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Abstract: The paper describes behavior of a cognitive control system model, which enables 

a hexapod to walk in an obstacle-free terrain as well as in a complex terrain including 

obstacles. This cognitive system model is based on reinforcement learning and assumes the 

concept of static-stable walking. The decision making process was tested using three 

different types of terrain models. The results of decision making process trigger actions in 

the form of changes in the state of six-legged body to maintain stable walking forward. New 

method have been developed to describe a group of obstacles of different sizes in a complex 

terrain. The results suggest a relationship between the predefined number of actions and 

the maximum total walked distance in terrain. In case of the terrain without obstacles, the 

optimized actions are the same. Thus, the way of moving the trunk and legs in the terrain is 

always the same and cyclic. The results also indicate that the maximum total walked 

distance is reduced due to a growing number of obstacles to overcome. The maximum total 

walked distance is reduced more significantly in the case of overcoming a greater number 

of small obstacles compared the case of smaller number of large obstacles. The way of 

moving the trunk and legs in the terrain with large obstacles is acyclic. The methods 

proposed for the study of the cognitive system and the sensory system of a hexapod, for the 

simulation of six-legged walking, as well as for the characterization of terrain with 

obstacles may find application in bioengineering, robotics, military system and other fields. 

Keywords: complex terrain; obstacles; hexapod; reinforcement learning; static-stable 

walking 
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1 Introduction 

Hexapod represents a six-legged arthropod with a set of three pairs of legs 

controlled by a nervous system, [1] while relying on the concept of six-legged 

undercarriage previously introduced in robotics. The model of the cognitive 

system used for modelling of a six-legged insect`s gait [2] employed a set of 

sensors (eyes) and actuators (leg muscles), [1, 2]. Generally, the cognitive system 

sends information to the motoric system and receives information from the 

sensory system, which is a concept known as the sensor-actuator loop [2]. The 

central cognitive system is responsible for the strategy of leg coordination and the 

transition from current-state to future-state [2], see Fig. 1. 

The process of learning and decision-making in a cognitive system can be 

modelled using computational methods [2-4]. A number of methods based on 

artificial intelligence has been developed to control the trajectory of a walking 

hexapod robot [5-7], [8] however, these have not been designed for leg 

coordination [2]. There are also methods for controlling legs on a flat surface 

without any obstacles [9-13]. The methods do not offer solutions for crossing of 

small obstacles in the terrain [2] and only a few of the methods have been 

proposed to allow for this technique of walking [2, 14]. These methods are based 

i.e. on neural networks [15-16] or genetic algorithms [17]. Only a small number of 

methods is based on Reinforcement Learning (RL) [2, 3, 9, 10], which is accepted 

as a method that describes the decision-making process of living organisms [18-

21]. The results of decision making process based on RL trigger in the form of 

changes in state of six-legged body to maintain stable forward walking [20]. An 

issue in evaluating the effectiveness of methods based on RL, however, is that the 

total walking distance in terrain covered by the number of actions of legs is 

affected not only by the algorithm parameter settings but the terrain complexity as 

well. This shortcoming thus calls for a method which would allow for the terrain 

complexity description. 

 

Figure 1 

The sensor-actuator loop 

A large number of methods focusing on the complexity of terrain has been 

designed in the field of robotic studies, and some of these are based on the 

description of rough terrain. Although procedures for planning foot trajectory and 

body trajectory of walking robots in 3D space have already been designed [22-25], 
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no method or variable to describe a group of obstacles of different sizes in a 

complex terrain corresponding to the walked distance or number of actions has 

been developed yet. In contrast with methods describing obstacles of different 

heights corresponding to the dimensions of the robot's trunk already introduced 

[26], a method of assessing lengths (horizontal sizes) of obstacles, however, has 

never been described comprehensively. A terrain analysis based on the envelope, 

slope and the curvature of the surface using certain scale has also been designed 

[27], however failed to provide characteristics of the geometry and size of 

obstacles in relation to the trunk and/or leg characteristics in terms of size and 

workspace. 

Thus, the aim of this article is to introduce a method of describing a complex 

terrain and analyse the applicability of the method based on RL to enable stepping 

over obstacles in a terrain. The methods for the study of the six-legged walking, as 

well as for the characterization of terrain with obstacles could find application in 

robotics, military systems, rehabilitation and other fields. 

2 Methods 

2.1 Model of the Decision-Making Process of Hexapod 

Walking through a complex terrain with obstacles is made possible through 

acyclic gait. The assumed model of cognitive system uses decision-making 

process based on RL for coordination of the legs of hexapod [2, 20, 21]. To ensure 

static stable locomotion [20, 21], the cognitive system uses the known states of the 

position of the legs to maintain static stability [13]. For the decision-making, 

knowledge of the condition for static-stable posture is assumed [20, 21]. The 

static-stable walking is represented by vector t=(lR1, lL1, lR2, lL2, lR3, lL3 ), tT, 

which describes the 15 states of six-legged body to maintain static stability [2], 

where binary (i.e. true/false) variables (lR1,… ,lL3) represent the states of left (L) 

and right (R) legs: 1 - leg is in the swing phase; 0 - stance phase of the leg, [2, 20, 

21]. 

To transport the trunk, the legs change their position in relation to the trunk. If the 

movement of each leg is autonomous, we can describe the position of each leg in 

leg workspace (LW) by the value ni, [2]. This value represents the requirement for 

leg movement in LW, [23]. Maximum front position in LW is represented by the 

value of 0. Value 1 represents maximum requirement for leg movement of the leg 

in back position, [2]. Vector r = (nR1, nL1, nR2, nL2, nR3, nL3), rR, represents 

requirements for all legs movements. 
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Normally, the feet must not touch the obstacles, [22]. If we know where the 

obstacles are located in LW, it is possible to identify possible step lengths within 

the LW. Vector p = (kR1, kL1, kR2, kL2, kR3, kL3), pP, represents information about 

maximum possible step lengths ki of all legs, [2]. 

The designed cognitive system uses Q-learning (QL) as a RL technique, [2, 20, 

21], see Fig. 2. In the QL, the state-action pairs are represented by a Q-table, [2]. 

The Q-table stores the information about the relations between the states p, r and 

proper actions t. The actions represent changes in the state of the six-legged body 

to maintain static stable walking forward. States for each leg are represented by 

variables niN and kiK, and the actions of each leg are represented by liL 

variables, [2]. 

 

Figure 2 

Cognitive control system based on reinforcement learning, six-legged body and terrain model [2] 

Based on the information stored in the Q-table, the current situation is evaluated in 

order to select the best (most reward-promising) action to accomplish the task, [2, 

21]. The new state, entered as a consequence of the execution of action, is 

evaluated by the reinforcement function. Its qualitative criterion (reinforcement) is 

used by the algorithm that adjusts the Q values, [2, 18, 19]. The RL algorithm 

applied is described in Table 1, [2]. The learning algorithm searches for possible 

options of walking and evaluates each action tT. The p* and r* are the initial 

states and the initial positions of the six-legged body in a terrain model. Let 

MaxQ(p’,r’,t) be the maximum Q value of the next state (p’,r’) related to all the 

possible actions tT, [2], Table 1. For each new state of the six-legged body, 

different possible actions can be tested n times. The range of distance lrequired for 

the prediction of t actions in the terrain model is determined by the capabilities of 

the sensors. The variable for determining the (reached) total walking distance 

lwalked, i.e. maximum total walking distance after the learning process, is a 

predefined m number of t actions to cover this total distance. The value of c is the 

immediate (or expected) reward for the state change from the old state (p,r) to the 
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new state (p’,r’). We assume that the success of the action t is defined by the 

covered distance represented by l, thus the reward is c≈l, 0≤l≤lmax [2]. The 

learning rate α(p,r,t) (see Table 1) is used to ensure the convergence of the 

iterative procedure, [2, 19]: 

),,(0

00

trpnn

n







  (1) 

n(p,r,t) is the number of times the Q(p,r,t) value, i.e. state-action pair (p,r,t), has 

been called during learning, [20]. The and n0 are parameters used to control the 

convergence of the iterative procedure. Based on previous experiments, we set 

=1 and n0=1. The  is the discount factor in the range 0≤<1, we set γ=0.9 [20]. 

Table 1 

Algorithm for RL of the hexapod cognitive control system [2, 21] 

1. Set the initial parameters of the learning process 

2. Identify the state p = p* P and state r = r* R of the six-legged body in real 

terrain 

3. Select and execute an tT action of the model of six-legged body in the model of 

terrain 

4. Identify the new state p’P and r’ R of the model of six-legged body, and obtain 

the immediate reward c and update the learning rate 
5. Update the Q-table, i.e. Q value:  

Q(p,r,t) = Q(p,r,t) +  ( c +  Max Q(p’,r’,t) - Q(p,r,t) ) 

6. Assign p = p’ and r = r’ 

7. While n ≠ nrepetitions return to 3 

8. While lwalked ≠ lrequired return to 2 

9. Execute the most appropriate action t* = tT of the six-legged body in real terrain 

The strategy used to select the action during learning is based on Boltzmann´s 

exploration [2, 20, 28]: 
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where E is a parameter known as the computational temperature. High 

temperatures cause all actions to be nearly equiprobable, whereas low 

temperatures cause greedy action selections. The parameter value E decreases 

gradually by:  

)( minmin EEEE n1n    (3) 

where n is the number of the cycle repetition, i.e. the number of iteration cycles. 

Based on previous experiments and recommendations [2, 20, 28], the values of the 

parameter are E0=Emax=0.9, Emin=0 a β=0.9. RL parameters and their descriptions 

can be found in [2, 20]. 
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Table 1 presents the algorithm used to explore the possible states and actions of a 

six-legged body in a modelled terrain with obstacles. The cognitive system tries to 

cover a required maximum distance lrequired, and thus the number of iterations is 

determined by the size of the terrain model. The number of nrepetitions>0 if 

(repetitions) selecting an action t is given by the quality of the cognitive abilities 

of the system (we use n=1). The learning process is stopped when the required 

maximum distance lrequired or the number of cycles (i.e. locomotion) to walk 

through the same terrain model by an m number of t actions is achieved. Of 

course, the distance lrequired can be reached by a certain number of cycles to walk 

through the entire length of the terrain during learning. After learning, the final, 

optimized (t) actions at the (p, r) states are performed [2]. It is assumed that the 

total walked distance lwalked as well as the  m number of  t actions will decrease in a 

more complex terrain and increase in a less complex one. In the following sections 

the focus will be put on the study of the relationship between the number of cycles 

required to walk through the entire length of the terrain to achieve the maximum 

distance, number m of t actions to cover the maximum distance and the terrain 

complexity. 

2.2  Method for Terrain Description and Gait Evaluation 

The second aim of article is to introduce a method for describing a complex terrain 

and analyse the applicability of the method based on RL to enable stepping over 

obstacles in a terrain. However, a method for assessing the obstacles of different 

lengths has never been described comprehensively before. We assume that the 

cognitive system should select the best walking strategy to overcome the longest 

(i.e. maximum predefined) distance. Also, we assume that obstacles in a terrain 

are already identified, e.g. using methods based on recursive density estimation 

and evolving Takagi–Sugeno fuzzy systems [29] or 2D laser range finder and 

obstacle/gap detection based on edge detection [30]. An example of a terrain 

model with complicated distribution of obstacles is shown in Fig. 3 exported from 

the simulation software (MatLab, MathWorks Inc.) including descriptions. 

To verify the designed RL based control system, it is necessary to describe lengths 

(horizontal sizes, [30]) of the obstacles in the direction of movement to consider 

only those obstacles which are on the path of the hexapod and corresponding with 

the section of the complex terrain, i.e. the covered total walking distance lwalked. 

Two types of obstacles need to be distinguished: small obstacles which can be 

stepped over by one leg without translating the trunk and large obstacles which 

have to be overcome by translating the trunk and can't be stepped over by a single 

leg movement. 

The maximum possible step length dkSmax in a terrain without obstacles is defined 

by the LW geometry [2, 17, 30]. The lengths of small obstacles are smaller or 

equal to the length of the maximum possible step h dkSmax, Fig. 3, [2]. The length 

of large obstacles is greater than the maximum possible step length dkSmax, but still 
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has to be smaller than the maximum walking distance by one action t to ensure 

movement of the trunk in a terrain, i.e. lmax, see Fig. 3. Theoretically, lmax can reach 

up to 2∙dkSmax, assuming the static-stable locomotion and geometry of the trunk and 

LW as described in [2, 21]. It also has to be ensured that two obstacles larger than 

maximum possible step length dkSmax are not situated in both workspaces of the left 

and right leg at the same time, i.e. in the workspaces of the two opposite legs. If 

the condition above is met, then the path corresponding to the section of the 

complex terrain with obstacles, i.e. reached total walking distance lwalked, can be 

described by a numeral denoting the number of small obstacles and a numeral 

informing about the number of large obstacles, see Fig. 3. A more objective 

description would be the following: The path corresponding to the section of the 

complex terrain with obstacles, i.e. covered total walking distance lwalked, is 

described by numerals that represent the number of small obstacles to be 

overcome by the left side (LS) of the body (left legs), the number of the large 

obstacles to be overcome by the LS of the body (left legs), as well as the number 

of the small obstacles to be overcome by the right side (RS) of the body (right 

legs), and finally the number of large obstacles to be overcome by the RS of the 

body (right legs). 

 

Figure 3 

Simplified model of a six-legged body (with legs in swing/stance phase) and sensory information in a 

terrain model with obstacles [2] 

The remaining question is what kind of relationship, if any, is there between the 

covered total walked distance lwalked, the predefined m number of t actions and the 

numbers of cycles (to reach the maximum total walked distance during learning) 

to walk over the terrain with specific types and numbers of obstacles. The 

information about possible relationship could be used to develop algorithms for 

effective RL, thus reducing the time and complexity of computing the learning 

process. 
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2.3  Verification Method 

The verification is focused on testing the adopted approach to evaluate the 

hexapod's decisions in complex terrain. For this purpose, the second aim of article 

is to introduce a method of describing a complex terrain and analyse the 

applicability of the method based on RL to enable stepping over obstacles in a 

terrain. However, a method for assessing obstacles of different lengths has never 

been described comprehensively before. We assume that the cognitive system of 

hexapod should select the best walking strategy (i.e. the most appropriate actions 

t*) to overcome the longest (i.e. maximum predefined) distance. 

Table 2 

Relationship between the predefined number of actions and the used types of complex terrains with 

small and large obstacles (LS – left side, RS – right side of the hexapod's body) 

Terrai

n 

Type of 

obstacles 

Predefined number m of actions 

3 6 9 12 15 

Number of obstacles to be 

overcome 

1. 

small LS 0 0 0 0 0 

large LS 0 0 0 0 0 

small RS 0 0 0 0 0 

large RS 0 0 0 0 0 

2. 

small LS 2 3 4 5 6 

large LS 0 0 0 0 0 

small RS 0 2 3 4 4 

large RS 0 0 0 0 0 

3. 

small LS 2 3 3 3 4 

large LS 0 0 1 1 1 

small RS 0 1 1 1 2 

large RS 0 0 1 2 2 

The method for the decision making based on RL described above was tested on 

models of terrain based on method for describing complex terrains in a MatLab 

software environment. The terrain model with obstacles is (on purpose) designed 

to be complex and ill-structured. It is assumed that the terrain model is to be 

explored and identified by the sensory system. The initial parameters used for the 

learning algorithm define the initial position of the six-legged body in the terrain 

model and the characteristics of terrain obstacles (dimensions and positions), see 

Fig. 3. Then the maximum distance lrequired=140 mm from the six-legged body (i.e. 

trunk) to the farthest detected obstacle or target in the terrain is chosen. During the 

prediction of walking, the maximum number m of predicted t* actions of the six-

legged body in the model of terrain represents another limiting factor, see Table 2. 
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The issue with the evaluation of the effectiveness of setting algorithm parameters, 

however, is that the covered total walked distance lwalked achieved by the 

predefined m number of t actions is affected not only by the parameters set for the 

algorithm, but also by terrain complexity. Consequently, a more advanced testing 

session was performed using three types of terrains, Table 2. 

The first type of terrain was a flat terrain without any obstacles; the second type of 

terrain involved only small obstacles; and the third type of terrain was covered 

with both small and large obstacles. To walk through the three types of terrains, 

the predefined m numbers of t actions were 3, 6, 9, 12 and 15. The predefined 

number of cycles to walk through the same terrain during learning was 2500. 

2.4  Statistical Analysis 

Each type of terrain was tested ten times by each predefined m number of actions. 

After calculating the covered total walked distance lwalked, the predefined m 

number of actions and the number of cycles to walk through the same terrain, the 

statistical analysis of these characteristics was performed using MatLab software. 

Maximum and minimum values were identified, the median, first quartile (Q1) 

and third quartile (Q3) was calculated for the number of cycles (i.e. locomotions) 

to reach the maximum total walking distance (i.e. select the optimized actions). 

The Jarque–Bera test (in MatLab software) was used to test the normal 

distribution of all parameters. The test returns the value of h=1 if it rejects the null 

hypothesis at the level of significance of 5%, and h=0 if does not. 

3 Results 

In this section, results for approach adopted to evaluate the hexapod's decisions by 

RL in three different complex terrains (see Table 2) are demonstrated. Each type 

of terrain was tested ten times by each predefined m number of actions and the 

Jarque–Bera test returned h=1 in all trials. The data were compared to identify the 

relationship between the predefined m number of t* actions and the maximum 

total walking distance (lwalked), see Table 3 and Fig. 4. Using the RL method, the 

hexapod (i.e. model of the hexapod in MatLab software environment) is able to 

plan several actions in advance, see Table 3. The planned actions represent the 

planned changes in the state of the six-legged body to maintain static stable 

walking forward. The maximum total walking distance is achieved by the 

predefined number (m) of actions (t*) after the learning process. 
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Table 3 

Maximum total walked distances achieved by the predefined number of actions after the learning 

Terrai

n 

Predefined  m number of actions 

t* 

3 6 9 12 15 

Maximum total walked distance 

[mm] 

1. 24 60 96 132 168 

2. 24 49 64 79 94 

3. 24 49 66 88 114 

To determine the relationship between the number of cycles (i.e. locomotions) to 

reach the maximum total walking distance and the predefined m number of t* 

actions, compare Table 4 and Fig. 5. 

 

Figure 4 

Diagram illustrating relationships between the maximum total walking distances and predefined 

numbers of actions in different terrains 

Table 4 

Numbers of cycles to reach the maximum total walking distance and to select the optimized actions in 

specific terrains 

  Numbers of cycles to reach the maximum total walking distance   

   1st  terrain 2nd  terrain 3rd  terrain 

   Min Max Median Q1 Q3 Min Max Median Q1 Q3 Min Max Median Q1 Q3 

P
re

d
ef

in
ed

 n
u

m
b

er
 

m
 o

f 
ac

ti
o
n

s 

3 3 2037 45 12 59 26 1199 155 63 259 7 617 167 90 456 

6 76 2214 205 157 313 147 1686 331 239 696 108 1822 310 177 1294 

9 74 1268 211 118 730 169 2227 564 348 1109 223 1715 519 343 778 

12 59 1342 139 113 390 156 2373 485 267 1882 313 1633 1016 886 1539 

15 79 741 150 112 231 435 2025 938 816 1347 404 2058 1381 798 1715 
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It is clear that a higher value of the defined m number of actions increases the 

number of obstacles to be overcome, Table 2. Furthermore, the total walking 

distance is also increased, Table 3. When traversing the three different types of 

terrains, all obstacles (both small and large) were overcome. 

 

Figure 5 

Diagram illustrating relationship between the number of cycles to reach the maximum total walking 

distance and the predefined numbers of actions in 1st terrain (A), 2nd terrain (B) and 3rd terrain (C) 

4 Discussion 

The data presented in Fig. 5B and Fig. 5C point out to the relationship between the 

predefined number of actions and the number of cycles (i.e. locomotions) to reach 

the maximum total walking distance and indicate the increase of the median of the 

number of cycles to reach the maximum total walking distance, helping to select 

the optimized actions, in the case of the 2
nd

 and 3
rd

 terrain. The data presented in 

Fig. 5A indicate a gradual increase and a subsequent decrease of the median of the 

number of cycles to reach the maximum total walking distance, and help select 

optimized actions, in the case of the 1
st
 terrain (without obstacles). This is due to 
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the fact that the identified states (p, r) of the six-legged body and terrain are the 

same or similar during walking, and thus the optimized actions are the same and 

computation time of the learning process to find the optimized actions can be 

reduced. In all cases, the Jarque–Bera test confirmed that we can reject the 

hypothesis that the number of cycles to reach the maximum total walking distance 

has a normal distribution. In the case of the 1
st 

and the 2
nd

 terrain (including only 

small obstacles), strong asymmetrical (skewed) distributions of the number of 

cycles to reach the maximum total walked distance is found. The median of the 

number of cycles to reach the maximum total walking distance during learning is 

much lower than the maximum value, see Table 4. Thus, the maximum total 

walking distance is achieved by a lower number of the cycles. In the case of the 

3
rd

 terrain with large obstacles, the maximum total walking distance is achieved by 

a higher number of the cycles. 

The data also indicate that the increase in the number of cycles to reach the 

maximum total walked distance is hampered (i.e. reduced) as the identified states 

(p, r) of the six-legged body and terrain are similar during walking in the case of 

the 1
st 

and the 2
nd

 terrain (including only small obstacles) and predefined greater 

number of actions. In the case of the 3
rd

 terrain (with small and large obstacles), 

the rate of increase in the number of cycles is not constant or reduced since the 

terrain is complex and the identified states (p, r) of the six-legged body and terrain 

are not identical during walking. In general, moving over a more complex terrain 

reduces the number of actions and results in higher values of maximum number of 

cycles (i.e. locomotions). On the other hand, the maximum total walking distance 

is lower as terrain complexity reduces the total number of possible actions denoted 

by t. 

In view of the adjustment of learning process described above, the approximate 

number of cycles (i.e. locomotions) sufficient for the subsequent selection of the 

optimal action t can reach up to 1500. The approximate number of cycles can be 

lower than 1000 in the case of a less complex terrain and the predefined m=9 

number of t actions. With a more complex terrain, the approximate number of 

cycles can be lower than 1000 in the case of a lower predefined (m=3) number of t 

actions. In general, the use of a lower predefined (m=3) number of actions is 

appropriate for a complex terrain. 

The data suggesting the relationship between the predefined number of actions 

and the maximum total walking distance, Fig. 4, indicate an increase in the 

maximum total walking distance in all cases, i.e. the terrains are passable. In case 

of the 1
st
 terrain (without obstacles), the curve of the increase in the maximum 

total walking distance is constant because the optimized t actions are the same. 

Thus, the type of moving the trunk and legs in the terrain is always the same. For 

static stable walking forward, the model of hexapod can use acyclic and/or cyclic 

gait. The type of gait depends on the results of the search for the most appropriate 

sequence of actions to achieve the maximum total walked distance by the 

predefined number of actions. In case of the 1
st
 terrain, model of the hexapod 
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opted for cyclic gait, as is apparent from Fig. 4, where the walked distance after 

the individual actions remains the same. The decision making process of the 

hexapod shows that acyclic gait suits a very complex terrain and cyclic gait on the 

other hand a less complex terrain. The data in Fig. 4 also indicate that the 

maximum total walking distance is reduced due to a growing number of obstacles 

to be overcome (Tab. 2), especially in the 2
nd

 terrain. The maximum total walking 

distance is reduced more significantly in the case of overcoming a greater number 

of small obstacles (2
nd

 terrain) than in the case of smaller number of large 

obstacles (3
rd

 terrain). 

Proceeding from the above analysis, it was found that the results show the 

suitability of the adopted approach. The methods proposed for the study of the six-

legged walking, as well as for describing a terrain with obstacles, allow us to 

quantitatively assess and evaluate the hexapod's decisions in complex terrain. It of 

course follows that, alternatively, other nonlinear methods adapted for hexapod's 

decisions in complex terrain could be used, e.g. the tensor product models [31], 

methods for delivery vehicle routing problem [32], nonlinear multivariable 

systems using recurrent cerebellar models [33], neural control mechanisms [16], 

etc. Application of these methods to the problem of hexapod's decisions may find 

its place in the context of follow-up studies. However, RL method was used as RL 

is widely accepted as a tool to understand the goal-directed behavior of real 

organisms (including six-legged insects) that learn and interact with their 

environment in real time. Thus the objective of RL is to select actions so as to 

maximize their long-term rewards [34]. Regarding the methods to describe the 

complexity of the terrain, no similar method to describe the complexity of terrain 

with respect to the hexapod geometry has been introduced before. In the past, 

methods for describing obstacles in a terrain were only mentioned [30]. Not only 

does our approach allow for the description of the complexity of a terrain, it also 

provides description of the size of the obstacle with respect to LW [2, 23]. Thus, 

the proposed method may complement existing methods designed for trajectory 

planning [5-8]. 

Conclusions 

The proposed techniques for describing complexity of a terrain and hexapod's 

decisions in the terrain were described tested, and verified in the article. In order 

to meet the demands for quantitative description of the terrain, the method 

describing lengths (horizontal sizes) of the obstacles in the direction of the 

hexapod´s movement was designed. The technique for decision making process of 

hexapod based on RL selects the most suitable action for each state to overcome 

the longest (i.e. maximum) distance in the terrain which includes obstacles. The 

methods for the study of the decision making process of hexapods, as well as for 

the simulation of six-legged walking as well as describing terrains with obstacles 

may find application in bioengineering, robotics, military systems and other 

related fields. 
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In future works, the problem of vertical size of obstacles in terrain and the 

problem of accelerated motion in terms of its dynamics will be studied. The 

proposed methods rely on the movement of most insects since they move slowly, 

and the problem of vertical size of obstacles has been partially solved in [22]. 

However, vertical movement of the legs is determined exclusively by the height of 

the obstacles in direction of walking [30] and does not affect the actions (i.e. the 

strategy of leg coordination of hexapod and the transition from current-state to 

future-state) determined by the methods described in this article.  

Acknowledgement 

This work was done in the framework of CTU project SGS15/107/OHK4/1T/17. 

The authors would like to thank Andrej Madoran, BA, for the translation of this 

work.  

References 

[1] Barfoot T., Earon E., D’Eleuterio G.: Experiments in Learning Distributed 

Control for a Hexapod Robot, Robotics and Autonomous Systems, Vol. 54, 

2006, 864-872 

[2] Barfoot T., Earon E., D’Eleuterio G.: A Step in the Right Direction – 

Learning Hexapod Gaits through Reinforcement, Proceedings of the 

International Symposium on Robotics (ISR), Quebec, Montreal, 2000; pp. 

487-492 

[3] Parker G.B., Mills J.W.: Metachronal Wave Gait Generation for Hexapod 

Robots, Proceedings of the World Automation Congress (WAC), USA, 

Anchorage, 1998; pp. 365-370 

[4] Youcef Z., Pierre C.: Control of the Trajectory of a Hexapod Robot based 

on Distributed Q-learning, Proceedings of the IEEE International 

Symposium on Industrial Electronics (ISIE), France, Ajaccio, 2004; pp. 

277-282 

[5]  Touzet C.: Q-learning for Robots, The Handbook of Brain Theory and 

Neural Networks, Cambridge: MIT Press, 2003; pp. 934-937 

[6] Khriji L., Touati F., Benhmed K., Al-Yahmedi A.: Mobile Robot 

Navigation based on Q-Learning Technique, International Journal of 

Advanced Robotic Systems, 2011; Vol. 8, pp. 45-51 

[7] Porta J., Celaya E.: Efficient Gait Generation using Reinforcement 

learning, Proceedings of the 4
th

 International Conference on Climbing and 

Walking Robots (CLAWAR), Germany, Karlsruhe, 2001; pp. 411-418 

[8] Zeidan B.; Sakyasingha Dasgupta S., Wörgötter F., Manoonpong P.: 

Adaptive Landmark-based Navigation System Using Learning Techniques, 

Lecture Notes in Computer Science, 8575: 121-131 



Acta Polytechnica Hungarica Vol. 13, No. 4, 2016 

 – 155 – 

[9] Porta J.: Rho-LEARNING: A Robotics-oriented Reinforcement Learning 

Algorithm, Technical Report IRI-DT-00-03, Institut de Robotica i 

Informatica Industrial, Barcelona, 2000 

[10] Espenschied K.S., Quinn R.D., Chiel H.J., Beer R.D.: Leg Coordination 

Mechanisms in Stick Insect Applied to Hexapod Robot Locomotion, 

Adaptive Behaviour, Vol. 1, 1993, pp. 455-468 

[11] Porta J., Celaya E.: Walking in Unstructured Natural Environments, 

Proceedings of the European Workshop on Hazardous Robotics (HEROS), 

Spain, Barcelona, 1996; pp. 99-107 

[12] Aparna K., Geeta S.: Insect Inspired Hexapod Robot for Terrain 

Navigation, Journal of Research in Engineering and Technology, Vol. 2, 

2013, pp. 63-69 

[13] Tedeschi F., Carbone G.: Design Issues for Hexapod Walking Robots, 

Robotics, Vol. 3, No. 2, 2014, pp. 181-206 

[14]  Juang C., Chang Y., Hsiao C.: Evolving Gaits of a Hexapod Robot by 

Recurrent Neural Networks with Symbiotic Species-based Particle Swarm 

Optimization, IEEE Transactions on Industrial Electronics, 2011; 58: 3110-

3119 

[15]  Belter D., Skrzypczynski P.: A Biologically Inspired Approach to Feasible 

Gait Learning for a Hexapod Robot, International Journal of Applied 

Mathematics and Computer Science, 2010; Vol. 20, pp. 69-84 

[16]  Goldschmidt D., Wörgötter F., Manoonpong P.: Biologically-inspired 

Adaptive Obstacle Negotiation Behavior of Hexapod Robots, Frontiers in 

Neurorobotics, Vol. 8, 2014, pp 1-16 

[17]  Irodova M., Sloan R.: Reinforcement Learning and Function 

Approximation, Proceedings of the Eighteenth International Florida 

Artificial Intelligence Research Society Conference (FLAIRS 05), USA, 

Clearwater Beach, 2005; pp. 455-460 

[18] Sutton R.S., Barto A.G.: Reinforcement Learning: An Introduction, 

Cambridge: MIT Press, 1998 

[19]  Kutilek P., Kacer J.: The Locomotion Control of the Concyclically Walking 

Carriage, Cybernetics Letters, Vol. 3, No. 1, 2005, p. 8 

[20] Hrdlicka I., Kutilek P.: Reinforcement Learning in Control Systems for 

Walking Hexapod Robots, Cybernetics Letters, Vol. 3, No. 1, 2005, p. 13 

[21] Belter D., Skrzypczynski P.: Integrated Motion Planning for a Hexapod 

Robot Walking on Rough Terrain, Proceedings of the 18
th

 World Congress 

of the International Federation of Automatic Control (IFAC 2011), Italy, 

Milano, 2011; pp. 6918-6923 



V. Socha et al. Decision Making Process of Hexapods in Models of Complex Terrains 

 – 156 – 

[22] Hauser K., Bretl T., Latombe J. C., Harada K., Wilcox B.: Motion Planning 

for Legged Robots on Varied Terrain, International Journal of Robotics 

Research, Vol. 27, 2008, pp. 1325-1349 

[23] Görner M., Chilian A., Hirschmüller H.: Towards an Autonomous Walking 

Robot for Planetary Surfaces, Proceedings of the 10
th

 International 

Symposium on Artificial Intelligence, Robotics and Automation in Space 

(i-SAIRAS 2010), Japan, Sapporo, 2010; pp. 170-177 

[24]  Rebula J. R., Neuhaus P. D., Bonnlander B. V., Johnson M. J., Pratt J. E.: A 

Controller for the LittleDog Quadruped Walking on Rough Terrain, 

Proceedings of the 2007 IEEE International Conference on Robotics and 

Automation (ICRA 2007), Italy, Rome, 2007; pp. 1467-1473 

[25]  Palis F., Rusin V., Schmucker U., Schneider A., Zavgorodniy Y.: Walking 

Robot with Articulated Body and Force Controlled Legs, Proceedings of 

the Research on Adaptive Motion in Animals and Machines (AMAM 

2005), Germany, Ilmenau, 2005; pp. 1-6 

[26] Pettersson L.: Terrain Analysis as a Design Tool for Autonomous Vehicles 

in Difficult Terrain, Proceedings of the Second NordDesign, Sweden, 

Stockholm, 1998; pp. 1-10 

[27] Celaya E., Porta J.: Force-based Control of a Six-legged Robot on Abrupt 

Terrain using the Subsumption Architecture, Proceedings of the 

International Conference on Advanced Robotics (ICAR '95), Spain, Sant 

Feliu de Guixols, 1995; pp. 413-419 

[28] Kianercy A., Galstyan A.: Dynamics of Boltzmann Q-learning in Two-

Player Two-Action Games, Physical Review E, Vol. 85, No. 4, 2012, pp. 1-

10 

[29] Angelov P., Sadeghi-Tehran P., Ramezani R.: An Approach to Automatic 

Real-Time Novelty Detection, Object Identification, and Tracking in Video 

Streams based on Recursive Density Estimation and Evolving Takagi-

Sugeno Fuzzy Systems, International Journal of Intelligent Systems, Vol. 

26, No. 3, 2011, pp. 189-205 

[30] Kesper P., Grinke E., Hesse F., Wörgötter F., Manoonpong P.: 

Obstacle/Gap Detection and Terrain Classification of Walking Robots 

based on a 2D Laser Range Finder, Proceedings of the 16
th

 International 

Conference on Climbing and Walking Robots and the Support 

Technologies for Mobile Machines (CLAWAR 2013), Australia, Sydney, 

2013, pp. 419-426 

[31] Precup R., Dragos C., Preitl S., Radac M., Petriu E.: Novel Tensor Product 

Models for Automatic Transmission System Control, IEEE Systems 

Journal, Vol. 6, No. 3, 2012, pp. 488-498 



Acta Polytechnica Hungarica Vol. 13, No. 4, 2016 

 – 157 – 

[32] Khmelev A., Kochetov Y.: A Hybrid Local Search for the Split Delivery 

Vehicle Routing Problem, International Journal of Artificial Intelligence, 

Vol. 13, No. 1, 2015, pp. 147-164 

[33] Chen C. H., Chung C. C., Chao F., Rudas I. J., Intelligent Robust Control 

for Uncertain Nonlinear Multivariable Systems using Recurrent Cerebellar 

Model Neural Networks, Acta Polytechnica Hungarica, Vol. 12, No. 5, 

2015, pp. 7-33 

[34] Ludvig E. A.: Reinforcement Learning in Animals, The Encyclopedia of 

the Sciences of Learning, New York: Springer, 2012, pp. 2799-2802 


