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Abstract 1 According to Pawlak’s classic rough set theory the vagueness of a
subset of a finite universe U is defined by the difference of its upper and lower
approximations with respect to an equivalence relation on U. A natural way of the
generalization of this idea is that the equivalence relation is replaced by either any
other type of binary relations on U or an arbitrary covering of the universe. In
this paper, our starting point will be an arbitrary family of subsets of an arbitrary
universe U. Within this framework, we shall investigate a possible generalization
of Pawlak’s idea. Both Pawlak’s rough set theory and our approach can extensively
be applied in medical informatics.
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1. Introduction

The rough set theory was introduced by the Polish mathematician Z. Pawlak in
the early 1980s [15, 16]. Let U be a finite set of distinguishable objects which
is called the universe of discourse, and ¢ C U x U be an equivalence relation on
U. The elements of partition generated by e are called e-elementary sets. An e-
elementary set can be viewed as a set of indiscernible objects characterized by the
same available information about them [18, 20]. Any union of e-elementary sets
is referred to as definable set. An arbitrary subset X C U may not necessarily be
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a union of some e-elementary sets. However, it can be naturally approximated by
two sets, by the union of e-elementary sets that are subsets of X, called the lower
e-approximation of X, and by the union of e-elementary sets that have a nonempty
intersection with X, called the upper e-approximation of X.

The basic idea of Pawlak’s rough set theory is that the vagueness [12, 17, 19, 20]
of a set is described by the difference of its upper and lower e-approximations called
the e-boundary of the set. A set is rough if its e-boundary is nonempty.

Using partitions, however, is a strict requirement. Moreover, in practice, there
are attributes which do not characterize all members of an observed collection of
objects [6, 13].

A natural way of the generalization of Pawlak’s idea is that the equivalence
relation is replaced by any other type of binary relations on U [10, 11, 24]. Another
generalization is the assumption that the starting point is an arbitrary covering of
the universe [1, 23, 26, 27]. In this paper, our starting point will be an arbitrary
family of subsets of an arbitrary universe U. We will not assume whether this
family of sets covers the universe or the universe is finite.

The paper is organized as follows. In Section 2 we summarize the basic nota-
tions used throughout the paper. Section 3 presents the basic concepts and their
properties of the classical Pawlak’s rough set theory. Only those facts which are
important from the point of view of the generalization will be considered. The
major contributions of this paper are covered in Section 4 which summarizes the
basic principles of the partial approximation of sets.

2. Basic Notations

Let U be any set. The powerset of U is 2Y. If 2 C 2V, then the union of 2 is
U2A = {z|3JA € A(x € A)}, the intersection of A is (A = {z | VA € A(x € A)}.
If 2( is an empty family of sets we define | J# = () and N0 =U.

If € is an arbitrary binary relation on U, let [z]. denote the e-related elements
to z, ie., [z]e = {y € U | (z,y) € €¢}. They are called e-elementary sets, and the
family of [z]. is denoted by Ul/e.

Let X and Y be nonempty sets and f : X — Y be a map. If domf = X then
f is total, if domf ; X then f is partial. If f is a partial map, then domf = ()
is allowed. For the purpose of simplicity we will talk about partial maps without
direct references to their partial properties. However, statements with respect to
partial maps always concern their restrictions to their domains.

A nonempty set P together with a partial order < on P is called a poset, in
symbols (P, <). Let (P,<p) and (Q,<g) be two posets. A map f: P — Q is
monotone if & <p y = f(x) <q f(y), order-embedding if x <p y & f(zr) <g f(y),
and order-isomorphism if f is an order-embedding onto ). In general, monotone
maps are many-to-one correspondences. An order embedding is always monotone
and injective. Hence, f is an order-isomorphism if and only if f is a bijection, and
both f and f~! are monotone.
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3. Basics of Pawlak’s Rough Set Theory

Definition 3.1. The pair (U, e) where U is a finite universe of discourse and ¢ is
an equivalence relation on U is called Pawlak’s approrimation space.

Equivalence classes generated by the equivalence relation e are e-elementary
sets. A subset X C U is e-definable, if it is a union of e-elementary sets, otherwise
X is e-undefinable. By definition, the empty set is considered to be an e-definable
set.

Let /. denote the family of e-definable subsets of U.

Remark 3.2. The idea of approximation space is a bit younger than Pawlak’s
initial works. For an evolutionary survey of approximation spaces, see [20].

The following statement is elementary, however, in the context of Pawlak’s
rough set theory it is an important fact. For the sake of simple reference, it is for-
mulated in a lemma. It follows just from the fact that the partition U/e generated
by & consists of nonempty pairwise disjoint subsets of U.

Lemma 3.3. VX € 2V/s VX € U/e (X CUX & X € X).

Clearly, by Definition 3.1, Dy, contains the empty set and is closed under
complementation and unions. According to Lemma 3.3, it is also closed under
intersections, i.e., Dy /. is a o-algebra with basis U/e.

Proposition 3.4 ([3], Theorem 8) Let (U,¢) be a Pawlak’s approximation
space.
Then the map u. : 2V/¢ — Dyje, X+ |JX is an order isomorphism between

(2U/E, Q) and (@U/sa g)

Corollary 3.5. Any e-definable subset D € Dy of U can be written uniquely in
the following form:

D =|J%, where X ={X | X € U/e, X C D} € 2V/,

that is, there is no other X' € 2U/¢ satisfying D = |J%'.

Proof. Since D € Dy/., thus D = |J X immediately holds by Lemma 3.3. How-
ever, u. is a bijection, so uZ*(D) € 2Y/¢ is unique and uZ!(D) = X. O

In Pawlak’s approximation spaces, lower and upper approximations of X € 2V
can be defined in three equivalent forms [21, 22, 25].

Definition 3.6. Let (U, ) be a Pawlak’s approximation space and X € 2V be any
subset of U.
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The lower e-approzimation of X is

eX) = {zeU|[z]: C X}, (3.1a)
= J{v|veU/y X} (3.1b)
= U{Y | Y e QU/an g X}7 (31C)

the upper e-approximation of X is

BX) = {zcU|[z]-NnX #£0}, (3.2a)
= JvIyeu/kynX £0}, (3.2b)
= (Y |Y €Dy, XY} (3.2¢)

It follows just from the definitions that £(X),Z(X) € Dy/., in addition the
maps ¢,8 : 2V — Dy/e are total and many-to-one.

Proposition 3.7 Let (U, <) be a Pawlak’s approximation space and X € 2Y be a
subset of U. The sets (X)), (X) can be written uniquely in the following forms:

e(X) = (JX, where X={Y |Y €U/e,Y C X} €2"/°,

ol

—~
e

S~—
Il

U?, where X ={Y | Y € U/e,Y N X # 0} € 2V/¢,
that is, there are no other X', X’ € 2U/¢ satisfying ¢(X) = X and (X) = JX".

Proof. According to Definition 3.6 (3.1b), (3.2b), we only have to prove the unique-
ness.
e(X), e(X) € Dyye, and so, by Proposition 3.4, uZ'(¢(X)) and uz*((X)) are
unique. Hence, by Lemma 3.3, we get
uZl(e(X)) = {Y|YeU/eY Ce(X)}
= {Y|YeUYyc| V'Y eU/Y CX}}

= {Y|YeUl,Ye{Y'|Y €U/, Y C X}}

— {Y|YeUkYCX}=X%
u'E(X) = {Y|Y eU/eY CE(X)}

= {Y|YeUYy | V'Y €U/Y NX +0}}

= {Y|YeUkYe| J{VY eU/Y NX +0}}

= {Y|YeU/l,YNX #0} =X
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Basic properties of lower and upper e-approximations can be found, e.g, in
[10, 16]. Here we cite only a few among them which will be important in the
following.

Proposition 3.8 ([16], Proposition 2.1, point a)) Let (U,¢) be a Pawlak’s
approximation space. Then X € Dy, if and only if £(X) = £(X).

Proposition 3.9 ([16], Proposition 2.2, points 1, 9, 10) Let (U,¢) be a
Pawlak’s approximation space. Then

VX €2V (g(X) € X CE(X)),
that is, the maps € and € are contractive and extensive, respectively.
Corollary 3.10. ¢(X) = X if and only if X =2(X).

Proof. Since £(X) € Dy ((X) € Dyye), then X =¢(X) € Dy (X =2(X) €

Dy/e), and so, by Proposition 3.8, X = ¢(X) = £(X) (X = &(X) = g(X)). O

Definition 3.11. Let (U, ¢) be Pawlak’s approximation space and X C U.
The e-boundary of X is

Be(X) =&8(X) \ e(X).
X is e-crisp, if B.(X) =0, otherwise X is e-rough.
Proposition 3.12 Let (U, ) be Pawlak’s approximation space and X C U.
1. X is e-crisp if and only if X is e-definable.

2. X is e-rough if and only if X is e-undefinable.

Proof. (1) (=) X is e-crisp & B.(X) =&(X)\&(X) =0 & g(X) C &(X). Propo-
sition 3.9 implies ¢(X) C &(X), and so g(X) = &(X). According to Proposition
3.8,e(X) =2(X) & X € Dyye.

(<) Since X € Dy & £(X) = &(X), so B.(X) = &(X) \ &(X) = 0 trivially
satisfies.

(2) It is the contrapositive version of (1). O

As a consequence of Proposition 3.12, the notions ‘e-crisp’ and ‘e-definable’ are
synonymous to each other, and so are ‘c-rough’ and ‘c-undefinable’.
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4. Partial Approximation of Sets

Let U be any nonempty set called the universe of discourse.

Definition 4.1. Let B C 2V be a nonempty family of nonempty subsets of U
called the base system. Its elements are the B-sets.

The family of sets ® C 2V is B-definable, if its elements are B-sets, otherwise
D is B-undefinable.

A nonempty subset X € 2V is B-definable, if there exists a B-definable family
of sets © such that X = (D, otherwise X is B-undefinable. The empty set is
considered to be a B-definable set.

Let ®o denote the family of 2-definable sets of U.

Definition 4.2. Let B C 2V be a base system and X be any subset of U.
The weak lower B-approzimation of X is

(X)) = J{v |y es Yy C X}, (4.1)
and the weak upper B-approrimation of X is
X)) =y |y es vy nX £0} (4.2)
Clearly, le% (X), Qﬁ% (X) € D, and the maps (‘Ib%, Q:ﬁ% are total, onto, and, in
general, many-to-one. Furthermore, both of them are monotone.
Proposition 4.3 ([3], Theorem 17) Let the fixed base system B C 2U be given.
1. VX € 2V (€% (X) C ¢4 (X)).
2. VX € 2V (€% (X) C X)—that is, €} is contractive.

3. VX € 2Y(X C Qﬁ% (X)) if and only if B = U—that is, Cﬁ% is extensive if
and only if B covers the universe.

Proposition 4.4 ([3], Theorem 19) Let B C 2Y be a base system. Then
1. X € Dy if and only if €3 (X) = X.
2. X ¢ Dy if and only if €% (X) # X.

Unlike Pawlak’s approximation spaces (cf. Proposition 3.8), by Proposition 4.4,
the B-definable property is generally not equivalent to € (X) = Qﬁ% (X).

Definition 4.5. Let B C 2V be a base system and X be any subset of U.
The B-boundary of X is

Ny (X) = €5 (X) \ T (X).
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X is B-approzimatable if X C Qlﬁ% (X), otherwise it is said that X has a 9B-
approximation gap.

Provided that X € 2V is B-approximatable, X is B-crisp, if Ny (X) = 0,
otherwise is B-rough.

In general, My (X) € D, i.e., B-boundaries are usually B-undefinable.

A B-approximation gap calls our attention that the available knowledge about
the system encoded in B is not enough to approximate X. However, it may be
natural or not.

According to Proposition 4.4, point (1), X is B-definable if and only if X =
@ (X). If X = ¢%(X), then X = €%(X) C Cﬁ%(X). However, it can easily
be seen that X = €% (X) generally does not imply X = Qﬁﬁ% (X). Hence, the
notion “B-definable’ does not imply the notion “B-crisp’. Thus, unlike Pawlak’s
approximation spaces (cf. Proposition 3.12), the notions “B-crisp’ and ‘“B-definable’
are not synonymous to each other.

Possible interpretations of lower and upper B-approximations are the following
[16, 18]:

° (’Zb% (X) is the set of all elements in U which can be certainly classified in a
way that they belong to X with respect to B (B-positive region of X).

. Qﬁﬁ% (X) is the set of all elements in U which can be possibly classified in a
way that they belong to X with respect to B.

o U\ Q:ﬁ% (X) is the set of all elements in U which can be certainly classified in
a way that they do not belong to X with respect to B (B-negative region of
X).

e The elements in Qﬁ% (X) \ €% (X) are abstained because they cannot be
uniquely classified either as belonging to X or as not belonging to X with
respect to B (B-borderline region of X).

Notice that if | B # U, then VX C U\|JB VB € B(XNB = (). Consequently,
for all these subsets Qfﬁ% (X) =0 = 0, i.e., the empty set is the weak upper B-
approximation of certain nonempty subsets of U.

Such cases may be excluded by a partial map, a so-called strong upper B-
approzimation. For more details, see [2, 3, 4, 5].

5. Conclusions and Future Work

In this paper we have presented a generalization of the rough set theory. Most
notions of Pawlak’s classical approximation spaces constitute compound ones
which, however, split in two or more parts in our approach. This new approach
helps us to understand the state of the compound nature of these notions and to
specify their constituents.
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The next most important task is to work out a partial approximative informa-

tion system model by analogy with Pawlak’s one [16] on which practical implemen-
tations of our theoretical model can be built up.

Finally, it must be mentioned that both Pawlak’s rough set theory and our
approach can extensively be applied in medical informatics, see, e.g., [7, 8, 9, 14].
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