 

Conclusions 

Hyperspectral data processing is a complex 
task, which provides unique solution to 
determine material quality in scientific re-
search. In this study we successfully deter-

Table 3. Stratified random accuracy assessment

Class Reference 
points

Classified 
points

Correctly 
classified

Producer’s 
accuracy, %

User’s accuracy, 
%

Red clay tile 78 104 72 92.3 69.2
Asphalt 61 45 41 67.2 91.1
White roof 16 14 14 87.5 100.0
Gray tile 18 17 14 77.8 82.4
Vegetation 166 157 154 92.8 98.1
Red concrete tile 27 30 26 96.3 86.7
Water 2 2 2 100.0 100.0
Purple clay tile 12 11 11 91.7 100.0
Sum 380 380 334
Overall accuracy: 87.9%. Overall Kappa Statistics = 0.84

Fig. 7. Comparison of land cover classes and surface 
temperature on a boxplot diagram
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mined the extent of built-up area and distin-
guished 8 land cover types for the study area 
using laboratory spectra and Spectral Angle 
Mapper classification method. 

Our results provide evidence for the effi-
ciency of laboratory spectra in the selection 
of training samples based on the high cor-
relation with image spectra. The features of 
reflectance curves derived from different arti-
ficial materials were successfully analysed to 
determine the most suitable spectral ranges 
for their separation in feature space. Similar 
spectral range (580–800 nm) were found with 
different approach in Szabó, Sz. et al. (2014). 

In our research two images were used to 
utilize both the spatial and spectral informa-
tion of land cover and to improve classifica-
tion accuracy. Segmentation method was used 
to gain the geometry of objects from the mul-
tispectral image, and Spectral Angle Mapper 
method was applied for classification based 
on the divergence of laboratory spectra and 
hyperspectral data of segments. The meth-
odology proved to be efficient in the image 
classification of urban area and the overall ac-
curacy was 87.9 per cent. The study of Greiwe, 
A. and Ehlers, M. (2005) similarly compared 
single image classification against the joint 
use of hyperspectral data and high resolu-
tion multispectral image. They also used seg-
mentation and SAM scores, and the overall 
accuracy is significantly increased with the 
combined use of the RGB image, nDSM (nor-
malized Difference Surface Model) and SAM 
scores, and the use of SAM scores resulted in 
almost 20 per cent increase of accuracy. The 
combination of spectral and spatial classifi-
ers was tested in the mapping of urban land 
cover using DAIS data in Dell’Acqua, F. et 
al. (2004). They stated that higher accuracy 
can be expected by using spatially connected 
data, the accuracy of the roof class was 96.4 
per cent. Our study also highlighted the im-
portance of spatial scale of urban reflectance, 
and proved that the high resolution hyper-
spectral images combined with very high 
resolution multispectral image can improve 
urban land cover classification on parcel size. 
We presented that certain land cover types 

have significant effect on surface temperature, 
which is strongly connected to the urban heat 
island phenomenon, and influences popula-
tion health. Most of the citizens cannot afford 
the green and cool roof types – the advantages 
are in Kolokotsa, D. et al. (2013) –, but can 
choose from a lot of cheaper roof types, which 
have preferable temperature properties. Based 
on our results, the application of certain roof 
material can be recommended to population 
which can lead to lower surface temperature 
locally. Similar temperature modifying effects 
of roof types were found in Roman, K.K. et 
al. (2016). Further work is needed to consider 
the effects of the differences in roof angle, tex-
ture and age. Consideration should also be 
given to the mapping of different tree species 
as the shading capacity of the trees and the 
modification of microclimate may be different 
(Takács, Á. et al. 2016).

The limiting factors of the study were the 
number of thermal measurements, the small 
area coverage of hyperspectral data and the 
narrow range of laboratory measured spec-
trum. In future research the number of land 
cover types can be increased by selecting a 
more heterogeneous study area. The spatial 
extension of the study can support urban 
planning programs and provides more de-
tailed information about built-up areas for 
decision makers. 
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