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Abstract: This article presents a new, alternative method of gesture recognition, using the 
cognitive properties of intelligent decision-making systems, to support the rehabilitation 
process of people with disabilities: the Asynchronous Prediction-Based Movement 
Recognition (APBMR) algorithm. The algorithm “predicts” the next movement of the user 
by evaluating the previous three with the goal to maintain motivation. Based on the 
prediction, it creates acceptance domains and decides whether the next user-input gesture 
can be considered the same movement. For this, the APBMR algorithm uses six mean 
techniques: the Arithmetic, Geometric, Harmonic, Contrahamonic, Quadratic and the Cubic 
ones. The purpose of this article besides presenting this new method is to evaluate which 
mean technique to use with the three different acceptance domains. We evaluated the 
algorithm in real-time, using a general and an advanced computer, as well as testing, verified 
by prediction, from a file and comparison of the algorithm to one of their earlier works.  
The tests were done in four groups of users, respectively, each group performing four 
gestures. After analyzing the results, we concluded that the Contraharmonic mean technique 
gives the best average gesture acceptance rates, in the ±0.05 m and ±0.1 m acceptance 
domains, while the Arithmetic mean technique provides the best average gesture acceptance 
rate in the ±0.15 m acceptance domain, when using the APBMR algorithm. 

Keywords: cognitive infocommunications; human-computer interaction; Kinect; mean 
techniques; motivation; prediction-based gesture recognition; real-time gesture recognition; 
rehabilitation 

1 Introduction 

Stroke is one of the most frequent diseases of the modern day. As shown in [1, 2], 
48% of people who survived brain-to-asthma disease suffer from half-side 
paralysis. Not only that, in more than 60% of cases, cognitive decline is detectable. 
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Up to 12-18% of people with this disease are aphasic. 24-53% of stroke patients are 
partially or completely dependent on other people. Due to this, modern technology 
should be involved. 

The development of stroke rehabilitation methods that do not place additional 
burdens on the overburdened healthcare systems was stimulated by the increasing 
number of stroke patients in need of post-stroke rehabilitation [3]. Researchers are 
working on new rehabilitation methods as virtual reality can be used in 
neurorehabilitation. There are many initiatives in healthcare, primarily in the field 
of movement rehabilitation, where some form of gameplay is used. “Serious games” 
(in other words, games that develop something) can complement physiotherapy as 
motion elements are used. These are controlled by motion therapists [4]. Even 
virtual reality-based games and video games are new, well-used technologies that 
can be effectively combined with the traditional rehabilitation of an upper limb 
injury following a stroke. 

In the mentioned software, the movement of the patient is monitored through an 
optical device to indicate if they are practicing properly. There are some 
applications where the user is placed in a virtual environment and, for example, they 
handle a phobia or reduce the frustration associated with the rehabilitation 
procedure [5]. 

There are many neurorehabilitation techniques based on virtual reality technology 
that are promising on solving this problem [6-14], however they did not spread 
across the field of healthcare. These techniques are well-developed judging from an 
IT perspective, but the users in the healthcare field found them difficult to use and 
customize, thereby the patient lost motivation [15] [16]. In some cases, even the 
sensors should be customized [17]. Telemedicine can also be an important factor 
[18] [19]. It is more important nowadays than previously, as the hospitals are 
overcrowded and rehabilitation at the home of the patients is much more convenient 
for both the patient and the therapist. Therefore, we present an alternative method 
besides the existing ones, thus the workers in the field of healthcare could have one 
more method to choose from. 

Fortunately, the area of Cognitive InfoCommunications (CogInfoCom) [20] is 
ready to highlight new capabilities of ICT on human-machine blended 
combinations, such as hand gestures and movement evaluation [21-28]. This 
provides an opportunity to examine a number of human factors using modern 
cognitive IT methods. However, according to Ghazarian and Noorhosseini, 
exergames could not adapt to the needs of the patients if the application is calibrated 
by the therapist beforehand or when the correction values are pre-set [29]. Our 
previous work could adapt to the needs while maintaining the motivation of patients 
in the rehabilitation process [25]. However, it was not always accurate. Therefore, 
to improve our work as well, we propose the Asynchronous Prediction-Based 
Movement Recognition (APBMR) algorithm. This algorithm does not require large 
computing power, supports low-cost sensors such as the Kinect, can be used as a 
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form of telemedicine, and can adapt more accurately to the patients compared to 
our previous work. Thus, it can be used at the home of patients if they have a low-
cost sensor such as the Kinect. The APBMR algorithm “predicts” the next 
movement of the user by evaluating the previous three and decides whether the next 
user-input gesture can be considered the same movement with the goal to maintain 
motivation. It also follows the position of the user and matches their speed, to make 
the decision of accepted gestures easier. 

This article is structured as the following: Section 2 deals with the materials and 
methods. Section 3 presents the results, containing both real-time and file-based 
evaluations, section 4 discusses them and in Section 5, conclusions are provided. 

2 Materials and Methods 

This section is divided into three subsections: subsection 2.1 presents the idea which 
led to the development of the APBMR algorithm, while subsection 2.2 defines it in 
detail and subsection 2.3 presents the collected data. 

2.1 The Idea of the APBMR Algorithm 

While the Kinect v1 and v2 sensors can be used in the medical field by substituting 
more expensive sensors [30], with [31] or without data filtering [32], there are two 
problems with them regarding gesture recognition: the first is that when the user 
stands at a different distance from the sensor than before, it returns new x, y, z 
coordinates. Therefore, when repeating the same gestures at a different position, it 
may not be recognized. Another problem is the speed: when doing the same gestures 
at a different speed, the gestures may not be recognized as well. 

Thus, we devised and developed the APBMR algorithm in 2019 using C#, which 
follows the position of the users and also, tracks the speed of the movement. This 
algorithm is similar to two of our previous algorithms, namely the Reference 
Distance Based Synchronous/Asynchronous Movement Recognition 
(RDSMR/RDAMR) algorithms [25]. They are similar as they use the same gesture 
acceptation domain principle, but they will be compared and elaborated on in 
subsection 3.3 and section 4, respectively. 

Therefore, the following is hypothesized: The average of accepted gestures is larger 
when the APBMR algorithm is used than in the case of the previous algorithm it 
was based upon and it can also be used for telerehabilitation. 

It should also be mentioned, that even though the APBMR is developed for the 
Kinects; in principle, it can be used with any sensor that sends movement descriptor 
data in real-time and evaluates gestures by using coordinates. 
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2.2 Presenting the APBMR Algorithm 

In this subsection, the APBMR algorithm is presented. Before defining the steps of 
the algorithm, two pieces of crucial information should be noted. The first is that 
the algorithm only evaluates one axis at a time. After it completes the evaluation on 
one axis, it starts the evaluation on another. When all three axes are evaluated, the 
gestures are either accepted or rejected. The other piece of information is that the 
algorithm looks for repeating gestures in the movement descriptors by searching for 
the farthest and the closest coordinates from the starting point on the currently 
evaluated axis. This can be seen in Figure 1. 

Imagine that the starting coordinate of a gesture is the leftmost X in the figure. First, 
the algorithm determines whether the starting coordinate is at the bottom or at the 
top of a “slope”. Then, the algorithm searches for the coordinate that is the farthest 
from the starting coordinate (illustrated with the second X): in the figure the starting 
coordinate is at 0.5220696 and the farthest is at 0.1476125. Since the starting 
coordinate was at a top of a “slope” in the case of this example, then it looks for the 
farthest coordinate at the bottom. Reaching this coordinate means that the gesture 
is about halfway done. Afterward, the algorithm searches for the coordinate that is 
the closest to the starting coordinate (illustrated with the third X). In this case, it is 
at 0.5437541. As can be suspected, it is not the closest numerically, because 
searching for this coordinate has a few criteria: If the starting coordinate is at the 
top of a slope, then the closest coordinate also has to be at the top. Naturally, if the 
starting coordinate is at the bottom, then the closest coordinate has to be at the 
bottom as well. Also, the closest coordinate must be after the previous farthest 
coordinate. If this closest coordinate is reached, then the algorithm can conclude 
that this coordinate is the end of the first gesture. Afterward, the coordinate 
symbolized by the third X in the figure becomes the new starting coordinate for the 
next gesture and the algorithm repeats these steps. 

 
Figure 1 

Illustration of how the algorithm calculates the number of gestures and the length of the gestures 
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After defining how the algorithm finds the gestures, let us look at how it works, 
step-by-step: 

1. Scans the number of done gestures by searching for the closest and farthest 
coordinate points (referred to as “clofarpoint” later on) to the starting 
coordinate point in the movement descriptors. 

2. Calculates the average length of the scanned gestures. 

3. Predicts the possible next movement on the x axis and its acceptance 
domains based on the last three done gestures using mean techniques. This 
step has multiple substeps: 

a. While 𝑖𝑖 < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 6, it calculates the length of 
the previous three movements based on the following rules: 

𝑥𝑥1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+2  − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 (1) 

𝑥𝑥2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+4 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+2 (2) 

𝑥𝑥3 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+6 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+4 (3) 

, where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the number of all “clofar” in the gesture 
descriptors. Variable i is incremented by 2 in each cycle. 

b. It creates an average of these lengths using a mean technique 
(mtk). This can be selected by the user (𝑘𝑘 ∈ [1,6]). The used 
mean techniques were the Arithmetic average (4), Geometric 
average (5), the special case of Harmonic average for three 
numbers (6), Contraharmonic average (7), Quadratic average (8) 
and the Cubic average (9). The special case of Harmonic average 
was required as the regular Harmonic average equation gave “Not 
a Number” (NaN) results during measurements. 

𝑚𝑚𝑡𝑡1 = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  (4) 

𝑚𝑚𝑡𝑡2 = �∏ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛  (5) 

𝑚𝑚𝑡𝑡3 = 3𝑥𝑥1𝑥𝑥2𝑥𝑥3
𝑥𝑥1𝑥𝑥2+𝑥𝑥1𝑥𝑥3+𝑥𝑥2𝑥𝑥3

 (6) 

𝑚𝑚𝑡𝑡4 = 𝑥𝑥12+𝑥𝑥22+⋯+𝑥𝑥𝑛𝑛2

𝑥𝑥1+𝑥𝑥2+⋯+𝑥𝑥𝑛𝑛
 (7) 

𝑚𝑚𝑡𝑡5 = �1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1  (8) 

𝑚𝑚𝑡𝑡6 = �1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖3𝑛𝑛
𝑖𝑖=1

3  (9) 

, where, similarly, as in equations (1-3), xi is the length of the ith gesture. Also, since 
the algorithm uses the previous three gestures, n = 3 in all mtk equations.  
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c. Generates a new coordinate called 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑗𝑗 at frame j, while 
𝑗𝑗 < 𝑚𝑚𝑡𝑡𝑘𝑘 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖+4 + 𝑗𝑗 + 1 < 𝑥𝑥𝑖𝑖 by using one of the 
mentioned mean techniques and the following rules: 

𝑦𝑦1 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+ 𝑗𝑗 , 𝑥𝑥𝑖𝑖−𝑗𝑗

𝑚𝑚𝑡𝑡𝑘𝑘
≥ 𝑚𝑚𝑡𝑡𝑘𝑘−𝑗𝑗

𝑚𝑚𝑡𝑡𝑘𝑘
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+𝑗𝑗  +𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+𝑗𝑗+1

2
, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (10) 

𝑦𝑦2 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+2+𝑗𝑗 , 𝑥𝑥𝑖𝑖−𝑗𝑗

𝑚𝑚𝑡𝑡𝑘𝑘
≥ 𝑚𝑚𝑡𝑡𝑘𝑘−𝑗𝑗

𝑚𝑚𝑡𝑡𝑘𝑘
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+2+𝑗𝑗+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+2+𝑗𝑗+1

2
, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (11) 

𝑦𝑦3 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+4+𝑗𝑗 , 𝑥𝑥𝑖𝑖−𝑗𝑗

𝑚𝑚𝑡𝑡𝑘𝑘
≥ 𝑚𝑚𝑡𝑡𝑘𝑘−𝑗𝑗

𝑚𝑚𝑡𝑡𝑘𝑘
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+4+𝑗𝑗+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+4+𝑗𝑗+1 

2
, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (12) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑗𝑗 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

1
3
∑ 𝑦𝑦𝑙𝑙3
𝑙𝑙=1 , 𝑘𝑘 = 1

�∏ 𝑦𝑦𝑙𝑙3
𝑙𝑙=1

3 , 𝑘𝑘 = 2
3𝑦𝑦1𝑦𝑦2𝑦𝑦3

𝑦𝑦1𝑦𝑦2+𝑦𝑦1𝑦𝑦3+𝑦𝑦2𝑦𝑦3
, 𝑘𝑘 = 3

𝑦𝑦12+𝑦𝑦22+𝑦𝑦32

𝑦𝑦1+𝑦𝑦2+𝑦𝑦3
, 𝑘𝑘 = 4

�1
3
∑ 𝑦𝑦𝑙𝑙23
𝑙𝑙=1 , 𝑘𝑘 = 5

�1
3
∑ 𝑦𝑦𝑙𝑙33
𝑙𝑙=1

3 , 𝑘𝑘 = 6

 (13) 

, where c is the coordinate of the previous gestures. 

d. Creates three acceptance domains for each 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑗𝑗 
coordinate. It creates a very strict acceptance domain 
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑗𝑗 ± 0.05 𝑚𝑚), a medium strict one (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑗𝑗 ±
0.10 𝑚𝑚) and the least strict one (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑗𝑗 ± 0.15 𝑚𝑚). 

e. The algorithm does the previous steps for the remaining two axes 
(y and z). 

f. Calculates the percentage of the coordinates inside all three 
acceptance domains on all axes and evaluates whether the gesture 
is accepted. 

g. Waits until the user does a following gesture, then the algorithm 
pulls the earliest movement descriptor from the stack and starts 
over again with the remaining ones. 

h. The algorithm runs until the user turns it off. 
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By doing these steps, a possible next gesture of the user and its acceptance domains 
are created. As substep 3/e stated, the algorithm generated not only the possible 
movement descriptor of the user but their acceptance domains as well. See Figure 
2 for the sequence diagram of the APBMR algorithm. 

 
Figure 2 

Sequence diagram of the APBMR algorithm 

In Figure 3, the previously mentioned acceptance domains are represented with six 
thin blue lines, while the original gesture is drawn with a black line and the predicted 
movement with an orange line. The acceptance domains are generated around the 
predicted movement descriptors. 

If the reader looks at Figure 3, it could be observed that the acceptance domains and 
the predicted movement descriptors share the same shape on the x axis. The goal 
for the original movement is to stay inside these acceptance domains in each frame. 
Since all frames are evaluated, the gesture is accepted if it is inside these acceptance 
domains. This means at least 50% of the number of frames of a movement. If a 
gesture is accepted inside the strictest acceptance domain, that means that the 
APMBR algorithm can very accurately predict and classify the gesture of the user 
based on the previous three movements. Figure 3 tells us that for the strictest 
acceptance domain, 70% of the gestures are inside. For the medium strict one, 
98.65% are inside, and for the least strict, 100% are inside. 
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Figure 3 

Graphical representation of the APBMR algorithm on the x axis 

Keep in mind, that the algorithm predicts gestures on one axis at a time, therefore 
before deciding on an accepted gesture, the algorithm has to be run on all three axes. 
Fortunately, the algorithm is very fast and this does not result in a problem – even 
in real-time. 

The strength of this algorithm is that it can accept gestures when done in another 
position than the previous gestures. By default, this a problem with the Kinect, as it 
has a built-in 3D coordinate system and it only accepts those gestures that are done 
in the same position as the previous gestures. Since the APBMR algorithm follows 
the movement of the user, it predicts the position where the following gesture will 
be made. See Figure 4. 

 
Figure 4 

Graphical representation of the changing position of the right hand on the Kinect’s y axis 
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Another strength of this algorithm is that it is asynchronous, meaning that when the 
movements are done at a different speed (thus, having fewer frames), they are 
accepted as well. See Figure 5 for graphical representation. In the figure, the first 
three gestures are done at a “normal” speed, while the next six are done faster and 
the last few are slower. Only the strictest acceptance domain is shown in the figure. 

 
Figure 5 

Graphical representation of the changing movement speed 

2.3 Data Collection 

Data collection was done in the second half of 2019 at the University of Pannonia. 
Four groups of people tested the algorithm. Out of these four groups, two groups 
measured in real-time, while the data of the other two was logged in a file. This 
algorithm was evaluated using two different computers. We will refer to these 
computers as General or Advanced. Their specifications are the following: 

• General: Intel Core i7-720QM 1.60GHz, 6GB DDR3 1333MHz, ATI 
Mobility Radeon HD 5850 1GB 

• Advanced: Intel Core i9-9900K 3.60GHz, HyperX 32GB Predator DDR4 
3200MHz, ASUS ROG Strix GeForce RTX 2080 8GB GDDR6 SUPER 

Also, the speed of the algorithm when predicting from a file was also assessed. As 
the APBMR algorithm uses a similar principle as our previous algorithm, they were 
compared as well. Table 1 presents the data-gathering phase. 

Table 1 
Data collection 

Computer  People Gestures Repetition Evaluation Algorithm 
Advanced 16 4 10 File APBMR 
Advanced 32 4 10 Real-time APBMR 
General 32 4 10 Real-time APBMR 

Advanced 32 4 10 File APBMR and 
RDSMR/RDAMR 
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As can be seen, there are 16*4*10+32*4*10+32*4*10+32*4*10=4480 cases to 
evaluate the accuracy and speed of the APBMR algorithm. However, there are six 
different mean techniques and each was measured, therefore total number of cases 
is 4480*6=26880. This means that 32*4*10*2*6=15360 cases were evaluated in 
real-time and 16*4*10*6+32*4*10*6=11520 cases were evaluated from a file. 

It should be noted that in the second and the third row, the users who tested the 
algorithm were the same. Also, the measured gestures were the same in each row: 
A circular movement, a waving movement, a diagonal movement forwards and a 
diagonal movement upwards. Lastly, in the fourth row of Table 1, it can be seen 
that both algorithms were assessed. Here, the testers recorded gesture descriptors 
and the data were saved in a file, since it was critical to assess the same coordinates 
of the gestures. Therefore, in the case of the last row, both algorithms loaded the 
data from the mentioned file and evaluated it. 

3 Results 

This section is split into four subsections. Subsection 3.1 presents the real-time 
results of both computers when evaluating the algorithm. Subsection 3.2 deals with 
the results when predicting movement descriptors from a file. Next, subsection 3.3 
compares the APBMR algorithm to our old algorithm. Finally, subsection 3.4 
evaluates all results of the APBMR algorithm, by taking every previous data into 
account. 

Also, from the next subsection onwards, abbreviations are used instead of the 
frequently occurring words or phrases. These and their meanings are the following: 

• Average Gesture Acceptance Rate (AGAR), which is an average rate of 
accepted gestures in the whole dataset 

• Acceptance Domain (AD), where the users’ gestures have to be located 

• Arithmetic Mean Technique (AMT), as defined in equation (4) 

• Geometric Mean Technique (GMT), as defined in equation (5) 

• Harmonic Mean Technique (HMT), as defined in equation (6) 

• Contraharmonic Mean Technique (CHMT), as defined in equation (7) 

• Quadratic Mean Technique (QMT), as defined in equation (8) 

• Cubic Mean Technique (CMT), as defined in equation (9) 
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3.1 Real-Time Results 

First, the results received with the general computer were investigated (Figure 6). 
In the case of circular gestures, the CHMT gives the best AGAR for the strictest 
AD (26.95%), the HMT gives the best AGAR for the medium strict AD (64%) and 
the Arithmetic mean gives the best AGAR for the least strict AD (87.1%). In the 
case of waving gestures, the HMT gives the best AGAR for both the strictest and 
medium strict ADs: 76.1% and 95.7%, respectively. For the least strict one, the 
CHMT gives the optimal results with an AGAR of 97.265%. In case of the forward-
diagonal gestures, the CHMT gives the best AGAR for both the strictest and the 
medium strict ADs, which are 84.765% and 99.218% respectively. For the least 
strict AD, the HMT gives the best AGAR of 100%. This means that the HMT 
accepted every forward-diagonal gesture done by the users. Lastly, in case of the 
upward-diagonal gesture, the CHMT gives the best AGAR of 19.921% for the 
strictest AD. In the medium strict and the least strict ADs, the AMT gives the best 
AGARs of 52.343% and 75.39%, respectively. 

 
Figure 6 

Results received with the general computer (real-time) 

Secondly, the results received with the advanced computer were investigated 
(Figure 7). When circular gestures are assessed, the CHMT provides the best 
average acceptation rate of the strictest AD with 23.437%. For the medium strict 
and the least strict AD, the QMT provides the best average acceptation rates: 
73.046% and 98.437%, respectively. After evaluating the waving gesture using the 
advanced computer, the results show that the CHMT provides the best AGAR of 
the strictest AD with 79.296%. Meanwhile, the AMT has the best AGAR of 
96.875% medium strict AD. For the least strict AD, the HMT gives the best AGAR 
with 99.609%. In case of the forward-diagonal gestures, the CHMT provides the 
best AGAR using the strictest (65.625%) and the medium strict (92.187%) ADs. 
The AMT yields the best AGAR for the least strict AD with 96.093%. Lastly, in 
case of upward-diagonal gestures, the CHMT gives the best AGAR for all ADs: 
48.828% for the strictest AD, 89.843% for the medium strict and 94.921% for the 
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least strict one. It should be noted that for the least strict AD, the HMT has the same 
AGAR as the CHMT. 

 
Figure 7 

Results received with the advanced computer (real-time) 

Lastly, their speed was compared and that can be seen in Table 2. In the table, “1” 
refers to the circular movements, “2” to the waving gestures, “3” to the forward-
diagonal movements and “4” to the upward-diagonal gestures. Also, “G” refers to 
the general, while “A” to the advanced computer. 

Table 2 
Comparisons between the averages of time (ms) 

Mean  
Technique 

G1 G2 G3 G4 A1 A2 A3 A4 

AMT 3.047 3.048 1.466 1.770 0.603 0.549 0.485 0.451 
GMT 1.672 1.964 0.918 1.023 0.383 0.339 0.304 0.271 
HMT 1.193 1.878 0.825 0.896 0.355 0.323 0.265 0.245 

CHMT 1.574 3.528 0.924 1.221 0.453 0.432 0.325 0.305 
QMT 1.525 2.983 0.900 1.164 0.410 0.392 0.308 0.297 
CMT 0.985 3.199 0.955 1.323 0.272 0.413 0.333 0.314 

Naturally, the advanced computer performs the task faster. It can also be seen that 
the APBMR algorithm on the general computer is not slow either. This is good as 
this fact adds to the possibility of using this algorithm in a home environment. 

3.2 File-based Results 

In this subsection the file-based results are evaluated (Figure 8). Only the advanced 
computer was used in this regard. The first gesture to be evaluated was the circular 
movement: the CHMT gave the best average accepted ratio in the strictest AD with 
37.5%, while the AMT gave the best average accepted ratio in the medium strict 
AD with 64.322%. The QMT gave the best average accepted ratio in the least strict 
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AD with 84.895%. The following gesture to be evaluated was the waving gesture: 
the HMT gives the best AGAR in the strictest AD with 62.934% and the CHMT 
gives the best AGARs in all other ADs: 91.545% and 97.118%, respectively.  
It should be noted that the HMT and CMT returns the same results as the CHMT in 
the least strict AD. Next, the forward-diagonal gesture was investigated: in this case 
the CHMT gives the best AGAR in the strictest AD with 72.135%. Similarly, in the 
medium strict AD, also the CHMT gives the best AGAR with 88.281%. For the 
least strict AD, the AMT gives the best AGAR of 94.791%. Finally, the upward-
diagonal gesture was examined: the CHMT gives the best AGARs in the strictest 
and medium strict ADs with 45.520% and 76.562%, respectively. In contrast, the 
HMT gives the best AGAR in the least strict AD with 86.718%. 

 
Figure 8 

Results received with the advanced computer (file-based) 

3.3 Comparison to the RDSMR/RDAMR Algorithms 

This subsubsection shows the comparison between the APBMR and the 
RDSMR/RDAMR algorithms. However, we omitted the RDSMR from the 
comparison. With it, the elapsed time between two movement descriptors can 
influence the results, in contrast to the RDAMR where it does not: By definition, 
the RDAMR can provide a better average of accepted movements than its 
synchronous counterpart. 

The RDAMR works similarly to the APBMR: it creates the same ADs as the 
APBMR, but it only uses the first three gestures for their creation. Therefore, the 
ADs do not change during the gesture recognition. While the RDAMR works and 
can be used, the not-changing ADs could be a problem later on, since the algorithm 
does not follow the speed and the position of the user. If one of these factor changes, 
the algorithm would not accept the gesture, even if its shape is the same. Another 
difference between the algorithms is that the RDAMR evaluates whether the gesture 
is accepted during the time the user does the movements, while the APBMR 
evaluates it immediately after one is finished. 



T. Guzsvinecz et al. The Cognitive Motivation-based APBMR Algorithm in Physical Rehabilitation 

‒ 54 ‒ 

When comparing the two algorithms, we analyzed the AGARs of each mean 
technique (APBMR) and the RDAMR algorithm. Also, we only tested the APBMR 
in three ADs (±0.05 m, ±0.10 m and ±0.15 m). It became apparent that the APBMR 
returned improved results than the RDAMR. Therefore, we increased the ADs when 
using the RDAMR algorithm until it gave similar AGARs as the APBMR. It should 
be noted that their execution times could not be compared, as the APBMR evaluates 
after the gesture is done, while the RDAMR does it during the movement in each 
frame. The results of the comparison can be seen in Figure 9. 

 
Figure 9 

Comparing the mean techniques of the APBMR to the RDAMR algorithm 

Similarly, to before, the circular gesture was the first to be compared. Better AGARs 
are provided by all MTs of the APBMR than the by the use of the RDAMR 
algorithm. The difference between the AGARs of the two algorithms is very high 
in the cases of the AMT, HMT and CHMT. The AGARs when the GMT, QMT and 
the CMT are used are quite similar. Therefore, the APBMR is superior to the 
RDAMR in case of the circular gestures. Although, the results are more interesting 
in the case of the waving gesture: the differences in the AGARs of the RDAMR 
between the ±0.05 m and ±0.10 m ADs are quite large. Also, the AGAR of the 
RDAMR in the ±0.10 m AD (66.0%) is similar to the AGARs of the APBMR 
algorithm in the ±0.05 m AD (61.7% - 67.5%, depending on the used mean 
technique). Contrarily, in the case of the circular gesture, the ADs of the RDAMR 
are needed to be increased to ±0.15 m to have the same AGARs as the APBMR in 
the ±0.05 m AD. In the case of the forward-diagonal gesture, worse AGARs are 
returned by the RDAMR than in the case of the waving gesture. An AGAR of 88.7% 
is provided by APBMR with the use of the CHMT in the ±0.05 m AD which is the 
optimal mean technique to be used in this case. Meanwhile, a similar AGAR is 
provided by the RDAMR with 87.5% in the ±0.20 m AD, which is quite a large 
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AD. Similarly, to the forward-diagonal movement, the results regarding the 
upward-diagonal gesture are alike to it. In the ±0.20 m AD, an AGAR of 68.4% can 
be reached with the RDAMR algorithm which is slightly better than the ones in the 
±0.05 m AD using the APBMR algorithm. The AGARs of the latter are between 
58.6%-62.8% depending on the mean technique used. 

Although, as can be suspected during the comparison, superior AGARs are 
provided by the APBMR. In the ±0.05 m AD, the increase of AGARs is between 
358.2%-535.3% depending on the mean technique used, while in the ±0.10 m and 
±0.15 m ADs it is 87.8%-125.4% and 22.7%-47.3%, respectively. 

4 Discussion 

The APBMR algorithm also works well in real-time, and different MTs give the 
best AGARs in case of each gesture and ADs: in the ±0.05 m AD, the CHMT 
presents the best AGARs in three out of four gestures, while the remaining one gives 
the best AGAR with the HMT. In the ±0.1 m AD, the CHMT presents the best 
AGARs in two out of four gestures, while one of the remaining two gives the best 
AGAR with the AMT and the other with the HMT. In the ±0.15 m AD, the HMT 
presents the best AGARs in two out of four gestures, while the other two 
movements give the best AGARs with the AMT. However, the GMT gives the 
worst average acceptance rates in case of each gesture: for the circular movements, 
the AGARs of the GMT are the following: 11.272%, 28.013% and 39.397%, which 
are quite bad compared to the other MTs. For the waving gestures, the AGARs are: 
34.709%, 55.133% and 59.486%. For the forward-diagonal gestures, the AGARs 
are the following: 21.316%, 39.397% and 43.415%. Last, but not least, for the 
upward-diagonal gesture, the AGARs are: 28.995%, 51.339% and 60.825%. 

Based on the results, the GMT, QMT and CMT should not be used for predictive-
based gesture recognition as the AMT, HMT and CHMT provide better results. 
From the strictest AD to the least strict, the former has AGARs of 24.073%, 
43.470% and 50.781%, while the middle has AGARs of 29.334%, 56.848% and 
70.896%; and the latter has AGARs of 26.317%, 47.990% and 57.435%. Contrarily, 
the CHMT presents the optimal AGARs in both the ±0.05 m and ±0.1 m ADs with 
53.392% and 79.562%, respectively. For the ±0.15 m AD, the use of the AMT 
results in the optimal AGAR of 89.620%. 

Different numerical differences exist between the AGARs in case of each gesture: 
With the circular movements, the numerical differences are between 0.28125 - 
0.58371. In the case of the waving gestures, the numerical differences are between 
0.22686 - 0.32187. With the forward-diagonal gesture, the numerical differences 
are between 0.21652 - 0.35714, while the numerical differences are between 0.3183 
- 0.46897 with the upward-diagonal gesture. As mentioned, the APBMR evaluates 
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each axis. However, during these evaluations, it can be observed that numerical 
differences exist between the AGARs on each axis: on the x axis, the numerical 
differences are between 0.17383 - 0.20117, while the numerical differences are 
between 0.19076 - 0.34147 and 0.06803 - 0.07129 on the y and z axes, respectively. 

The measurements were done with the Kinect that has its own coordinate system 
with positive and negative values. Due to the possible negatives, the GMT, QMT 
and CMT gave worse results. It is possible that with other sensors – that do not 
return negative coordinate values – or with some shift in the returned coordinates 
of the Kinect, they may provide better results. See Table 3 which shows which MT 
to use in case of different gestures and ADs when evaluating on all three axes. 

Table 3 
Which mean technique to use in case of different gestures and ADs when evaluating on all three axes? 

AD Circular Waving Forward-
diagonal 

Upward-
diagonal 

±0.05 m CHMT (0.304) HMT (0.711) CHMT (0.738) CHMT (0.391) 
±0.1 m AMT (0.619) HMT (0.941)  CHMT (0.925) CHMT (0.723) 
±0.15 m AMT (0.837) HMT (0.977) AMT (0.964) HMT (0.833) 

When comparing the AMPBR to the RDAMR, the following can be concluded: in 
the ±0.05 m AD, the former has AGARs between 45.195%-62.656% depending on 
the used MT, while the latter only has an AGAR of 9.863%. In the ±0.1 m AD, the 
APBMR provides AGARs between 70.410%-84.524% depending on the used MT, 
while the RDAMR only provides an AGAR of 37.5%. In the ±0.15 m AD, the 
APBMR algorithm produces AGARs between 76.660%-92.571% depending on the 
used MT, while the RDAMR algorithm only produces an AGAR of 62.5%. 
Meanwhile, in the ±0.25 m AD, the AGAR of the RDAMR algorithm reaches a 
percentage that is similar to the AGAR of the APBMR in the ±0.15 m AD. 

Conclusions 

We proposed the Asynchronous Prediction-Based Movement Recognition 
algorithm, for physical rehabilitation using sensors. The APBMR algorithm predicts 
the next gesture of the users from the previous three by using six different MTs and 
decides whether the next user-input movement is accepted. By doing so, it can 
follow user’s speed and position, making the decision to accept the next gesture 
easier. The most important is to get the optimal AGARs. However, the optimal MT 
differs from gesture to gesture as well as from AD to AD, while the MTs that should 
not be used are the same in each case. The AMT, HMT and CHMT should be used 
for prediction-based gesture recognition, but these MTs should be changed 
depending on the gestures and ADs. Also, simpler gestures can require fewer axes. 

Still, when taking our whole database of gestures into consideration, the CHMT 
gives the optimal average of accepted gestures out of all six MTs in the ±0.05 m 
and ±0.1 m ADs with 53.392% and 79.562%, respectively. Meanwhile, in the ±0.15 
m AD, the AMT provides the optimal average of accepted gestures with 89.620%. 
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In conclusion, the APBMR algorithm is more accurate than our older RDAMR 
system. It can adapt to the current capabilities of the user, which is a criterion for 
maintaining motivation in the patients and for successful physical rehabilitation. 
Since the APBMR algorithm could be used at home, the rehabilitation process can 
be made easier for both the therapist and patient. Thus, our hypothesis is well 
accepted. 
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