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Abstract: In our increasingly connected and open World, randomness has become an 

endangered species. We may soon not have anything private, all out communication, 

interaction with others becomes publicly available. The only method to secure 

(temporarily) communication is mixing it with randomness – encoding it with random keys. 

But massive reuse of the same sources of randomness and rapid development of technology 

often reveals that used sources were not perfectly random. The Internet security is top-

down, based on higher-level certificates, but we can never be quite certain with 'given from 

above' products in their quality – in order to beat each other producers are 'cutting 

corners' and even the high-level security certificates are available on Internet dark 

markets. This clearly shows in tremendous increase of all kind of security accidents, so 

there is an urgent need for new, independent sources of randomness. Mathematical 

treatment of randomness is based on infinite concepts, thus useless in practice with devices 

with finite memory (humans, computers, Internet Of Things). Here is introduced a 

definition for randomness based on devices with finite memory – k-randomness; it is 

shown, how this allows to create new randomness in computer games; numerous tests 

show, that this source is quite on par with established sources of randomness. Besides 

algorithmically-generated randomness is in computer games present also human-generated 

randomness - when competing players try to beat each other they invent new moves and 

tactics, i.e. introduce new randomness. This randomness appears in the sequence of players 

moves and when combined with the sequences of moves of other players can be used for 

generating secret keys for symmetric encryption in multi-player game communication 

system. The method does not use public-key step for creation of shared secret (the key), 

thus the encryption system does not need any upper-level security authorities. 

Keywords: entropy; randomness; encryption; digital games; finite-state machines; human 

behavior; cyclic order; k-random sequences; player’s actions combination 
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1 Introduction 

Traditional fields of human activity – agriculture, manufacturing and construction 

are currently producing only 35% of all values consumed by humanity [1], the rest 

is produced in mental/information sphere, where the input for production of new 

values is data. Most important source of new data are we self and all producers are 

trying to capture as much as possible data concerning us. 

Thus, it is becoming increasingly important to safeguard our privacy, our 'self', 

our data and our communication and for this we need randomness. Randomness 

has become a commercial product, several countries are introducing new random 

number generators [2] and with rapid increase of communication and data we 

have growing need for new randomness for encryption. Encryption ciphers are 

based on modifying messages using random data. But encryption is only 

temporary measure - when some encryption method/cypher is broken it becomes 

worthless and the randomness used in it also becomes worthless. Data breaches 

are increasing by more than 20 percent in a year [3], they have become the most 

worrying feature of Internet [4] and every breach is decreasing the value of 

randomness used. Growth of ’big data’ inevitably increases amount of randomness 

needed to establish ownership for these ‘big data’ items. Thus, we constantly need 

new sources of randomness. New computing environments - Internet of Things 

(IoT), virtual/cloud servers etc. all increase the need for randomness. 

To satisfy this continually growing need for randomness there are emerging 

dedicated services to serve random data [5]. For delivering this data was proposed 

a special new protocol 'Entropy as a Service' [6]. But for delivery this data also 

should be encrypted, thus it is a new source needing 'fresh' entropy. So it is not 

clear, whether this kind of ‘top-down’ service will reduce the need for entropy or 

contrary, increase it. 

Trust in the current top-down security practices, based on higher-level security 

authorities issuing and controlling security certificates is decreasing – the high-

level certificates are on sale on ‘Dark Web’ for $260 … $1,600 [7]. Security 

should be ‘bottom-up’ (Neighborhood Security) and entropy/randomness created 

just where it is needed (like in blockchain). Everything is simpler and safer if the 

entropy/randomness is generated where it is used. 

Randomness is quite an infeasible concept. Mathematical treatment of randomness 

is based on infinite concepts, thus not applicable in real-world practice, where all 

information is handled by devices with limited memory - humans, computers, 

devices in IoT. Here is introduced a definition of k-randomness applicable to 

devices with finite memory and shown, how this can be used to produce with 

games of chance random integer sequences; tests show, that the created 

randomness is quite on level with established sources of randomness. As a 

practical use of generated with game randomness is introduced herein a method to 

create secure encryption keys for symmetric encryption. 
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2 Types of Randomness 

It is impossible to generate random values using a computer's basic operations – 

binary operations conjunction &  (AND), disjunction   (OR) and the unary 

negation   (NOT) – all combinations of these connectives return single 

determined value (if not, then the computer is broken). John von Neumann 

commented on this: "Anyone who attempts to generate random numbers by 

deterministic means is, of course, living in a state of sin". But he did not elaborate: 

“why?” “what are the ‘non-sinful means’ of creating randomness?” and what 

actually is randomness 

Computers are deterministic, orderly; randomness is the opposite of order, the 

absence of any pattern. The current understanding is that 'true' randomness can be 

extracted only from physical processes, which have rich deep inner structure – 

entropy, e.g. thermal fluctuations in processor, pixels found by mouse sensor 

when user makes some rapid random strokes, atmospheric disturbances [8] etc. 

These sources are 'Pure Randomness Generators' (PRG), but they are often not 

rich enough e.g. for network servers which do not have external devices. 

Operating systems send ‘new-born’ messages, thus should have means for 

securing them with ‘new-born’ randomness/entropy and for this all operating 

systems maintain an entropy pool. The first versions of Linux kernel created 

entropy from the third derivative of differences in timings of user actions; this 

information is stored in two files /dev/random and /dev/urandom. This method 

turned out to be too slow and currently uselow-order bits (lest significant, i.e. 

changing most rapidly) from timing of user actions on keyboard, mouse 

movements, IDE requests; extracting entropy from audio [9] and video [10] data is 

also studied. 

Programming language's compilers need methods to create random values [11], 

[12]. All compilers work under an Operation System (OS) and get their 

randomness from OS, e.g. in Windows environment randomness to all 

programming languages comes from the same source as to the Microsoft C/C++ 

compiler (and the Intel compiler [13] or newer [14]) - they use the random values 

generated in Common Language Runtime [15], using the entropy produced by 

processor. But there have been found several problems for Intel processors [16], 

[17] thus specialists distrust randomness produced by Intel processors [18], e.g. in 

Linux kernel it is only one of many inputs into the random pool. Research has 

shown that even processors built-in functions (PRG-s) for generating random 

values can be compromised [19] and processors and microchips may have built-in 

hardware rojans [20] which can leak information leading to successful key 

recovery attacks. After the NSA (U.S. National Security Agency) leaks by Edward 

Snowden, many engineers have lost faith in hardware randomness [21]. 

The hardware entropy pool decrease every time random numbers are generated 

from it Requesting many random numbers may starve them; this is a practical 

issue on servers without input devices. Other PRG sources also decrease, e.g. the 
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online source of randomness Random.org [22] limits its daily available amount of 

free random bytes (currently 
610  bits). Thus PRG sources do not suffice, for 

random number generation are needed also computer algorithms. 

Computers are finite devices and after a while 'fall into loop', start to repeat 

computed values. Thus 'calculated randomness' is pseudo-randomness produced 

by pseudo-random number generators (PRNG). All PRNG-s are loops, which after 

their period repeat produced values. 

The first value in the loop is created using a random seed, i.e. comes from other, 

usually PRG source. The next value is calculated from the previous one by some 

recurrent function; common method is to use linear (for speed) recurrent functions 

with reduction by modulus. For these Congruential Generators (CG) is the period 

(length of the loop) the most important measure of security of such a generator. 

For the C language it should be at least 
32

2 32767  [23] - a rather small number 

for current CPU-s and its use (installing the Microsoft or GNU suite of compilers) 

requires decent computer skills. A 'high-end' PRNG–s have much bigger period, 

e.g. period of the 'mersenne twister' is the Mersenne prime 
19937

2 1, but use of 

these requires good computer skills and good hardware. 

Many PRNG-s which at their introduction were considered 'good enough' have 

later become obsolete. For example, John von Neumann used for generation of 

random numbers the 'middle-square' method [24] – for the recurrence step earlier 

produced number was squared and then the middle digits were sliced out. This 

mix of number's semantics (squaring) and syntax (use only middle digits) was 

used already in 13th century [25] and seems good, since un-computability results 

(e.g. the Rice theorem [26]) indicate, that most semantic properties are 

undecidable from syntax. However, research revealed that with n-bit seed the 

length of generated cycle is 8
n

  and with many seeds even much shorter, e.g. 

     
2 2 2 2

3792 79 6241 24 0576 57 3249 24  - a cycle. 

Many PRNG-s have similar fate. The RC4 (Rivest Cipher 4) was used in several 

commercial encryption protocols and standards (e.g. in the TLS - Transport Layer 

Security – the base of all traffic in WWW), but is currently prohibited; widely 

known was periodicity in the random function of Microsoft PHP translator. 

Already in 1999 were presented general methods for prediction of CG-s [27], [28]. 

For assessment of quality of new PRNG-s have been constructed several suites of 

statistical tests – the NIST (the U.S. National Institute of Standards and 

Technology) suite [29], the Dieharder (Marsaglia) suite [30], ENT [31] etc. These 

tests check presented samples for some common regularities in everyday data, e.g. 

the Dieharder 3.20 implements 26 tests. 

We tested with the ENT suite several established sources: 

1. The first 7 KB part of the 2.1 GB file /dev/urandom from Ubuntu 16.04.3 

(a three months old installation, used mainly for making music) 
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2. 10000 decimal digits downloaded from the Random.org (randomness from 

atmosphere); 

3. 10000 decimal digits created using the function 

window.crypto.getRandomValues(); 

4. 10000 decimal digits created by Wolfram Mathworld with function 

RandomInteger[] using the default method Rule30CA 

In the following table are shown three characteristics from the test with the ENT 

suite of statistical tests: entropy (bits per bit), possible compression (randomness 

can't be compressed) and serial correlation coefficient. 

Table 1.  

Some characteristics of established sources of randomness 

 Entropy Compression Correlation 

/dev/urandom 0.988577 1% 0.035161 

Random.org 0.919040 8% 0.060193 

Windows 0.974450 2% -0.010378 

Wolfram 0.974448 2% -0.010948 

The results are rather similar except a bit weaker performance of atmosphere 

processes – the random sequence downloaded from the site Random.org. 

However, statistical tests cannot guarantee randomness and the results of these 

tests do not tell the whole truth. Although the randomness from Linux performed 

best, visual inspection (the 'Statistics' tool from the free hex editor HxD) reveals, 

that distribution of frequencies in /dev/urandom contains a surprising peak. 

 

Figure 1.  

Distribution of frequencies of bytes in the first 7 KB from the /dev/urandom file from Ubuntu 16.04.3; 

the sharp peak in the middle is the code for the € (Euro) symbol 

Thus, statistical tests are also uncertain method for evaluation of randomness 

sources. There could be surprising dependencies in data - the above peak in € 

symbol code come from computer, which is rather new (in use only for several 

months) and was never used for any kind of financial data handling. 
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3 Randomness from Games 

Randomness is an essential ingredient in most games and for utilizing this source 

have been proposed different methods [32] [33]. In [34] authors presented a 

method for producing on-line in real playtime binary random strings from simple 

repeated games; here the principles of the proposed method are applied to produce 

from gameplay m-ary ( 2m  ) random sequences. 

In the (economics - based) texts on games the game decision mechanism is usually 

not detailed – it is determined by unpredictable markets. In video games decisions 

are deterministic, thus we follow computer science tradition (see e.g. [35]) and use 

for the decision mechanism finite automaton. Games considered here are 'games 

of luck', where both players have equal chance to win and the best strategy (the 

Nash equilibrium) for both players is total randomness, i.e. in the game payoff 

matrix (economics-based format) the sums of all rows and columns are equal, 

such games are e.g. the rock-paper-scissors and odd-even. 

If one player is human or some established source of randomness and the other – 

the computer algorithm, then the (statistical) result of numerous repeated plays is 

also an assessment for the quality of computer-created randomness. The length of 

all considered here random sequences/plays is 10000, following the suggestion: 

"A reasonable estimate (for humanly interesting cases) reckons that some 10,000 

digits would suffice" [36] 

Thus in the following game is a structure 
1 2
, , , ,M R G P P A= , where 

 1 2,  P P  are (two) players; 

{0,1,..., 1}M m  , 2m   - the set of legal moves (actions) of players (the 

same set for both players); in every round both players apply simultaneously one 

action which initiates some change in automaton A  

 1 2[ , ]R r r  - player's utilities (points); at the start 
1 2 0r r   

 A  - a finite automaton, deciding the output (move) and payoffs to players. Here 

are considered simultaneous (synchronous) games, where players produce their 

actions (moves) simultaneously at the same time, thus the input for the automaton 

A  are pairs 1 2( , )i im m , where 1im  is the i move the first player, 2im  - i move 

second player; denote 1

1 2 2 1( , ) ( , )i i i im m m m  - actions of players switched. 

Automaton's (possible) outputs are "1" (player 1P  won, 1  1r   ), "-1" (player 2P  

won, 2  1r    ), "0" – draw. Thus, the automaton has four distinguished states: 



Acta Polytechnica Hungarica Vol. 16, No. 9, 2019 

 – 199 – 

 

Figure 2.  

Game automaton with distinguished states: a0  – the start state, a1  – first player won, a2  – second 

player won, ad – draw 

Here 0a  is the game start state, 1a  - here automaton outputs, that the first player 

won, 2a  - the second player won, da  - draw; in any other state (not shown) 

automaton does not produce output; 1 2{ , , }dF a a a  is the set of final states 

Automaton does not have cycles, thus the graph of the automaton is a tree (with 

possible loops with limited length at some nodes) and all rounds are finite. The 

length ( )D A  of the longest round (the depth of the tree) is the depth of the 

game. Game is repeated and after some fixed number (here 10000) of moves 

automaton announces if the result of the game is draw or who won. 

Automaton is deterministic, i.e. in any state aA , a F  and for any move 

( , )
i j

m m  there is a single transition 
0

( , ) {\ }
i j

a m m a a A  

Transitions are in natural way extended to words from 
2 ( )

11 21 1 2
{( , )} {( )...( ),  ( )}

D

i j t t
M m m m m m m t D


  

A
A   

11 21 12 22 1t 2 t

11 21 12 22 1t 2 t

(( , )( , )...( , ))

( ( , ))(( , )...( , ))

a m m m m m m

a m m m m m m


 

Action of words on states of automaton A  creates partition of the set 2 ( )DM A  of 

words into three sub-languages: 

1 0 1{ | } w a w aL =  

2 0 2{ | } w a w a=L  

0{ | } d dw a w aL =  

Call all words 
2 ( )Dw M A

 plays. 
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4 Symmetry-based Non-Learnable Games 

In games of chance, nobody wants to have worst chances by design of the game 

and all actions of players should be significant, i.e. could change the result, thus 

these games obey the following symmetry principle: 

in any move ( , )i jm m  from any play both players have equal chances, i.e. if all 

other moves in the play remain the same they can change their action so that 

expectation of outcomes 
1 2,a a  is the same, i.e. 0.5. 

Since there are 
2m  possibly moves it follows that if m  is odd, the set 

0L  can't be 

empty – otherwise 
1 2| |   | |L L  is impossible. 

Therefore the games with A( ) 1D  (one round, i.e. every single state of the 

automaton) should satisfy the following conditions. 

1. All games are zero-sum, i.e. the involution 
1

: ( , ) ( ( , ), )
i j j ijim m m m mm


   produces an automorphism of the 

automaton A , i.e. 
1 2 2 1( ) , ( ) , ( )    d dL L L L L L . 

2. Any substitution 

1 1

0 1 0 1:{ ,..., } { ,..., }


 k km m m m  

of actions produces automorphism of automaton A , which does not break the 

partition 
1 2{ ,  ,  }dL L L . 

3. The sublanguage 
dL  contains all words ( , ),  i i im m m M  and is minimal – it 

should not contain words which could be moved into 
1L  or 

2L  without breaking 

conditions 1,2. 

Proposition. Conditions 1-3 define for given m  unique (up to isomorphism) 

game payoff function. 

Proof. Consider the set 
1 1 1{( , ), \{ }} i im m m M mM , i.e. moves, where the first 

player selects action 
1m . From the condition 3. it follows, that the set 

dL  can 

contain at most one of them, otherwise we could pairwise move them one to 
1L , 

another to 
2L  without breaking conditions 1.-2. 

From the condition 2. it follows, that there should be equal number of elements 

from the set 
1M  inside sets 

1 2,  L L . If these sets were of different size then 

substitutions which keep 
1m  fixed, but move other actions will break the 

condition 2. 
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According to condition 2. actions inside 
1L  could be re-arranged so that 

1 2 1 3 1 1 1( , ),( , ),...,( , )km m m m m m L , 1 / 2k m    . Using the substitution 

1: i i km m  and the property 2. we get that all sets 

1 2 1{( , ),( , ),...,( , )}  i i i i i i km m m m m m  should belong to 
1L . If m  is odd, then all 

moves are now evenly divided between sets 
1L  and 

2L . If m  is even, then from 

the above discussion it follows that the moves 
/2( , )i i km m  should belong both to 

2L  and 
1L , i.e. they should be moved to set 

dL . 

Thus, a game with properties 1.-3.- has an unique (up to involution  ) payoff 

function, based on cyclic order [37] on moves: if moves of players are 

1 2( ) ,  ( )i jm m m m P P , then output from the automaton A  is: 

sgn(( )mod / 2)i jm m m m    

Table 2.  

Decision table of cyclic 5-ary order; e.g. 
1

(0, 2), (1, 2)L , but 
2

(0,3), (2,1)L  

 0 1 2 3 4 

0 0 1 1 -1 -1 

1 -1 0 1 1 -1 

2 -1 -1 0 1 1 

3 1 -1 -1 0 1 

4 1 1 -1 -1 0 

In case 3m   this is isomorphic to the well-known game rock-paper-scissors, 

which appeared in China at the beginning of Current Era. Apparently, Chinese 

know how to use symmetry groups for inventing amusing games. 

There are variants of this game with greater cycle length e.g. movements of 

fighters can be punch, kick, grab, push (the next one stronger than the previous), 

in some games even more than ten with non-linear order [38]. The pay-offs could 

be any (increasing) sequence of numbers, e.g. in the above 5-ary game the payoffs 

(ordinals) could be integers [-2,-1,0,1,2] calculated by 1 2( )modm m m m  . 

Table 3. 

Payoff table for the first player in a cyclic 5-ary game (payoffs for the second player – multiply by -1 – 

game is zero-sum) 

 0 1 2 3 4 

0 0 -1 -2 2 1 

1 1 0 -1 -2 2 

2 2 1 0 -1 -2 

3 -2 2 1 0 -1 

4 -1 -2 2 1 0 
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5 Randomness for Finite Devices – k-randomness 

Games where all actions produce similar reward (payoff) are non-learnable even 

for Tensorflow [39]. Nevertheless there are professional players of rock-paper-

scissors [40], in USA is a league of professional players of the "Rock, Paper, 

Scissors" game [41], regular tournaments [42] and programming competition [43]. 

These professionals win their opponents not since they have learned the game 

(impossible!), but they have learned to learn their human opponents, i.e. create 

better randomness than their opponents. 

Randomness is an evasive concept to define. The widely accepted definition is the 

Kolmogorov- Martin-Löf definitions: [44] [45] 

 sequence is random if it can't be compressed - expressed by any algorithm or 

device which can be described using less symbols than what are in the sequence. 

This definition and other consequent definitions, e.g. [46] are using infinite 

concepts ('any algorithm') and apply to infinite sequences, thus useless in practice 

for evaluating quality of a source of randomness, where all actors/devices are 

finite (have finite memory) and produce finite sequences. All deterministic 

devices inevitably go to cycle after enough time (they do not have any new states 

and have to repeat already used states). Thus if deterministic devices 1 2,     

with finite memory (humans or computers) interact, the deciding factor (who can 

predict/learn whom or contrary, cannot learn/predict and concludes, that the other 

produces random output) depends on available memory of these interacting 

devices [47], [48]. If 1  has (sufficiently) more memory than 2  so that it can 

remember the whole cycle produced by 2 , then when 2  goes into cycle 1  

can always predict the next response of 2  ( 1  has learned, ‘pwnd’ 2 ), but 

since 2 cannot store in its smaller memory the whole cycle produced by 1 , it 

has to conclude, that 1  is creating random output. This insight is the base for the 

following definition: 

a finite sequence of integers is k-random if its length > k and it can't be created as 

the sequence of outputs by any deterministic finite automaton with less than k 

states. 

This definition can be expressed also in terms of the Zif-Lempel compression [49] 

thus this is a (particular case) of the Kolmogorov’s definition: 

 a finite sequence of length > k is k-random if it can't be compressed using 

dictionary with item length < k. 

When k   this definition yields the presented above definition. All PRNG-s 

are interactive (input is the seed) deterministic finite automata – with the same 
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seed they produce the same output and a PRNG with cycle length k produces 

(maximally) a k-random sequence. 

6 The Cycle Disruption Algorithm 

The k-randomness of a sequence (with length > k) actually means, that the 

sequence does not have a loop at its end. Any finite deterministic automaton with 

k states and m input symbols produces a periodic sequence [50], i.e. 'goes into 

loop', if the length of its input is longer than k m  - there are no new possibilities 

for the pair (state, input), thus a deterministic automaton produces the same 

subsequence which already occurred when it first arrived at (state, input). The 

evolutionary game theory of bounded rationality [51] of human players also 

predicts cyclic patterns in playing behavior [52]. Thus for successful play one has 

to find when the loop begins, i.e. automaton repeats its moves and then disrupt the 

loop. This is the idea of the loop disruption algorithm for creating random 

sequences: 

scan the sequence of stored moves (input-output pairs) and when you find a 

situation similar to the current one (see that the sequence of last moves already 

appeared earlier) make the move that in the previous situation would be winning. 

Suppose the sequence of moves in a game up to now is 

0 11 21 12 22 1 2 1k 2k 1k 1 2k 1

1 2 1k 2k

( , )( , ),..., ( , ),...( , )( , )...,

( , ),...( , )

n n

n n

a m m m m m m m m m m

m m m m

 
 

 and 
1 2 1 2( , ),..., ( , )n n k km m m m  is the longest repeated subsequence of moves 

(looking from the current state backwards). Then algorithm should select the 

move which wins in the state 
1 1 2 1( , )k km m 

. 

For instance, in the following situation from a real play of 3-ary game (moves 

follow in pairs, first human then computer, e.g. on the second move human played 

'1', computer – '2') computer discovered a repeated sequence (underlined), thus its 

next move will be '2': 

1, 1, 1, 2, 2, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 2, 1, 1, 2, 2, 2, 

1, 1, 1, 2, 2, 2, 0, 2, 2, 0, 1, 1, 1, 1, 2, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 2, 0, 2, 0, 

0, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 2, 0 

The above sequence shows 45 moves (there are 90 symbols); length of the 

repeated subsequence is 4 moves; thus, the all sequence is 41-random. 

The algorithm has been implemented in several browser games [53]. 
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7 Tests 

We tested the algorithm using it as the computer opponent in several games of 

luck (odd-even, rock-paper-scissors etc.) in many plays. Against human players 

(students from the Tallinn University of Technology and others) computer was in 

most cases already winning if the length of the game was >30. Humans are not 

sufficiently random to beat computer, especially if the memory requirements 

(length of the game) grows; it seems that here works the famous human short-term 

memory size principle – human memory is also finite [54]. 

As opponent players for testing were used several well-established sources of 

randomness: JavaScript’s functions Math.random() and 

window.crypto.getRandomValues(), random numbers produced by Wolfram's 

Mathematica and a table of 10000 random integers downloaded from 

https://www.random.org/. 

Tests indicated that the algorithm plays quite well against all these common 

sources of 'computed' randomness, i.e. its own randomness is on the same level. 

Below is a table of results from three tests, each a 10 series of plays, each play 

10000 rounds with 3m  . Player 
1P  is in the first test random numbers produced 

by the JavaScript function Math.random(), in the second – random numbers 

produced by the function RandomInteger[] of Wolfram's Mathematica (using the 

default rule Rule30CA in Mathematica for creating pseudorandom sequences) and 

in the third – random numbers produced by function 

window.crypto.getRandomValues(); player 
2P  is our algorithm; L  was the length 

of the longest cycle in the sequence of player’s moves (i.e. the repeated sequence 

in above example). The last row indicates how many times each player won and 

length of the longest repeated sequence. 

Table 4. 

Results of tests 

         

3350 3365 16 3403 3289 16 3356 3287 18 

3396 3237 16 3369 3242 20 3277 3285 16 

3328 3332 16 3392 3286 16 3281 3351 18 

3428 3209 18 3392 3317 18 3342 3305 18 

3310 3377 16 3512 3163 16 3299 3405 16 

3369 3365 16 3424 3278 18 3366 3259 16 

3360 3345 16 3440 3316 18 3367 3263 16 

3315 3402 16 3355 3265 18 3283 3446 20 

3322 3412 18 3409 3301 19 3383 3354 16 

3294 3364 16 3330 3453 16 3324 3314 16 

4 6 18 9 1 20 6 4 20 

1
P 2P L 1

P 2P L 1
P 2P L
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These results show, that used in tests sequences were (at least) 9980-random 

according to the above definition – they did not contain repeated sequences longer 

than 20 moves. 

In the following table are discretized results (showing not actual results, but 

showing how many times player was better than the opponent) from 10 10000  

series of tests against random numbers table from Random.org (the first column in 

all three sub-partitions), JavaScript function Math.Random() (the second column 

in all three sub-partitions) and the function window.crypto.getRandomValues() 

(the third column); the last row is the summary of results. 

Table 5. 

Discretized results of tests 

Better 
1P  Better 

2P  Draw 

4 7 2 4 3 8 2 0 0 

6 4 7 4 3 3 0 3 0 

5 7 1 3 2 9 2 1 0 

6 3 1 3 7 9 1 0 0 

2 5 2 7 4 8 1 1 0 

3 4 4 5 5 5 2 1 1 

4 6 4 4 4 6 2 0 0 

4 4 3 5 5 7 1 1 0 

7 4 3 3 2 7 0 4 0 

4 4 4 4 4 3 2 2 3 

85 100 75 88 74 115 27 26 10 

As seen from this table, our algorithm was nearly on the same level against 

Math.Random(), slightly outperformed the randomness from Random.org and 

slightly lost to window.crypto.getRandomValues(). 

As output (new randomness) could be used two sequences – the sequence of 'full' 

moves (pairs of moves from player and computer) or the sequence of only 

computer-generated moves (twice shorter). We tested both as the source of 

random sequence against our computer's algorithm. In the following table are 

results from 10 series of plays, each 10000 rounds with 3m  ; player 
1P  is in the 

first series (the first three columns of the table) generated in a previous game 

(10000 moves against JavaScript Random()) sequence of full moves (pairs), in the 

second (the last three columns) – sequence of computer moves; player 
2P  is our 

algorithm. 

According to Table 6 the created in the game randomness already mostly 

outperformed our algorithm, its results are better than that of commonly 

established sources. When the generation process was iterated, i.e. generated 

randomness was used as input for the next play, it become more difficult to predict 

and our algorithm started to loose. 
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Table 6.  

Tests against randomness, created in game 

1
P  

2P  L  
1

P  
2P  L  

3298 3344 16 3403 3275 16 

3377 3351 16 3328 3337 16 

3439 3303 16 3391 3342 16 

3419 3284 16 3375 3297 18 

3328 3376 16 3490 3272 18 

3471 3212 16 3408 3273 18 

3360 3294 20 3379 3343 20 

3367 3314 16 3342 3370 16 

3513 3250 16 3376 3288 16 

3416 3362 16 3362 3316 18 

7 3 20 8 2 20 

In the following table are results of play against randomness, created on third 

iteration, i.e. after three rounds of 10x50000 moves; player 
1P  is in the first 

column the table of full moves (pairs), in the second – sequence of computer-

generated moves. 

Table 7. 

Tests with iterated randomness 

1
P  

2P  L  
1

P  
2P  L  

16811 16740 22 16617 16834 24 

16840 16550 18 16636 16759 18 

16785 16599 20 16729 16592 20 

16779 16701 18 16703 16641 20 

16777 16412 18 16601 16720 18 

16928 16672 18 16801 16682 20 

16904 16610 20 16757 16589 20 

16902 16599 18 16787 16547 22 

17017 16445 22 16581 16702 20 

16680 16655 20 16458 16854 18 

10 0 22 5 5 20 

8 Use in Practice - Creating Encryption Keys with 

the Move Sequences Combination 

Participants of online multiuser communities (multiplayer games, social networks) 

often want to establish also a direct communication with fellow players (chat). 
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This communication/chat system should not burden the game server, thus has to 

be implemented as a separate sub-process. 

 

Figure 3.  

Information flows in a multiplayer game with communication (chat system) for players 

To ensure security of game and players communication (this may involve 

exchange of substantial game values) the communication system should be ’sand-

boxed’, should be encrypted and should not reveal any information to 

outside/Internet. This makes undesirable the commonly used first phase of 

encryption key creation – use of public-key encrypted communication, which 

requires security certificates from outside. 

 

Figure 4.  

Security surfaces of information flows in a multiplayer game with communication (chat system) 

Statement “Players of games create randomness” is similar to many other non-

provable statements. Faith in its correctness comes from long history of game-

playing – nobody would play games where everything is pre-determined, just 

randomness makes games enjoyable. We play them more and more, thus in 

gameplay is created randomness and this randomness could be utilized. 

A multiplayer game is a communication system where players constantly generate 

new randomness with their moves, thus for key generation could be used 
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randomness from player’s moves; for greater security could be added also a 

computer-directed player, who for its play uses the algorithm presented above. 

The server records sequence of player’s moves, e.g. for a game with two players 

Alice and Bob this sequence of their moves could be 

11 21 12 22 1 2 1 2,..., ,...,t t l lm m m m m m m m ; here 1 2,t tm m  are respectively moves of 

Alice and Bob in gameplay move/moment t. 

To generate a key server sends to players the sequence of all moves from which 

the player’s own moves are removed, e.g. server sends to Alice the sequence 

21 22 2 2* * ,...,* ,...,*t lm m m m  - this information with holes does not give to an 

eavesdropper any information (it is assumed, that the game server communication 

with players is secure;, here is the only time when the game communication is 

used for the chat system). When players replace holes in the received sequences 

with their own moves they all get the same random sequence which could be used 

as the secure random key for symmetric encryption. 

 

Figure 5.  

Key generation combining a sequence with holes from server with sequence of player moves 

This ’move sequences combination method’ for symmetric key generation could 

be applied in any multiplayer game where players send their moves to game server 

(it is not essential, that moves alternate as in the above example). It has many 

desirable properties: key may be created for any subset of players (for any pair of 

them or for the whole player’s community), after the first (secure) communication 

players could easily switch to a new key (without announcing the server) just with 

message „From now on use moves from time moment 
0t  to 

1t  “ etc. To increase 

security of the key server could use some filters, e.g. remove all moves certain 

properties (produced certain result); to speed up the game could be used multi-

moves, i.e. participants send in every move a fixed-length sequence of moves etc.; 

several test applications are in implementation. 
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Conclusions 

This work analyzed the concept of randomness (k-randomness), applicable for use 

in devices with finite memory humans orcomputers. A method was presented (the 

loop disruption algorithm) for creating random sequences in gameplay; the quality 

of the created randomness was tested in a series of plays against established 

sources of randomness. Tests show, that the randomness is quite on a par with 

established sources of random numbers. As a practical use of game-created 

randomness is shown how this could be used for generating secure encryption 

keys for symmetric encryption without using the open-key procedure, typically 

used for creating common random sequence; the introduced ’moves combination 

method’ is currently under implementation. Using a generated in game 

randomness for symmetric encryption makes such a communication systems very 

secure – they do not depend on any ’upper-level’ security principals or certificates 

for key creation. 
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