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Abstract: This paper presents a robust visual servoing controller based on an efficient TP 

model transformation method, while taking into account an uncertain image Jacobian 

matrix where, the camera intrinsic parameters, image features, and depth estimations are 

affected by unknown random uncertainties with known bounds. The convex vertex 

decomposition of image Jacobian matrix through uniform design greatly reduce the 

number of LMIs in the quasi-min-max model predictive control (MPC) scheme, in order to 

obtain the optimal control inputs of the constrained visual servoing system, while meeting 

the real-time requirements. Simulation and Experimental results demonstrate the 

effectiveness of the proposed method. 

Keywords: TP model transformation; Uniform design; Uncertain data; quasi-min-max 

MPC; LMIs 

1 Introduction 

Visual servoing enables robotic systems to perform positioning or tracking tasks 

in a non-structural environment [1]-[2]. Traditional visual servoing can be divided 

into image-based visual servoing (IBVS) [3], position-based visual servoing 

(PBVS) [4] and hybrid visual servoing [5]. The error signal of the classical IBVS 

is defined in the two-dimensional image feature space directly from the camera for 
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feedback to control the motion of the robot. However, this approach has some 

drawbacks, such as, the singularity of the image Jacobian matrix, the local 

minimum with large displacement, and the difficulty of dealing with constraints. 

Numerous advanced control schemes have been published to try to improve the 

control performance and conquer the drawbacks mentioned above. In order to 

handle singularities, [6] used Takagi-Sugeno fuzzy framework to model the IBVS. 

A switch controller was proposed in [7] to realize a large displacement grasping 

task. In [8], photometic moments are derived to improve the convergence domain. 

However, these methods still have not addressed the constraints explicitly which 

are crucial for real systems control designing. In [9], the fusion of hysteresis 

constraint with the image-based visual servoing manipulator system is considered. 

[10] is an adaptive image-based visual servoing with temporary loss of the visual 

signal, a homography method that uses a priori visual information is proposed to 

predict all of the missing feature points and to ensure the execution of IBVS. [11] 

proposed a path planning approach for visual servoing with elliptical projections 

to deal with constraints. In [12], different types of constraints are defined, and a 

sliding mode based approach is proposed to satisfy constraints in robot visual 

servoing. In addition, because of the advantage of handling constraints, several 

MPC-based IBVS control schemes are proposed. In [13], predictive control 

method for both local and global model of constrained IBVS is proposed. A quasi-

min-max MPC scheme is presented in [14], where the feasible solutions of LMIs 

depend on the vertexes of the image Jacobian matrix decomposed by the TP 

model transformation. In [15], TP models of the visual servoing system is reduced 

to improve the speed of the LMIs solution, and the algorithm is verified by 

experiments. However, the above mentioned methods require the knowledge of 

the camera intrinsic and extrinsic parameters, and the depth information should be 

given. Despite there are several classical calibration methods, they are time 

consuming, require experience, and have inherent inaccuracies. If the calibration 

parameters are not exactly known and accompanied with model uncertainties 

(such as image measurement errors and depth estimation errors, etc.), the image 

Jacobian matrix is difficult to estimate, thus, the visual servoing system may 

suffer from performance degradation and potential unpredictable response. In this 

paper, a robust constrained visual servoing control method in the presence of 

uncertain data is considered. 

Many nonlinear and linear controllers could be considered to deal with a state 

space model with constraints [16-18]. TP model transformation method is an 

effective numerical method that can convert a LPV uncertain model into the 

canonical form of polytopic models in a unified way [19, 20]. The implementation 

of the TP model transformation is a numerically tractable non-heuristic algorithm, 

therefore it is a useful engineering tool that can be easily executed [21, 22]. In the 

recent past, many control approaches and applications have been carried out on 

the TP model transformation [14, 23-26], including in the area of LMI-based 

control design, sliding model control, etc. Our past research [14, 15] are typical 

applications of TP model transformation in visual servoing area. In theory, it is 
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easy to extend to the uncertain visual servoing model where the parameters of 

image Jacobian matrix are affected by unknown random uncertainties with known 

bounds. However, the computational load of TP model transformation will 

increase rapidly with the variable dimension of image Jacobian matrix. And the 

number of the convex vertexes generated by TP model transformation also 

directly affects the computational complexity of quasi-min-max MPC. When the 

uncertain parameters (e.g. the camera intrinsic parameters, image measurements, 

depth estimations, etc.) are considered, excessive number of LMIs may lead to 

conservative and impose great difficulties on the computation of feasible solutions, 

which brings the limitation for practical application of visual servoing control. In 

this paper, in order to conquer the shortcomings mentioned above, an efficient 

modified TP model transformation method based on the uniform design [27, 28] is 

implemented to achieve a robust visual servoing control in the presence of 

bounded uncertain system parameters, which satisfy the operational speed in 

online applications. 

This article is organized as follows: Section 2 discusses the visual servoing model 

with uncertain parameters. The robust visual servoing controller design is 

presented in Section 3, which include the quasi-min-max MPC formulation for 

IBVS system and the efficient TP model transformation for image Jacobian matrix. 

In Section 4, simulation and experimental results for eye-in-hand camera 

configuration are presented to demonstrate the effectiveness of the proposed 

control method. Finally, conclusions are provided in Section 5. 

2 Visual Servoing Model with Uncertain Parameters 

The aim of the visual servoing control is to minimize an error )(te , which is 

typically defined by 

 sse )),(()( atmt         (1) 

where )),(( atms  is a vector of visual features, 
s  contains the desired feature 

values. The vector )(tm  is a set of image measurements to compute the visual 

features )),(( atms , and the parameters a  include the camera or object model 

information of the visual servoing system. 

Classical image-based control schemes taking the pixel coordinates of a set of 

image points to define the visual features, and the camera intrinsic parameters are 

used to make the image measurements expressed in pixels to the features. Without 

loss of generality, a unique camera pose can theoretically be obtained by using 

four stationary coplanar and non-collinear feature points denoted by iO  

4,3,2,1i . Suppose the normalized Euclidean coordinate vectors of the feature 
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points iO  expressed in the current camera coordinate frame and the desired 

camera coordinate frame, are  defined as 3im and 3im with: 
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For a pinhole camera model, the transformation between the pixel coordinates 

  31 
T

iii vup  and   31   T

iii vup  of each feature point iO  can 

be expressed as 

 ii Amp                                                                                                                 (4) 

  ii Amp                                                                                                                (5) 

where 33A is the upper-triangular matrix containing the camera intrinsic 

parameters: 
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including 00 ,vu  the coordinates of the principal point, and yx ff ， the 

product of the camera scaling factors and the focal length. 

Usually, camera calibration is a costly, tedious and error prone process. It is also 

difficult to measure the depth online for the monocular vision. In addition, the 

measurement errors may be introduced by the process of image processing. In this 

paper, unknown random uncertainties with known bounds are considered in the 

visual servoing model. 

Assumption 1: In the uncertain model, the pixel coordinates of the feature points 

is an estimate value ip̂  related to the true value ip  by the relationship: 

 ˆ npp  ii                                                                                                                (7) 

where 


n represents the image noise intensity,   is known positive constant. 

Assumption 2: An estimate of the intrinsic parameters matrix Â  is denoted as: 

 AÂ                                                                                                               (8) 
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where the bounds of 4321 ,,,  are assumed to be known as: 

  iii  ,                                                                                                           (10) 

for some limits of 
4411 ,,...,  ，  

Assumption 3: The depths of the feature points not at infinity. Depending on 

the distance between the target and the camera, there exist positive constants 

iz and 

iz  which make the depth within the range of: 

   iii zzz ,ˆ                                                                                                     (11) 

3 Robust Visual Servoing Controller Design with 

Efficient TP Model Transformation Method 

For the visual servoing system with the uncertain models (7)–(11), a robust visual 

servoing control scheme should be considered to minimize the error )(te  while 

fulfilling a set of constraints such as visibility, workspace and actuator limitations 

for all possible uncertainties. 

3.1 The Quasi-Min-Max MPC Formulation for IBVS System 

Considering the spatial velocity of the camera 
6],[  ccc v v , which is 

composed of the linear velocity   3,, 
T

zyxc vvvv of the origin of the camera 

frame and the angular velocity   3,, 
T

zyx   of the camera frame. 

Taking pixel coordinates of the feature point as image features 
2),(  iii vus , 

the relationship between the time variation of image features and the camera 

velocity is: 

csi i
J vs                                                                                                                (12) 

with 4,3,2,1i . The image Jacobian matrix, also called interaction matrix 

62
isJ  is: 
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To use quasi-min-max MPC to control the robotic visual servoing system, the 

discrete time model is used instead of the continuous time model. The overall 

system dynamics can be expressed as follows: 

)()()()1( kkJTkk csisii vee                                                                            (14) 

where  sse )()( kk ii  is both the states and outputs of the system, sT  is the 

sampling time. The control objective is to tackle the robot position problem in the 

presence of the system constraints, while the robot and camera models with 

parametric uncertainties. Quasi-min-max MPC is an effective method to find the 

optimal control input of system at each sampling time k, by solving the 

constrained infinite-time convex optimization problem, which can be expressed as 

the following LMI-based minimization problem with input and output constraints 

[14]:
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where the symbol   induces a symmetric structure of linear matrix inequality. 

0wQ  and 0wR  are two positive definite weighting matrix. Q is the 

symmetric positive definite matrix and 4,3,2,1i denotes the four image feature 

point, and 6,,2,1 l  denotes the dimension of current input vector )|( kkcv , 

The current optimal control signal for IBVS is )|( kkcv . The future feedback 

control signal is calculated as 1),|()()|(  jkjkkFkjk iic ev and 

1)(  YQkF . maxmax, , svcl  represent the robot physical limitations and upper 

limit of the image feature values, respectively. It should be notice that, srJ , 

Rr ,...,1  represents the convex vertexes of the image Jacobian matrix (13) 

considering all the uncertainties listed above. Thus, the feasible solution of LMIs 

(15)-(21) gives an optimal control input that can fulfill the visibility and actuator 

constraints as well as the possible robot and camera uncertainties. 

Obviously, the computational speed of the LMI-based controller mainly depends 

on the number of convex vertexes of the image Jacobian matrix srJ , Rr ,...,1 . 

Especially in the presence of uncertain parameters, the increase of the variable 

parameter dimension in the image Jacobian matrix will also affect the 

computational complexity. Therefore, it is very important to find an effective 

method to obtain the proper vertex matrices while reducing the dimension and 

complexity. 

3.2 Efficient TP Model Transformation for Image Jacobian 

Matrix 

Similar to Eq.(1), the image Jacobian matrix (13) contains a set of time varying 

image measurements )(ˆ kui , )(ˆ kvi , )(ˆ kz i , and the estimated camera intrinsic 

parameters xk̂ , yk̂ , 0û , 0v̂  with bounded uncertainties. Combine 0û into )(ˆ kui , 

and 0v̂  into )(ˆ kvi , then the image Jacobian matrix nonlinearly depends on five 

parameters  yxiiii kkkzkvkukp ,,)(1),(),()(  . TP model transformation is a 

very effective method to transform the image Jacobian matrix into polytopic form 

srJ . However, because of the uncertain parameters, an excessive number of TP 

vertices are extracted, which impose great difficulties on the online calculation of 

linear matrix inequalities of (15) - (21). Hence, an efficient modified TP Model 

Transformation method based on the uniform design is implemented to drastically 

reduce the number of the vertex for the image Jacobian matrix. The procedure can 

be performed as follows: 
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STEP1: Under a certain degree of uniformity measure index, according to the 

good grid point method, the power grid method and some uniform design method 

is adopted to get a uniform design (UD) table [27]. 

Since  yxiiii kkkzkvkukp ,,)(1),(),()(   is a 5-dimensional variable parameter 

vector, if the number of the grid lines in each dimension is M, the uniform design 

to be obtained is )( 5MU M . 

STEP2: Discrete the image Jacobian matrix according to the UD method. Define 

the transformation space   as: 

)(kpi :  iMim uu ,   iMim vv , 







iMim zz
1,1   xMxm kk ,   yMym kk ,  

in which, iMimiMim vvuu ,,,  are the minimum and maximum ranges of the image 

point coordinates considering the image measurement errors and the camera 

calibration errors, iMim zz , are the minimum and maximum depths between the 

object and the camera, and yMymxMxm kkkk ,,,  are the bounded uncertain ranges 

of the magnification factor of x and y axis respectively. Therefore, it is necessary 

to map the level of each factor in the UD table to the closed variable of the 

variables, so that to get the discrete point ),...( ,5,1 iii ggg  , Mi ...2,1 . The image 

Jacobian matrix ))(( kpJ si is discretized by sampling over the grid points, and the 

result is stored into the tensor 
62 MD

siJ . 

STEP3: HOSVD is applied to the first dimension of tensor 
D
siJ .Discard all zero or 

a smaller singular value k  and the corresponding singular value vector, the 

following relation holds: 

11 Usi JJ
ε

D
si

                         
(22) 

where 
62 T

siJ is the system core tensor obtained after 

transformation, MT  .
TMU 1 is the matrix of weight coefficients 

corresponding to the core tensor.  represents the upper bound of the approximate 

error in the above transformation process. Further transformations like SN (Sum 

Normalization), NN (Non-Negative), and NO (Normality) or INO-RNO (Inverse-

NO and Relaxed-NO) could be executed in order to get the better application 

effect. Thus, the convex vertexes of the image Jacobian matrix srJ , Rr ,...,1  

are obtained, with the vertex number of TR  , which meet the requirement of 

LMIs (17) and (20) to get the optimal control input of the visual servoing system. 
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4 Simulation and Experiment 

4.1 Simulation Results 

The simulations are carried out using MATLAB 7.1, on PC Pentium CPU G2020 

2.9 GHz in Microsoft Windows 7 operating system. The image Jacobian matrix 

nonlinearly depends on five parameters. The transformation space   is 

500] 500;350 20;350 132;0.7 176;-132 [-176 . If we apply the classical TP model 

transformation method as in the reference [14], 3x3x2x3x3=162 vertex of the 

image Jacobian matrices is obtained. Owing to the large number of the vertex 

matrices, real-time is impossible to achieve during the application of the visual 

servoing system. 

The efficient TP model transformation method based on uniform design can be 

applied to relax the complexity issues. Define the discretization grids based on the 

uniform design )200( 5
200U  which 0207.02 CD . Then, obtain the discrete 

tensor 62200 D
siJ . Execute HOSVD and discard all zero singular values, the 

corresponding weighting coefficient functions shown in Figure 1 and the resulting 

number of vertex image Jacobian matrices is the same as the parameter number, 

namely srJ , 5,...,1r . 

 

Figure 1 

The discretized weighting functions 

To achieve a visual servoing task, a large displacement in the depth direction from 

the initial pose to the desired pose are considered, which is the same as reference 

[14], and the initial and the desired poses of the camera are listed in Table 1. 

Assuming that the camera is coarsely calibrated, the estimated values of the 

camera intrinsic parameters are the maximum uncertain boundary values. The true 

camera intrinsic matrix and its estimate values are: 



T. Wang et al. An Efficient TP Model Transformation Algorithm for Robust Visual Servoing  
 in the Presence of Uncertain Data 

 – 164 – 



















100

1204180

1600418

A , 



















100

1443500

1920500
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Table1 

Initial and desired poses of simulation task 

Pose X/m Y/m Z/m R/rad P/rad Y/rad 

Initial Pose -0.022 0.004 0.584 -0.349 2.793 -3.143 

Desired 

Pose 
0.001 0.001 0.060 -1.536 3.141 -3.107 

 

a) Image plane                                                       b) Image errors 

 

c) Camera Cartesian velocity                                            d) Camera 3D trajectory 

Figure 2 

Simulation results for the proposed method 

Depth 161 
iz

 is a selected fixed value between the object and the camera. 

Moreover, the image measurements are added random noises in 5 pixels with 

uniform distribution. Yalmip toolbox is adopted to solve optimization involving 

the LMIs. The simulation results of both the proposed algorithm and reference [14] 

([14] without considering the model uncertainties) are given, as shown in Figure 2 

and Figure 3, respectively. 
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a) Image plane                                                       b) Image errors 

 

c) Camera Cartesian velocity                                            d) Camera 3D trajectory 

Figure 3 

Simulation results for reference [14] 

Due to the system constraints and the disturbances, there are some oscillations 

near the desired position. However, because of considering the system 

uncertainties when constructing the TP models of the image Jacobian matrix, the 

proposed method has an obviously better control performance. What’s more, its 

operation speed met the requirements of online control. 

4.2 Experimental Results 

In this section, a 6-DOF ABB IRB120 manipulator equipped with an eye-in-hand 

camera, is carried out for the experimental results to verify the propose method. 

Known that the resolution of the camera is 480640 , the estimation of its 

intrinsic parameter matrix is 
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8129.2343275.9510
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Â                                                                (23) 

Meanwhile, taking image centers of four color circles as feature points, image 

measurement errors will be introduced. Three visual servoing tasks are listed to 

verify the effectiveness of the algorithm. 
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Task 1 is a normal visual servoing task contains a small range of rotation. The 

initial pose of 6-DOF robot’s joint angle is  18.2,71.1,03.0,44.0-,42.0,.621-0 q  in 

radian and the desired target point coordinates is 

 328,343;272,472;143,413;196,286 . 

For task 2, the feature points of the object at both the initial pose and the desired 

pose are very close to the FOV boundary. The initial pose of 6-DOF robot’s joint 

angle is  65.1,65.1,35.0,66.0-,63.0,.212-0 q in radian and the desired target point 

coordinates is  141,275;148,401;20,412;13,283 . 

And for task 3, a large displacement in the depth direction from the initial pose to 

the desired pose are considered. The initial pose of 6-DOF robot’s joint angle is 

 37.2,01.1,01.0,33.0,21.0,54.1-0 q  in radian and the desired target point 

coordinates is  206,224;240,323;141,358;107,259 . 

   

(a) Initial pose                    (b) Desired pose                                     (c) Image plane 

Figure 4 

Simulation results of Task 1 

   

(a) Initial pose                    (b) Desired pose                                           (c) Image plane 

Figure 5 

Simulation results of Task 2 

The experimental results are shown in Figures 4-6. Understand that in the image 

plane, the cross symbols (“+”) represent the initial position of the visual feature 

points, and the circle symbols (“  ”) represent the desired feature points. It can be 
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seen that all the visual servoing tasks have been successfully completed online, the 

proposed algorithm is effective. 

   

(a) Initial pose                     (b)Desire pose                                    (c) Image plane 

Figure 6 

Simulation results of Task 3 

Conclusion 

This paper proposed a Robust Optimization Visual Servoing control scheme, 

which depends on an efficient TP model transformation, based on uniform design, 

which can handle the uncertain system parameters in the image Jacobian matrix. 

The proposed method obtains the discrete tensor of image Jacobian through 

uniform design. The result is that the computational load of LMIs, in the quasi-

min-max MPC controller is greatly reduced. Simulation and experimental results 

show that the algorithm has superior robustness in model uncertainties and in real-

time performance. 
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