
Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 193 –

Creating Randomness with Games

Jaak Henno*, Hannu Jaakkola**, Jukka Mäkelä***

*Tallinn Technical University, School of Information Technologies: Department

of Software Sciences, Ehitajate tee 5, 19086 Tallinn, Estonia, jaak.henno@ttu.ee

**Tampere University, Pori Campus, P.O. Box 300, FI-28101 Pori, Finland,

hannu.jaakkola@tuni.fi

*** University of Lapland, Rovaniemi Finland, jukka.makela@ulapland.fi

Abstract: In our increasingly connected and open World, randomness has become an

endangered species. We may soon not have anything private, all out communication,

interaction with others becomes publicly available. The only method to secure

(temporarily) communication is mixing it with randomness – encoding it with random keys.

But massive reuse of the same sources of randomness and rapid development of technology

often reveals that used sources were not perfectly random. The Internet security is top-

down, based on higher-level certificates, but we can never be quite certain with 'given from

above' products in their quality – in order to beat each other producers are 'cutting

corners' and even the high-level security certificates are available on Internet dark

markets. This clearly shows in tremendous increase of all kind of security accidents, so

there is an urgent need for new, independent sources of randomness. Mathematical

treatment of randomness is based on infinite concepts, thus useless in practice with devices

with finite memory (humans, computers, Internet Of Things). Here is introduced a

definition for randomness based on devices with finite memory – k-randomness; it is

shown, how this allows to create new randomness in computer games; numerous tests

show, that this source is quite on par with established sources of randomness. Besides

algorithmically-generated randomness is in computer games present also human-generated

randomness - when competing players try to beat each other they invent new moves and

tactics, i.e. introduce new randomness. This randomness appears in the sequence of players

moves and when combined with the sequences of moves of other players can be used for

generating secret keys for symmetric encryption in multi-player game communication

system. The method does not use public-key step for creation of shared secret (the key),

thus the encryption system does not need any upper-level security authorities.

Keywords: entropy; randomness; encryption; digital games; finite-state machines; human

behavior; cyclic order; k-random sequences; player’s actions combination

J. Henno et al. Creating Randomness with Games

 – 194 –

1 Introduction

Traditional fields of human activity – agriculture, manufacturing and construction

are currently producing only 35% of all values consumed by humanity [1], the rest

is produced in mental/information sphere, where the input for production of new

values is data. Most important source of new data are we self and all producers are

trying to capture as much as possible data concerning us.

Thus, it is becoming increasingly important to safeguard our privacy, our 'self',

our data and our communication and for this we need randomness. Randomness

has become a commercial product, several countries are introducing new random

number generators [2] and with rapid increase of communication and data we

have growing need for new randomness for encryption. Encryption ciphers are

based on modifying messages using random data. But encryption is only

temporary measure - when some encryption method/cypher is broken it becomes

worthless and the randomness used in it also becomes worthless. Data breaches

are increasing by more than 20 percent in a year [3], they have become the most

worrying feature of Internet [4] and every breach is decreasing the value of

randomness used. Growth of ’big data’ inevitably increases amount of randomness

needed to establish ownership for these ‘big data’ items. Thus, we constantly need

new sources of randomness. New computing environments - Internet of Things

(IoT), virtual/cloud servers etc. all increase the need for randomness.

To satisfy this continually growing need for randomness there are emerging

dedicated services to serve random data [5]. For delivering this data was proposed

a special new protocol 'Entropy as a Service' [6]. But for delivery this data also

should be encrypted, thus it is a new source needing 'fresh' entropy. So it is not

clear, whether this kind of ‘top-down’ service will reduce the need for entropy or

contrary, increase it.

Trust in the current top-down security practices, based on higher-level security

authorities issuing and controlling security certificates is decreasing – the high-

level certificates are on sale on ‘Dark Web’ for $260 … $1,600 [7]. Security

should be ‘bottom-up’ (Neighborhood Security) and entropy/randomness created

just where it is needed (like in blockchain). Everything is simpler and safer if the

entropy/randomness is generated where it is used.

Randomness is quite an infeasible concept. Mathematical treatment of randomness

is based on infinite concepts, thus not applicable in real-world practice, where all

information is handled by devices with limited memory - humans, computers,

devices in IoT. Here is introduced a definition of k-randomness applicable to

devices with finite memory and shown, how this can be used to produce with

games of chance random integer sequences; tests show, that the created

randomness is quite on level with established sources of randomness. As a

practical use of generated with game randomness is introduced herein a method to

create secure encryption keys for symmetric encryption.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 195 –

2 Types of Randomness

It is impossible to generate random values using a computer's basic operations –

binary operations conjunction & (AND), disjunction  (OR) and the unary

negation  (NOT) – all combinations of these connectives return single

determined value (if not, then the computer is broken). John von Neumann

commented on this: "Anyone who attempts to generate random numbers by

deterministic means is, of course, living in a state of sin". But he did not elaborate:

“why?” “what are the ‘non-sinful means’ of creating randomness?” and what

actually is randomness

Computers are deterministic, orderly; randomness is the opposite of order, the

absence of any pattern. The current understanding is that 'true' randomness can be

extracted only from physical processes, which have rich deep inner structure –

entropy, e.g. thermal fluctuations in processor, pixels found by mouse sensor

when user makes some rapid random strokes, atmospheric disturbances [8] etc.

These sources are 'Pure Randomness Generators' (PRG), but they are often not

rich enough e.g. for network servers which do not have external devices.

Operating systems send ‘new-born’ messages, thus should have means for

securing them with ‘new-born’ randomness/entropy and for this all operating

systems maintain an entropy pool. The first versions of Linux kernel created

entropy from the third derivative of differences in timings of user actions; this

information is stored in two files /dev/random and /dev/urandom. This method

turned out to be too slow and currently uselow-order bits (lest significant, i.e.

changing most rapidly) from timing of user actions on keyboard, mouse

movements, IDE requests; extracting entropy from audio [9] and video [10] data is

also studied.

Programming language's compilers need methods to create random values [11],

[12]. All compilers work under an Operation System (OS) and get their

randomness from OS, e.g. in Windows environment randomness to all

programming languages comes from the same source as to the Microsoft C/C++

compiler (and the Intel compiler [13] or newer [14]) - they use the random values

generated in Common Language Runtime [15], using the entropy produced by

processor. But there have been found several problems for Intel processors [16],

[17] thus specialists distrust randomness produced by Intel processors [18], e.g. in

Linux kernel it is only one of many inputs into the random pool. Research has

shown that even processors built-in functions (PRG-s) for generating random

values can be compromised [19] and processors and microchips may have built-in

hardware rojans [20] which can leak information leading to successful key

recovery attacks. After the NSA (U.S. National Security Agency) leaks by Edward

Snowden, many engineers have lost faith in hardware randomness [21].

The hardware entropy pool decrease every time random numbers are generated

from it Requesting many random numbers may starve them; this is a practical

issue on servers without input devices. Other PRG sources also decrease, e.g. the

J. Henno et al. Creating Randomness with Games

 – 196 –

online source of randomness Random.org [22] limits its daily available amount of

free random bytes (currently
610 bits). Thus PRG sources do not suffice, for

random number generation are needed also computer algorithms.

Computers are finite devices and after a while 'fall into loop', start to repeat

computed values. Thus 'calculated randomness' is pseudo-randomness produced

by pseudo-random number generators (PRNG). All PRNG-s are loops, which after

their period repeat produced values.

The first value in the loop is created using a random seed, i.e. comes from other,

usually PRG source. The next value is calculated from the previous one by some

recurrent function; common method is to use linear (for speed) recurrent functions

with reduction by modulus. For these Congruential Generators (CG) is the period

(length of the loop) the most important measure of security of such a generator.

For the C language it should be at least
32

2 32767 [23] - a rather small number

for current CPU-s and its use (installing the Microsoft or GNU suite of compilers)

requires decent computer skills. A 'high-end' PRNG–s have much bigger period,

e.g. period of the 'mersenne twister' is the Mersenne prime 
19937

2 1, but use of

these requires good computer skills and good hardware.

Many PRNG-s which at their introduction were considered 'good enough' have

later become obsolete. For example, John von Neumann used for generation of

random numbers the 'middle-square' method [24] – for the recurrence step earlier

produced number was squared and then the middle digits were sliced out. This

mix of number's semantics (squaring) and syntax (use only middle digits) was

used already in 13th century [25] and seems good, since un-computability results

(e.g. the Rice theorem [26]) indicate, that most semantic properties are

undecidable from syntax. However, research revealed that with n-bit seed the

length of generated cycle is 8
n

 and with many seeds even much shorter, e.g.

     
2 2 2 2

3792 79 6241 24 0576 57 3249 24 - a cycle.

Many PRNG-s have similar fate. The RC4 (Rivest Cipher 4) was used in several

commercial encryption protocols and standards (e.g. in the TLS - Transport Layer

Security – the base of all traffic in WWW), but is currently prohibited; widely

known was periodicity in the random function of Microsoft PHP translator.

Already in 1999 were presented general methods for prediction of CG-s [27], [28].

For assessment of quality of new PRNG-s have been constructed several suites of

statistical tests – the NIST (the U.S. National Institute of Standards and

Technology) suite [29], the Dieharder (Marsaglia) suite [30], ENT [31] etc. These

tests check presented samples for some common regularities in everyday data, e.g.

the Dieharder 3.20 implements 26 tests.

We tested with the ENT suite several established sources:

1. The first 7 KB part of the 2.1 GB file /dev/urandom from Ubuntu 16.04.3

(a three months old installation, used mainly for making music)

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 197 –

2. 10000 decimal digits downloaded from the Random.org (randomness from

atmosphere);

3. 10000 decimal digits created using the function

window.crypto.getRandomValues();

4. 10000 decimal digits created by Wolfram Mathworld with function

RandomInteger[] using the default method Rule30CA

In the following table are shown three characteristics from the test with the ENT

suite of statistical tests: entropy (bits per bit), possible compression (randomness

can't be compressed) and serial correlation coefficient.

Table 1.

Some characteristics of established sources of randomness

 Entropy Compression Correlation

/dev/urandom 0.988577 1% 0.035161

Random.org 0.919040 8% 0.060193

Windows 0.974450 2% -0.010378

Wolfram 0.974448 2% -0.010948

The results are rather similar except a bit weaker performance of atmosphere

processes – the random sequence downloaded from the site Random.org.

However, statistical tests cannot guarantee randomness and the results of these

tests do not tell the whole truth. Although the randomness from Linux performed

best, visual inspection (the 'Statistics' tool from the free hex editor HxD) reveals,

that distribution of frequencies in /dev/urandom contains a surprising peak.

Figure 1.

Distribution of frequencies of bytes in the first 7 KB from the /dev/urandom file from Ubuntu 16.04.3;

the sharp peak in the middle is the code for the € (Euro) symbol

Thus, statistical tests are also uncertain method for evaluation of randomness

sources. There could be surprising dependencies in data - the above peak in €

symbol code come from computer, which is rather new (in use only for several

months) and was never used for any kind of financial data handling.

J. Henno et al. Creating Randomness with Games

 – 198 –

3 Randomness from Games

Randomness is an essential ingredient in most games and for utilizing this source

have been proposed different methods [32] [33]. In [34] authors presented a

method for producing on-line in real playtime binary random strings from simple

repeated games; here the principles of the proposed method are applied to produce

from gameplay m-ary (2m ) random sequences.

In the (economics - based) texts on games the game decision mechanism is usually

not detailed – it is determined by unpredictable markets. In video games decisions

are deterministic, thus we follow computer science tradition (see e.g. [35]) and use

for the decision mechanism finite automaton. Games considered here are 'games

of luck', where both players have equal chance to win and the best strategy (the

Nash equilibrium) for both players is total randomness, i.e. in the game payoff

matrix (economics-based format) the sums of all rows and columns are equal,

such games are e.g. the rock-paper-scissors and odd-even.

If one player is human or some established source of randomness and the other –

the computer algorithm, then the (statistical) result of numerous repeated plays is

also an assessment for the quality of computer-created randomness. The length of

all considered here random sequences/plays is 10000, following the suggestion:

"A reasonable estimate (for humanly interesting cases) reckons that some 10,000

digits would suffice" [36]

Thus in the following game is a structure
1 2
, , , ,M R G P P A= , where

 1 2, P P are (two) players;

{0,1,..., 1}M m  , 2m  - the set of legal moves (actions) of players (the

same set for both players); in every round both players apply simultaneously one

action which initiates some change in automaton A

 1 2[,]R r r - player's utilities (points); at the start
1 2 0r r 

 A - a finite automaton, deciding the output (move) and payoffs to players. Here

are considered simultaneous (synchronous) games, where players produce their

actions (moves) simultaneously at the same time, thus the input for the automaton

A are pairs 1 2(,)i im m , where 1im is the i move the first player, 2im - i move

second player; denote 1

1 2 2 1(,) (,)i i i im m m m  - actions of players switched.

Automaton's (possible) outputs are "1" (player 1P won, 1 1r  ), "-1" (player 2P

won, 2 1r  ), "0" – draw. Thus, the automaton has four distinguished states:

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 199 –

Figure 2.

Game automaton with distinguished states: a0 – the start state, a1 – first player won, a2 – second

player won, ad – draw

Here 0a is the game start state, 1a - here automaton outputs, that the first player

won, 2a - the second player won, da - draw; in any other state (not shown)

automaton does not produce output; 1 2{ , , }dF a a a is the set of final states

Automaton does not have cycles, thus the graph of the automaton is a tree (with

possible loops with limited length at some nodes) and all rounds are finite. The

length ()D A of the longest round (the depth of the tree) is the depth of the

game. Game is repeated and after some fixed number (here 10000) of moves

automaton announces if the result of the game is draw or who won.

Automaton is deterministic, i.e. in any state aA , a F and for any move

(,)
i j

m m there is a single transition
0

(,) {\ }
i j

a m m a a A

Transitions are in natural way extended to words from
2 ()

11 21 1 2
{(,)} {()...(), ()}

D

i j t t
M m m m m m m t D


  

A
A

11 21 12 22 1t 2 t

11 21 12 22 1t 2 t

((,)(,)...(,))

((,))((,)...(,))

a m m m m m m

a m m m m m m



Action of words on states of automaton A creates partition of the set 2 ()DM A of

words into three sub-languages:

1 0 1{ | } w a w aL =

2 0 2{ | } w a w a=L

0{ | } d dw a w aL =

Call all words
2 ()Dw M A

 plays.

J. Henno et al. Creating Randomness with Games

 – 200 –

4 Symmetry-based Non-Learnable Games

In games of chance, nobody wants to have worst chances by design of the game

and all actions of players should be significant, i.e. could change the result, thus

these games obey the following symmetry principle:

in any move (,)i jm m from any play both players have equal chances, i.e. if all

other moves in the play remain the same they can change their action so that

expectation of outcomes
1 2,a a is the same, i.e. 0.5.

Since there are
2m possibly moves it follows that if m is odd, the set

0L can't be

empty – otherwise
1 2| | | |L L is impossible.

Therefore the games with A() 1D (one round, i.e. every single state of the

automaton) should satisfy the following conditions.

1. All games are zero-sum, i.e. the involution
1

: (,) ((,),)
i j j ijim m m m mm


  produces an automorphism of the

automaton A , i.e.
1 2 2 1() , () , ()    d dL L L L L L .

2. Any substitution

1 1

0 1 0 1:{ ,..., } { ,..., }


 k km m m m

of actions produces automorphism of automaton A , which does not break the

partition
1 2{ , , }dL L L .

3. The sublanguage
dL contains all words (,), i i im m m M and is minimal – it

should not contain words which could be moved into
1L or

2L without breaking

conditions 1,2.

Proposition. Conditions 1-3 define for given m unique (up to isomorphism)

game payoff function.

Proof. Consider the set
1 1 1{(,), \{ }} i im m m M mM , i.e. moves, where the first

player selects action
1m . From the condition 3. it follows, that the set

dL can

contain at most one of them, otherwise we could pairwise move them one to
1L ,

another to
2L without breaking conditions 1.-2.

From the condition 2. it follows, that there should be equal number of elements

from the set
1M inside sets

1 2, L L . If these sets were of different size then

substitutions which keep
1m fixed, but move other actions will break the

condition 2.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 201 –

According to condition 2. actions inside
1L could be re-arranged so that

1 2 1 3 1 1 1(,),(,),...,(,)km m m m m m L , 1 / 2k m    . Using the substitution

1: i i km m and the property 2. we get that all sets

1 2 1{(,),(,),...,(,)}  i i i i i i km m m m m m should belong to
1L . If m is odd, then all

moves are now evenly divided between sets
1L and

2L . If m is even, then from

the above discussion it follows that the moves
/2(,)i i km m should belong both to

2L and
1L , i.e. they should be moved to set

dL .

Thus, a game with properties 1.-3.- has an unique (up to involution ) payoff

function, based on cyclic order [37] on moves: if moves of players are

1 2() , ()i jm m m m P P , then output from the automaton A is:

sgn(()mod / 2)i jm m m m 

Table 2.

Decision table of cyclic 5-ary order; e.g.
1

(0, 2), (1, 2)L , but
2

(0,3), (2,1)L

 0 1 2 3 4

0 0 1 1 -1 -1

1 -1 0 1 1 -1

2 -1 -1 0 1 1

3 1 -1 -1 0 1

4 1 1 -1 -1 0

In case 3m  this is isomorphic to the well-known game rock-paper-scissors,

which appeared in China at the beginning of Current Era. Apparently, Chinese

know how to use symmetry groups for inventing amusing games.

There are variants of this game with greater cycle length e.g. movements of

fighters can be punch, kick, grab, push (the next one stronger than the previous),

in some games even more than ten with non-linear order [38]. The pay-offs could

be any (increasing) sequence of numbers, e.g. in the above 5-ary game the payoffs

(ordinals) could be integers [-2,-1,0,1,2] calculated by 1 2()modm m m m  .

Table 3.

Payoff table for the first player in a cyclic 5-ary game (payoffs for the second player – multiply by -1 –

game is zero-sum)

 0 1 2 3 4

0 0 -1 -2 2 1

1 1 0 -1 -2 2

2 2 1 0 -1 -2

3 -2 2 1 0 -1

4 -1 -2 2 1 0

J. Henno et al. Creating Randomness with Games

 – 202 –

5 Randomness for Finite Devices – k-randomness

Games where all actions produce similar reward (payoff) are non-learnable even

for Tensorflow [39]. Nevertheless there are professional players of rock-paper-

scissors [40], in USA is a league of professional players of the "Rock, Paper,

Scissors" game [41], regular tournaments [42] and programming competition [43].

These professionals win their opponents not since they have learned the game

(impossible!), but they have learned to learn their human opponents, i.e. create

better randomness than their opponents.

Randomness is an evasive concept to define. The widely accepted definition is the

Kolmogorov- Martin-Löf definitions: [44] [45]

 sequence is random if it can't be compressed - expressed by any algorithm or

device which can be described using less symbols than what are in the sequence.

This definition and other consequent definitions, e.g. [46] are using infinite

concepts ('any algorithm') and apply to infinite sequences, thus useless in practice

for evaluating quality of a source of randomness, where all actors/devices are

finite (have finite memory) and produce finite sequences. All deterministic

devices inevitably go to cycle after enough time (they do not have any new states

and have to repeat already used states). Thus if deterministic devices 1 2,  

with finite memory (humans or computers) interact, the deciding factor (who can

predict/learn whom or contrary, cannot learn/predict and concludes, that the other

produces random output) depends on available memory of these interacting

devices [47], [48]. If 1 has (sufficiently) more memory than 2 so that it can

remember the whole cycle produced by 2 , then when 2 goes into cycle 1

can always predict the next response of 2 (1 has learned, ‘pwnd’ 2), but

since 2 cannot store in its smaller memory the whole cycle produced by 1 , it

has to conclude, that 1 is creating random output. This insight is the base for the

following definition:

a finite sequence of integers is k-random if its length > k and it can't be created as

the sequence of outputs by any deterministic finite automaton with less than k

states.

This definition can be expressed also in terms of the Zif-Lempel compression [49]

thus this is a (particular case) of the Kolmogorov’s definition:

 a finite sequence of length > k is k-random if it can't be compressed using

dictionary with item length < k.

When k  this definition yields the presented above definition. All PRNG-s

are interactive (input is the seed) deterministic finite automata – with the same

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 203 –

seed they produce the same output and a PRNG with cycle length k produces

(maximally) a k-random sequence.

6 The Cycle Disruption Algorithm

The k-randomness of a sequence (with length > k) actually means, that the

sequence does not have a loop at its end. Any finite deterministic automaton with

k states and m input symbols produces a periodic sequence [50], i.e. 'goes into

loop', if the length of its input is longer than k m - there are no new possibilities

for the pair (state, input), thus a deterministic automaton produces the same

subsequence which already occurred when it first arrived at (state, input). The

evolutionary game theory of bounded rationality [51] of human players also

predicts cyclic patterns in playing behavior [52]. Thus for successful play one has

to find when the loop begins, i.e. automaton repeats its moves and then disrupt the

loop. This is the idea of the loop disruption algorithm for creating random

sequences:

scan the sequence of stored moves (input-output pairs) and when you find a

situation similar to the current one (see that the sequence of last moves already

appeared earlier) make the move that in the previous situation would be winning.

Suppose the sequence of moves in a game up to now is

0 11 21 12 22 1 2 1k 2k 1k 1 2k 1

1 2 1k 2k

(,)(,),..., (,),...(,)(,)...,

(,),...(,)

n n

n n

a m m m m m m m m m m

m m m m

 

 and
1 2 1 2(,),..., (,)n n k km m m m is the longest repeated subsequence of moves

(looking from the current state backwards). Then algorithm should select the

move which wins in the state
1 1 2 1(,)k km m 

.

For instance, in the following situation from a real play of 3-ary game (moves

follow in pairs, first human then computer, e.g. on the second move human played

'1', computer – '2') computer discovered a repeated sequence (underlined), thus its

next move will be '2':

1, 1, 1, 2, 2, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 2, 1, 1, 2, 2, 2,

1, 1, 1, 2, 2, 2, 0, 2, 2, 0, 1, 1, 1, 1, 2, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 2, 0, 2, 0,

0, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 2, 0

The above sequence shows 45 moves (there are 90 symbols); length of the

repeated subsequence is 4 moves; thus, the all sequence is 41-random.

The algorithm has been implemented in several browser games [53].

J. Henno et al. Creating Randomness with Games

 – 204 –

7 Tests

We tested the algorithm using it as the computer opponent in several games of

luck (odd-even, rock-paper-scissors etc.) in many plays. Against human players

(students from the Tallinn University of Technology and others) computer was in

most cases already winning if the length of the game was >30. Humans are not

sufficiently random to beat computer, especially if the memory requirements

(length of the game) grows; it seems that here works the famous human short-term

memory size principle – human memory is also finite [54].

As opponent players for testing were used several well-established sources of

randomness: JavaScript’s functions Math.random() and

window.crypto.getRandomValues(), random numbers produced by Wolfram's

Mathematica and a table of 10000 random integers downloaded from

https://www.random.org/.

Tests indicated that the algorithm plays quite well against all these common

sources of 'computed' randomness, i.e. its own randomness is on the same level.

Below is a table of results from three tests, each a 10 series of plays, each play

10000 rounds with 3m  . Player
1P is in the first test random numbers produced

by the JavaScript function Math.random(), in the second – random numbers

produced by the function RandomInteger[] of Wolfram's Mathematica (using the

default rule Rule30CA in Mathematica for creating pseudorandom sequences) and

in the third – random numbers produced by function

window.crypto.getRandomValues(); player
2P is our algorithm; L was the length

of the longest cycle in the sequence of player’s moves (i.e. the repeated sequence

in above example). The last row indicates how many times each player won and

length of the longest repeated sequence.

Table 4.

Results of tests

3350 3365 16 3403 3289 16 3356 3287 18

3396 3237 16 3369 3242 20 3277 3285 16

3328 3332 16 3392 3286 16 3281 3351 18

3428 3209 18 3392 3317 18 3342 3305 18

3310 3377 16 3512 3163 16 3299 3405 16

3369 3365 16 3424 3278 18 3366 3259 16

3360 3345 16 3440 3316 18 3367 3263 16

3315 3402 16 3355 3265 18 3283 3446 20

3322 3412 18 3409 3301 19 3383 3354 16

3294 3364 16 3330 3453 16 3324 3314 16

4 6 18 9 1 20 6 4 20

1
P 2P L 1

P 2P L 1
P 2P L

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 205 –

These results show, that used in tests sequences were (at least) 9980-random

according to the above definition – they did not contain repeated sequences longer

than 20 moves.

In the following table are discretized results (showing not actual results, but

showing how many times player was better than the opponent) from 10 10000

series of tests against random numbers table from Random.org (the first column in

all three sub-partitions), JavaScript function Math.Random() (the second column

in all three sub-partitions) and the function window.crypto.getRandomValues()

(the third column); the last row is the summary of results.

Table 5.

Discretized results of tests

Better
1P Better

2P Draw

4 7 2 4 3 8 2 0 0

6 4 7 4 3 3 0 3 0

5 7 1 3 2 9 2 1 0

6 3 1 3 7 9 1 0 0

2 5 2 7 4 8 1 1 0

3 4 4 5 5 5 2 1 1

4 6 4 4 4 6 2 0 0

4 4 3 5 5 7 1 1 0

7 4 3 3 2 7 0 4 0

4 4 4 4 4 3 2 2 3

85 100 75 88 74 115 27 26 10

As seen from this table, our algorithm was nearly on the same level against

Math.Random(), slightly outperformed the randomness from Random.org and

slightly lost to window.crypto.getRandomValues().

As output (new randomness) could be used two sequences – the sequence of 'full'

moves (pairs of moves from player and computer) or the sequence of only

computer-generated moves (twice shorter). We tested both as the source of

random sequence against our computer's algorithm. In the following table are

results from 10 series of plays, each 10000 rounds with 3m  ; player
1P is in the

first series (the first three columns of the table) generated in a previous game

(10000 moves against JavaScript Random()) sequence of full moves (pairs), in the

second (the last three columns) – sequence of computer moves; player
2P is our

algorithm.

According to Table 6 the created in the game randomness already mostly

outperformed our algorithm, its results are better than that of commonly

established sources. When the generation process was iterated, i.e. generated

randomness was used as input for the next play, it become more difficult to predict

and our algorithm started to loose.

J. Henno et al. Creating Randomness with Games

 – 206 –

Table 6.

Tests against randomness, created in game

1
P

2P L
1

P
2P L

3298 3344 16 3403 3275 16

3377 3351 16 3328 3337 16

3439 3303 16 3391 3342 16

3419 3284 16 3375 3297 18

3328 3376 16 3490 3272 18

3471 3212 16 3408 3273 18

3360 3294 20 3379 3343 20

3367 3314 16 3342 3370 16

3513 3250 16 3376 3288 16

3416 3362 16 3362 3316 18

7 3 20 8 2 20

In the following table are results of play against randomness, created on third

iteration, i.e. after three rounds of 10x50000 moves; player
1P is in the first

column the table of full moves (pairs), in the second – sequence of computer-

generated moves.

Table 7.

Tests with iterated randomness

1
P

2P L
1

P
2P L

16811 16740 22 16617 16834 24

16840 16550 18 16636 16759 18

16785 16599 20 16729 16592 20

16779 16701 18 16703 16641 20

16777 16412 18 16601 16720 18

16928 16672 18 16801 16682 20

16904 16610 20 16757 16589 20

16902 16599 18 16787 16547 22

17017 16445 22 16581 16702 20

16680 16655 20 16458 16854 18

10 0 22 5 5 20

8 Use in Practice - Creating Encryption Keys with

the Move Sequences Combination

Participants of online multiuser communities (multiplayer games, social networks)

often want to establish also a direct communication with fellow players (chat).

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 207 –

This communication/chat system should not burden the game server, thus has to

be implemented as a separate sub-process.

Figure 3.

Information flows in a multiplayer game with communication (chat system) for players

To ensure security of game and players communication (this may involve

exchange of substantial game values) the communication system should be ’sand-

boxed’, should be encrypted and should not reveal any information to

outside/Internet. This makes undesirable the commonly used first phase of

encryption key creation – use of public-key encrypted communication, which

requires security certificates from outside.

Figure 4.

Security surfaces of information flows in a multiplayer game with communication (chat system)

Statement “Players of games create randomness” is similar to many other non-

provable statements. Faith in its correctness comes from long history of game-

playing – nobody would play games where everything is pre-determined, just

randomness makes games enjoyable. We play them more and more, thus in

gameplay is created randomness and this randomness could be utilized.

A multiplayer game is a communication system where players constantly generate

new randomness with their moves, thus for key generation could be used

J. Henno et al. Creating Randomness with Games

 – 208 –

randomness from player’s moves; for greater security could be added also a

computer-directed player, who for its play uses the algorithm presented above.

The server records sequence of player’s moves, e.g. for a game with two players

Alice and Bob this sequence of their moves could be

11 21 12 22 1 2 1 2,..., ,...,t t l lm m m m m m m m ; here 1 2,t tm m are respectively moves of

Alice and Bob in gameplay move/moment t.

To generate a key server sends to players the sequence of all moves from which

the player’s own moves are removed, e.g. server sends to Alice the sequence

21 22 2 2* * ,...,* ,...,*t lm m m m - this information with holes does not give to an

eavesdropper any information (it is assumed, that the game server communication

with players is secure;, here is the only time when the game communication is

used for the chat system). When players replace holes in the received sequences

with their own moves they all get the same random sequence which could be used

as the secure random key for symmetric encryption.

Figure 5.

Key generation combining a sequence with holes from server with sequence of player moves

This ’move sequences combination method’ for symmetric key generation could

be applied in any multiplayer game where players send their moves to game server

(it is not essential, that moves alternate as in the above example). It has many

desirable properties: key may be created for any subset of players (for any pair of

them or for the whole player’s community), after the first (secure) communication

players could easily switch to a new key (without announcing the server) just with

message „From now on use moves from time moment
0t to

1t “ etc. To increase

security of the key server could use some filters, e.g. remove all moves certain

properties (produced certain result); to speed up the game could be used multi-

moves, i.e. participants send in every move a fixed-length sequence of moves etc.;

several test applications are in implementation.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 209 –

Conclusions

This work analyzed the concept of randomness (k-randomness), applicable for use

in devices with finite memory humans orcomputers. A method was presented (the

loop disruption algorithm) for creating random sequences in gameplay; the quality

of the created randomness was tested in a series of plays against established

sources of randomness. Tests show, that the randomness is quite on a par with

established sources of random numbers. As a practical use of game-created

randomness is shown how this could be used for generating secure encryption

keys for symmetric encryption without using the open-key procedure, typically

used for creating common random sequence; the introduced ’moves combination

method’ is currently under implementation. Using a generated in game

randomness for symmetric encryption makes such a communication systems very

secure – they do not depend on any ’upper-level’ security principals or certificates

for key creation.

References

[1] FAO 2019. The future of food and agriculture: Trends and challenges. Food

and Agriculture Organization of the United Nations, ISSN 2522-7211

[2] Sophia Chen. Why are countries creating public random number

generators? Science, Jun 28, 2018

[3] BSA. Encryption: Why It Matters. Retrieved May 9, 2018 from

http://encryption.bsa.org/

[4] Fortinet 2018. Data Breaches Are A Growing Epidemic. How Do You

Ensure You’re Not Next? Retrieved May 08,2018 from

https://www.fortinet.com/blog/threat-research/data-breaches-are-a-

growing-epidemic--how-do-you-ensure-you-re-n.html

[5] Nist 2016. Entropy as a Service. https://csrc.nist.gov/projects/entropy-as-a-

service

[6] EaaSP 2018. EaaSP - Entropy as a Service Protocol.

https://github.com/usnistgov/EaaS

[7] David Maimon et all 2019. SSL/TLS Certificates and Their Prevalence on

the Dark Web – Venafi https://www.venafi.com/sites/default/files/2019-

02/Dark-Web-WP.pdf

[8] https://www.random.org

[9] vanheusden.com 2018. audio entropy daemon. https://vanheusden.com/aed

[10] vanheusden.com 2018. video_entropyd. https://vanheusden.com/ved/

[11] Generating Random Data in Python. https://realpython.com/python-

random/

J. Henno et al. Creating Randomness with Games

 – 210 –

[12] How to generate random numbers, characters, and sequences in Scala.

https://alvinalexander.com/scala/how-to-generate-random-numbers-

characters-sequences-in-scala

[13] CryptGenRandom. https://docs.microsoft.com/en-us/windows/desktop/api/

wincrypt/nf-wincrypt-cryptgenrandom

[14] RtlGenRandom function. https://docs.microsoft.com/en-us/windows/

desktop/api/ntsecapi/nf-ntsecapi-rtlgenrandom

[15] Common Language Runtime (CLR) overview.

https://docs.microsoft.com/en-us/dotnet/standard/clr

[16] A Provable-Security Analysis of Intel's Secure Key RNG.

https://eprint.iacr.org/2014/504.pdf

[17] Gagallium: How I found a bug in Intel Skylake processors.

http://gallium.inria.fr/blog/intel-skylake-bug/

[18] The Register. Torvalds shoots down call to yank 'backdoored' Intel RdRand

in Linux crypto. Sept 10, 2013, https://www.theregister.co.uk/

2013/09/10/torvalds_on_rrrand_nsa_gchq/

[19] G. T. Becker, F. Regazzoni, C. Paar, W. P. Burleson. Stealthy Dopant-

Level Hardware Trojans. Journal of Cryptographic Engineering, April

2014, Volume 4:1, pp 19-31

[20] M. Ender, S. Ghandali, A. Moradi, C. Paar. The First Thorough Side-

Channel Hardware Trojan. https://eprint.iacr.org/2017/865.pdf

[21] arstechnica. “We cannot trust” Intel and Via’s chip-based crypto, FreeBSD

developers say. https://arstechnica.com/information-technology/2013/12/

we-cannot-trust-intel-and-vias-chip-based-crypto-freebsd-developers-say/

[22] https://www.random.org

[23] ISO/IEC 9899:2011. https://www.iso.org/standard/57853.html

[24] John von Neumann, “Various techniques used in connection with random

digits,” in A. S. Householder, G. E. Forsythe, and H. H. Germond, eds.,

Monte Carlo Method, National Bureau of Standards Applied Mathematics

Series, vol. 12 (Washington, D.C.: U.S. Government Printing Office,

1951): pp. 36-38

[25] I. Ekeland. The Broken Dice, and Other Mathematical Tales of Chance.

University of Chicago Press 1993, pp. 1-190, ISBN: 9780226199924

[26] H. G. Rice. "Classes of Recursively Enumerable Sets and Their Decision

Problems". Trans. Amer. Math. Soc. 74 1953, pp. 358-366

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 211 –

[27] H. Krawczyk. How to predict congruential generators. Journal of

Algorithms, Vol. 13:4, December 1992, pp. 527-545

[28] J. Stern. Secret linear congruential generators are not cryptographically

secure. 28
th

 Annual Symposium on Foundations of Computer Science (sfcs

1987), DOI: 10.1109/SFCS.1987.51

[29] NIST SP 800-22. A Statistical Test Suite for Random.

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-

22r1a.pdf

[30] R. G.Brown. Dieharder: A Random Number Test Suite.

https://webhome.phy.duke.edu/~rgb/General/dieharder.php

[31] ENT. A Pseudorandom Number Sequence Test Program.

http://www.fourmilab.ch/random/

[32] R. Halprin, M. Naor. Games for Extracting Randomnes. SOUPS '09

Proceedings of the 5
th

 Symposium on Usable Privacy and Security 2009

[33] M. Alimomeni, R. Safavi-Naini. Human Assisted Randomness Generation

Using Video Games. https://eprint.iacr.org/2014/045.pdf

[34] Henno, J., Jaakkola, H., Mäkelä, J. Using games to understand and create

randomness. SQAMIA2018 - Proceedings of the 7
th

 Workshop on Software

Quality Analysis, Monitoring, Improvement, and Applications, Vol. 2217,

CEUR-WS, http://ceur-ws.org/Vol-2217/

[35] E. Ben-Porath. Repeated Games with Finite Automata. Journal of

Economic Theory 59:1, 1993, pp. 17-32

[36] Sergio B. Volchan. What Is a Random Sequence?

https://www.maa.org/sites/default/files/pdf/upload_library/22/.../Volchan46

-63.pdf

[37] A Quilliot. Cyclic Orders. European Journal of Combinatorics 10:5, 1989,

pp. 477-488

[38] Gang Beasts Controls Guide. https://www.gameskinny.com/ly5jv/gang-

beasts-controls-guide

[39] Shai Ben-David et all 2019. Learnability can be undecidable. Nature

Machine Intelligencevolume 1, pp 44-48, https://www.nature.com/

articles/s42256-018-0002-3

[40] The World Rock Paper Scissors Association. https://www.wrpsa.com/

[41] USA Rock Paper Scissors League. https://myspace.com/usarps

[42] Rock Paper Scissors tournament rules. https://do317.com/p/rpsrules

J. Henno et al. Creating Randomness with Games

 – 212 –

[43] Rock Paper Scissors Programming Competition.

http://www.rpscontest.com/

[44] Kolmogorov, A. N. (1965) Three Approaches to the Quantitative Definition

of Information. Problems Inform. Transmission. 1(1), pp. 1-7

[45] Martin-Löf, P. (1966) The definition of random sequences. Information and

Control. 9 (6): 602-619

[46] Schnorr, C. P. (1971) A unified approach to the definition of a random

sequence. Mathematical Systems Theory. 5 (3), pp. 246-258

[47] Jaak Henno (2015) Information and Information Security. Information

Modelling and Knowledge Bases XXVII, pp. 103-120

[48] B. A. Trakhtenbrot, Ya. M. Barzdin 1973. Finite Automata. Behavior and

Synthesis. North-Holland, p. 211

[49] Ziv, J.; Lempel, A. (1978) Compression of individual sequences via

variable-rate coding. IEEE Transactions on Information Theory. 24 (5): 530

[50] A. Cobham, Uniform tag sequences, Math. Systems Theory, 6 (1972), pp

164-192

[51] H. Matsushima. Bounded Rationality in Economics: A Game Theorist's

View. The Japanese Economic Review (1997), 48:3, pp 293-306

[52] Z. Wang, B. Xu, H. Zhou. Social cycling and conditional responses in the

Rock-Paper-Scissors game. eprint arXiv:1404.5199,

https://ui.adsabs.harvard.edu/#abs/arXiv:1404.5199

[53] http://staff.ttu.ee/~jaak/games

[54] GA. Miller. The magical number seven, plus or minus two: Some limits on

our capacity for processing information. Psychological Review. (1956) 63,

pp. 81-97

