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Abstract: Within economic literature random outcomes can be characterized by their 

certainty equivalents. In this article, a general approach for their extension is first outlined 

and then special cases are shown. The two most simple of these cases result in the classical 

formula of certainty equivalent, and by increasing the degree of the approximating Taylor 

polynomials, more advanced formulas are derived. Additionally, a simple advanced 

formula is compared favorably to the classical approach in a computer study and some 

application models are discussed to illustrate the methodology. 
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1 Introduction 

In practical decision making problems we often face random elements due to 

modeling, natural and economic factors. In constructing mathematical models 

certain elements are neglected in order to keep the model solvable. The natural 

and economic components are usually uncertain due to the lack of relevant data 

and prediction errors. Uncertainty in mathematical models is usually formulated 

with fuzzy or stochastic methodology, where the uncertain quantities are 

considered fuzzy numbers with appropriate membership functions or as random 

variables with certain probability density functions which are only estimated so 

there is no way to construct theoretically correct function forms. The fuzzy 

methodology constructs a fuzzy number as the solution, which is then defuzzified, 

for which several alternative methods are available [6, 1]. If stochastic 

methodology is chosen, then stochastic programming [5, 11] is a very popular 

approach. In order to decrease uncertainty, the variances of the objective functions 

are minimized in addition to optimizing the expected values of the objectives 

leading to multi-objective optimization problems [13, 10]. Data analytical 

methods also can be used to reduce variances [7]. Bayesian methodology [3] is 
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based on the repeated updating of the probability distributions using new sample 

elements. In the economic literature very often certainty equivalents are 

introduced and optimized instead of random objectives [12]. They are linear 

combinations of expectations and variances, which is the same as applying the 

weighting method. 

There are many applications of the stochastic methodology including extractibility 

of natural resources [2], groundwater management [4], emission allowance prices 

[9], reliability engineering [8]. The many application fields show the importance 

of this methodology. 

In this paper an alternative approach is introduced, which can replace the certainty 

equivalent and provides more accurate solutions. The authors of this paper could 

not find any earlier work deriving more advanced solutions and relating them to 

the root locus method. After the theoretical issues are discussed, a comparison 

study is reported and some particular models are described to illustrate the 

methodology. The last section is devoted to conclusions and future research 

directions. 

2 The Mathematical Methodology 

Consider a random variable x  representing the value of an outcome. The 

goodness of the different values of x  is characterized by a utility function )(xu . 

Introduce the notation )(xEx   and )(Var2 x . Clearly the random outcome 

can be replaced by a deterministic value 
x , such that 

  dxxfxuxuExu )()()()(






  (2.1) 

where )(xf  is the probability density function of x . If )(xu  is strictly 

monotonic, then 
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This formula cannot be applied in most cases, since )(xf  is usually unknown. 

We can however derive an acceptable estimate of 
x  as follows. By the Taylor's 

formula 
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and 
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when )(1 xRm  and )(1 xRn  are the remainder terms. By omitting the error terms 

and taking expectation, 
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so (2.1) implies 
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where  ii xxEM )(   is the 
thi  central moment of x  and xx  

. 

Notice that (2.6) gives an 
thn  degree polynomial equation for unknown  , from 

which xx 
. In order to find the right root of (2.6) consider the root loci of 

equation 
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where K is the parameter. Each locus shows how the associated root of this 

equation varies as the value of K changes. In the deterministic case xx   with 

,0
2
  so 0K  and in this case xx 

 implying that .0  Therefore, we 

have to select the locus which passes through the origin. The value of this locus at 
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gives the value of  . 

Some special cases are presented next. 

Example 2.1 Assume 1 nm , then we have 

0))((   xxxu  (2.9) 

and if 0)(  xu , then xx 
. 

Example 2.2 Let 2m  and 1n , then equation (2.6) becomes 



S. Molnár et al. An Alternative Method in Optimizing Random Outcomes 

 – 80 – 

2)(
2

1
)( xuxu   (2.10) 

implying that 
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so 
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is the approximation of 
x  with 
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It is the well known certainty equivalent. 

Notice that this method cannot be used if .0)(' xu  

Example 2.3 Let now 2 nm , then 
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or 

.022    (2.15) 

If 02  , then there is no uncertainty, so 0  is the solution. In general, 
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and since at 02   the solution has to be x , the positive square root has to be 

considered: 
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is the approximation of 


x by the more accurate method. 

Similarly to the previous example this formula cannot be used if .0)(' xu  If 

,0  then ,0  so .2 xx 
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3 Comparison Study 

In order to compare the accuracy of formulas (2.12) and (2.17) we conducted a 

simulation study. Random variable x  was considered with four different density 

functions on ][ 1,1  as follows: 

)1(
4

3
)(and)1(

2

1
)(),1(

2

1
)(,

2

1
)(

2

4321 xxfxxfxxfxf   

where )(1 xf  is constant, )(2 xf  is increasing, )(3 xf  is decreasing and )(4 xf  

is mound-shaped. Four different utility functions were chosen, 
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where )(1 xu  is convex, )(2 xu  is concave, )(3 xu  is convex for 0x  and 

concave for 0x , and )(4 xu  is convex for 0x  and concave for 0x . So a 

large variety of density and utility function types were considered, and 4416   

cases examined. In each case the true value of 
x  was determined based on 

equation (2.2), since both )(xu  and )(xf  were known for all cases. Table 1 

shows the results. The first and second columns specify the density and utility 

functions, the third column shows the true value of 
x . The fourth column gives 

the results based on (2.12) where x  and 
2

  are computed based on the given 

density functions. The sixth column contains the results obtained by using (2.17). 

The fifth and seventh columns show the errors of the obtained estimates. Among 

the 16 cases we can find 10, where (2.17) gives the exact answer, in 4 cases (2.17) 

has smaller error, and in 2 cases the formulas could not be used. 

If the utility function is linear or quadratic, then with ,2 mn  

0)()( 11   xRxR nm  in equations (2.3) and (2.4), so formula (2.17) is exact. In 

the cases of densities 1f  and ,0)(,4  xxf  furthermore 
2

3 2
3

)( xxu   which 

is zero at ,0x  so formulas (2.12) and (2.17) cannot be applied. In addition 
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 with zero value at ,0x  therefore in the cases of densities 

1f  and f4, 0  implying that 021 
 xxx  from both formulas (2.12) and 

(2.17). 
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Table 1 

Simulation Results 

)(xf  )(xu  
x  



1x  
  1xx  



2x  


 2xx  

2
1

1 f  

2

4
1

1 )1()(  xxu  0.1547 0.1667 -0.0120 0.1547 0 

2

4
1

2 )1(1)(  xxu  -0.1547 -0.1667 0.0120 -0.1547 0 

)1()(
3

2
1

3 xxu   0 N/A N/A N/A N/A 

)()( 2
2
1

4
xxu arctan


  0 0 0 0 0 

)1(2
1

2  xf  

2

4
1

1 )1()(  xxu  0.4142 0.4146 -0.0004 0.4142 0 

2

4
1

2 )1(1)(  xxu  0.1835 0.1667 0.0168 0.1835 0 

)1()(
3

2
1

3 xxu   0.5848 1.000 -0.4152 0.6667 -0.0819 

)()( 2
2
1

4
xxu arctan


  0.2943 0.2667 0.0267 0.2679 0.0255 

)1(2
1

3 xf   

2

4
1

1 )1()(  xxu  -0.1835 -0.1667 -0.0168 -0.1835 0 

2

4
1

2 )1(1)(  xxu  -0.4142 -0.4167 0.0025 -0.4142 0 

)1()(
3

2
1

3 xxu   -0.5848 -1.000 0.4152 -0.6667 0.0819 

)()( 2
2
1

4
xxu arctan


  -0.2943 -0.2667 -0.0267 -0.2679 -0.0255 

)1(
2

4
3
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2

4
1

1 )1()(  xxu  0.0954 0.1000 -0.9046 0.0954 0 

2

4
1

2 )1(1)(  xxu  -0.0954 0.1000 0.0046 -0.0954 0 

)1()(
3

2
1

3 xxu   0 N/A N/A N/A N/A 

)()( 2
2
1

4
xxu arctan


  0 0 0 0 0 

4 Applications 

In this section some application models are introduced. 

Model 4.1 (Budget allocation) An investment firm with budget B  has n  

investment opportunities, where opportunity k  gives profit k  per each invested 

dollar with kkE  )(  and 
2

)(Var kk   . If the profits are independent, then 
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the expectation and variance of the profit kk
k

n
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where kx  gives the allocated investment in opportunity k. 

By assuming the utility function 
2)(  u  we have  2)( u  and 

2)(  u  showing that 
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so the firm solves the quadratic programming problem maximizing 
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Model 4.2 (Oligopoly #  1) Consider an n -firm single product oligopoly without 

product differentiation. Let kx  be the output of firm k , )( kk xc  its cost function. 

The industry output is k
k

n

xx
1

 , and the corresponding unit price function is 
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)(xp . However the firms do not know the exact price function, so firm k  

believes that the price function is kk xp )( , where )(xpk  is the believed 

price function by firm k (usually different than the true price function) with a 

random error term k  resulting from market uncertainties. So firm k  believes 

that its profit is 

  ),()( kkkkkk xcxpx    (4.5) 

which is considered as the random outcome for firm k. 

By assuming that 0)( kE  , 
2

)(Var kk s , we have 

  )()( kkkkkk xcxpxE    (4.6) 

and 

.222
)(Var kkkk xs   (4.7) 

If the firms select exponential utility functions,   ,kkeu kk

   then 
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is constant for each firm, so the objective functions become 
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Notice that this is the profit function (4.5) of oligopolies without uncertainty and 

product differentiation where the modified cost functions are 
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Model 4.3 (Oligopoly #  2) Consider now an oligopoly when the firms know the 

true price function )(xp  but their costs are uncertain. Assume that because of 

uncertain prices of labor, energy and material firm k  believes that its cost 

function is kkkkkk xxxc   )()( , where )( kk x  is a known function and 

k  is a random variable with 0)( kE   and 
2)(Var kk s . Notice that k  is a 

random term in the marginal cost. The profit of firm k is its random outcome. The 

expectation and variance of the profit of firm k  is 
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and 

.)(Var 222

kkkk xs   (4.11) 

where 








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l
l

n

xp
1

 is the price function which is considered to be a public 

information for the firms. Similary to the previous case (2.17) gives the modified 

objective function of firm k : 
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If the utility functions )( kku   are exponential, then k  is a constant for all firms. 

Conclusion 

A well-known concept of the certainty equivalent is replaced by a general 

approach, which can be reduced to the certainty equivalent in a very special case. 

A simulation study showed the advantage of the new approach resulting in more 

accurate approximations. 

The methodology was illustrated on three simple models. The more accurate 

formulas are based on higher order Taylor polynomials of the utility function. 

Methods (2.12) and (2.17) are based on the adjustment constant   which depends 

on the first two derivatives of the utility function. Its special form implies two 

important facts. If ,0)(  xu  then   cannot be determined, so these methods 

cannot be used as was shown in two cases of Table 1. If ,0)(  xu  then 0  

implying that ,xx 
 which was also shown in two cases of the utility function 

)(4 xu . In our comparison study we found no case when the classical certainty 

equivalent was better than our improved formula. We expect that by selecting 

higher order Taylor polynomial approximations of the utility function the 

accuracy of the resulting formulas can be improved even further. 

Higher order formulas can be used in cases when lower order formulas cannot be 

used. 

In our future research higher order approximations (with larger values of m  and 

n ) will be used in particular applications which will be selected from broad fields 

of engineering and economics. 
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