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Abstract: The control of a process by poles placement is one of the most used forms of 

feedback control. It allows not only to stabilize a process, but also to control its dynamic. 

Furthermore, the optimal controls with quadratic criteria of linear systems in fact lead to 

the pole placement. In this work, we present an approach to the stabilization of nonlinear 

systems in presence of uncertainties using poles placement by state feedback and the 

determination of attractors by diagonalization of the characteristic matrices linearized 

around operating points and using aggregation techniques. 
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1 Introduction 

The control of complex nonlinear process appears generally difficult, particularly 

in the case of ill-defined or imprecise models and when these processes are subject 

to unidentified noises or disturbances for which the only available information is 

the amplitudes of the uncertainties resulting in the definition of the model. A great 

number of works have been presented related to this problem [1-6]. For a 

nonlinear process in continuous time, whose evolution is described by a set of 

differential equations, the most commonly used model is represented in the state 

space. 
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However, starting from a set of given differential equations, several 

representations can be used and the choice of the model can affect the accuracy of 

the expected results. 

In the presence of uncertainties in modeling, that increase the complexity of the 

stability study, it is not always possible to obtain a control law ensuring the 

stability of the process with respect to a chosen objective. It is then necessary to 

estimate the maximum deviation from this target, an operation which can be 

performed by determining an attractor corresponding to the vicinity of the purpose 

for which the local stability cannot be guaranteed [7-15]. 

Linear system stability study generally leads to necessary and sufficient conditions 

and doesn't depend, generally, on the system representation. The task is different 

for nonlinear systems with or without uncertainties, for which only sufficient 

conditions can be proposed; then the determination of their stability domains and 

attractors depends on the choice of both the description of the studied system and 

the used stability method [16-18]. 

Process control through poles placement is an usual feedback control used for 

linear systems [19]. It doesn't allow only to stabilize the studied process, but also 

imposes its dynamics. For nonlinear systems with uncertainties, the approach is 

more complex. 

In the case of large scale systems, generally described in the state space, stability 

conditions are obtained, either directly for the whole system or separately for the 

various subsystems. 

In this paper, the determination of the state feedback is based on a specific state 

space description of the linearized process and the determination of the attractor, 

when the process is submitted to uncertainties, is achieved by using aggregation 

techniques and the Borne-Gentina stability criteria, with the use of vector norms 

and of comparison systems [20-27]. 

The aim of this work is to present an approach to the study of stability of 

nonlinear systems and the estimation, by overvaluation, of the attractor. In Section 

2, we propose an attractor determination method by diagonalization of the 

linearized characteristic matrix around an operating point when the control law is 

achieved by poles placement and by the use of the aggregation technique for 

stability study. The determination of attractor for a third order nonlinear complex 

system is presented, in Section 3, to illustrate the efficiency of the proposed 

approach. 
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2 Proposed Attractor Determination Method 

In this section the poles placement is determined on a linearized model of the 

initial system without uncertainties. 

2.1 Determination of State Feedback Gain L 

Let us consider the system (S) described by 

( ) (.) ( ) (.) ( ) (.)x t A x t B u t B  
                                                                            

(1) 

with 
n nA R  , 

nB R , nx R , u R  and ' nB R characterizing the influence 

of uncertainties. 

By linearization of the system (1) without uncertainties, around the operating 

point 0x , it comes the correspondent linearized model (2) 

( ) (0) ( ) (0) ( )x t A x t B u t 
                                                                                     

(2) 

assumed to be controllable. 

The state feedback control law of (2) is defined in the form 

( )    ( )u t Lx t 
                                                                                                   

(3) 

such that 

0 1 1 , n
nL l l l L R

                                                                                 
(4) 

Note cP the matrix of change of base such that 

c cx = P x                                                                                                                  (5) 

which enables to describe the linearized system (1) without uncertainties in the 

controllable canonical form 

( ) ( ) ( )c c c cx t =A x t B u t
                                                                                          

(6) 

with cx  the new state vector of the process, 
1

c c cA P AP  and 
1

c cB P B . 

After substituing (3) in (1), it comes for the process without uncertainties 

( ) ( ) ( )c c c c cx t A x t B Lx t 
                                                                                     

(7) 

or 

1 1
c c c c c c cx P AP x P BLP x  

                                                                                  
(8) 

then 
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( ) ( )c c cx t H x t
                                                                                                     

(9) 

with 

c c c cH = A  -B L
                                                                                                      

(10) 

and 

c cLP  = L                                                                                                               (11) 

such that 

0 1 1nc c c cL l l l


   
                                                                                   

(12) 

cL is the state feedback gain in the controllable base in which , the matrices 

cA and cB are written in the canonical controllable form. The characteristic 

polynomial of matrix A , P ( )A . 

1
1 0P ( ) det( )   n n

A nI A a a
                                                         (13) 

is invariant by change of base. Then, we have P ( ) P ( ) 
cA A . 

The matrix cA , being in the companion canonical form, we can easily calculate 

the characteristic polynomial of the closed loop system characteristic matrix, 

noted P ( )
cH , 

P ( ) det( ( )) 
cH c c cI A B L  

                                                                           
(14)

 

By the choice of cL , we can impose the coefficients of the characteristic 

polynomial such that 

1 2
1 2 1 0

P ( ) P ( )
cH A BL

n n
n

 

       








     
                                                   (15) 

This enables to impose the poles of the system, poles we choose real and distinct. 

Once cL determined, a simple calculation of 
1

c cL L P allows to determine the 

state feedback into the initial base. 

It comes for the closed loop initial model the characteristic matrix 

( ) ( ( ) - ( ) )H x   A x   B x L
                                                                                   

(16) 

the linearised closed loop system is described as following 

( ) (0) ( )x t H x t
                                                                                                   

(17) 
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with 

(0) (0) (0)H  = A  - B L
                                                                                          

(18) 

A suitable choice of the gain vector L enables to make the poles, of this linear 

closed loop system, real and distinct. 

In practice, a first determination of the attractor can be achieved directly on the 

initial representation. Another one obtained by the use of the change of basis, 

which diagonalizes the linearized system at the origin, can lead to different and, 

very often, better results. With this change of base, the representation of the initial 

nonlinear system is generally diagonal dominant in the neighborhoods of the 

origin which enables, with a convenient definition of the comparison system, a 

better estimation of the attractor. 

Let now P be the change of variables which diagonalizes the linearized closed 

loop model characterized by (0)H . 

It comes, the corresponding diagonal characteristic matrix (0)dH such that 

1(0) (0)dH P H P
                                                                                            

(19)
 

By using the new state vector dx , 1 2, ,
T

d d d d nx x x x    , such that 

( ) ( )dx t Px t
                                                                                                       

(20) 

'
dB , characterizing the uncertainty in the new base, is defined by 

' 1
dB P B                                                                                                            (21) 

it comes for the initial non linear system 

'( ) (.) ( ) (.)d d d dx t H x t B 
                                                                                  

(22) 

where  (.)
ijd dH a  is defined by 

1(.) (.)dH P H P
                                                                                               

(23) 

After applying the change of base allowing to diagonalize the linearized system to 

the initial one's (1), we propose, in this paper, to study the stability and to 

determine the attractor of the initial system, controlled by the same state feedback 

law (3). 
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2.2 Proposed Attractor Determination 

For the vector norm 1 2( ) , ,
T

d d d d np x x x x    (Appendix A), the overvaluing 

system of the perturbed system is described by [13]. 

( ) (.) ( ) (.)d d

d
p x M p x N

dt
 

                                                                             
(24) 

where ,( (.)) { (.)}d i jM H m  is obtained by replacing the off-diagonal elements of 

( )dH x  by their  absolute values such as 

,

,

,

,

(.) (.) 1,2,

(.) (.)

i i

i j

i i d

i j d

m a i n

m a i j

   



  

                                                                         (25) 

and (.)N  defined by 

'(.) (.)dN B
                                                                                                       

(26) 

With max (.)M M  and max (.)N N , it comes the linear comparison system 

z Mz N                                                                                                            (27) 

such that 

0 0 0( ) ( ( )) implies ( ) ( ( )),d dz t p x t z t p x t t t    

If M is the opposite of an M-matrix, we can have an estimation by overvaluation 

of the attractor defined by 

1( ( ))dp x t M N 
                                                                                              

(28) 

or 

1 1( ( ))p P x t M N  
                                                                                          

(29) 

Then, we have 

1lim ( )
t

z t M N


 

                                                                                             
(30)

 

and 

1lim ( ( ))d
t

p x t M N


 

                                                                                     
(31) 

It comes the attractor 1D of system (22) defined by 

  1
1 ; ( )n

d dD x R p x M N   
                                                                       

(32) 
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In the domain 1D , according to the limitations that appear on the state variables, it 

is possible to the choose a new nonlinear model which enables to determine a 

better estimation of the attractor as it appears in the application of Section 3 

3 Attractor Characterization of a Third Order 

Nonlinear Complex System 

Let us consider the third order system (S) described by 

(S) : ( ) ( , ) ( ) ( , ) ( ) (.)x t A x t x t B x t u t B  
                                                           

(33) 

with 

          
11 12 13

21 22 23

31 32 33

( )

a a a

a a ax

a

A

a a

t

 
 

  
  

                                                                        

(34) 

2
2

11

12

13

21 1 3

22 3

23 3

31 1

32

33 1

7

2.9 0.1

5

0.1sin 6cos

1.05 2.05cos

5 3cos

12 0.1sin

0

2 0.02sin

x

a

a e

a

a x x

a x

a x

a x

a

a x





  

 

 

 

 

  



  

 

and 

3

2

( ( )) cos

2

B x t x

 
 

 
 
                                                                                               

(35)  

2
2

1
'

2

0.2sat

( ) (.)

0.1
x

x

B x b

e

 
 

  
 
  

                                                                                           (36) 

such that 

  
2

sat , if 1, else, sat sign ,

and, | (.) | 0.15

i i i i ix x x x x

b

  

                                                           
(37) 
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By linearization of the system without uncertainties, around the operating point 

0 0x  , we obtain the linear model characterized by the following (0)A and (0)B  

7 3 5

(0) 6 1 2

12 0 2

A

  
 

 
 
                                                                                           

(38) 

and 

2

(0) 1

2

B

 
 

 
 
  

                                                                                                         (39) 

Then, by putting the linearized system in controllable canonical form, it comes 

c c c cx A x B u 
                                                                                                   

(40) 

The characteristic polynomial of the linearized system can be written as 

3 2det( (0)) 4 61 110I A       
                                                                

(41) 

and we have 

0 1 0 0

0 0 1 ; 0

110 61 4 1

c cA B

   
   

 
   
      

                                                                          (42) 

In order to impose a choosen dynamic to the process, the state feedback gain L, of 

system (17) with (18), (39) and (40),  is chosen such that the poles of the closed 

loop characteristic (0) (0)P ( )A B L  are (-3), (-4) and  (-5), i.e the characteristic 

polynomial: 

(0) (0)

3 2

P ( ) ( 3)( 4)( 5)

12 47 60

A B L    

  

    

                                                                     

(43) 

corresponding to the following characteristic  matrix cH  

0 1 0

0 0 1

60 47 12

 
 
 
                                                                                                        

(44) 

The state feedback gain have to satisfy the following conditions 

 
1 2 3

170 108 16 c c c c cu x l l l x   
                                                         

(45) 
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Given that we have 
-1

c cL L P , it comes the control vector gain 

 6 2 3L  
                                                                                                    

(46) 

and the matrix of the closed loop system without uncertainties linearized at the 

origin (0)H
 

5 1 1

(0) 0 1 5

0 4 8

H

 
 


 
                                                                                            

(47) 

which becomes diagonal for the change of base P defined by 

0.125 0 0.625

1.25 0.75 0

1 0.75 0

P

 
 


 
                                                                                 

(48) 

In this case, the initial system defined by (33) with (34) and (35), controlled by the 

control law (3) with (47), can be described by ( ) ( ( ) ( ) )x   x   x L     such 

that 

11 12 13

21 22 23

31 32 33

( ( ))

h h h

H x t h h h

h h h

 
 

  
  

                                                                                 (49) 

with 

11 5h  

 

2
2

12 1.1 0.1
x

h e


   

13 1h   

21 10.1sinh x  

22 31.05 0.05cosh x   

23 5h   

31 10.1sinh x   

32 4h    

33 10.02sin 8h x   

Let us try to determine directly an attractor estimation 1D  of the initial model. 
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If the comparison system of the process is in the form (27), according to (49), the 

minimal overvaluing matrix relatively to the regular vector 

norm 1 2 3( ) , ,
T

p x x x x    is 

11 12 13

21 22 23

31 32 33

( ( ( )))

h h h

h h h

h h h

M H x t

 
 

  
 
                                                                         

(50) 

and 
'( )N B is 

'

0.2

( ) 0.15

0.1

N B

 
 


 
                                                                                                       

(51) 

In this case, the comparison system can be described by 

5 1.1 1 0.2

12.1 1.1 5 0.15

0.1 4 7.98 0.1

z z

   
   

 
   
                                                                               

(52) 

For this comparison system, the matrix M is not the opposite of an M-matrix 

because of one of the diagonal elements is positive. Then we cannot conclude 

concerning the determination of an attractor. 

By the use of change of variables P, ( )dH x becomes such that 

11 12 13

21 22 23

31 32 33

( ( ))

d d d

d d d d

d d d

h h h

h h h

h h

t

h

H x

 
 

  
                                                                             

(53) 

with 

2
2

2
2

11 3 1

12 3 1

13

21 3 1

22 3 1

23 1

31 3 1

32

0.25cos 0.08sin 2.75

0.15cos 0.06sin 0.15

0

0.33cos 0.15sin 0.333

0.2cos 0.1sin 4.2

0.0833sin

0.2 0.05cos 0.016sin 0.15

0.12 0.03cos

d

d

d

d

d

d

x
d

x
d

x x

x x

h x x

x x

x

h

h

h

h

h

e x

h

h x

e





   

   



  

  

 

   

  3 1

33

0.012sin 0.09

5d

x x

h

 

 
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The comparison system of the process, corresponding to the vector norm 

1 2 3( ) , ,
T

d d d dp x x x x    , is in the form (27), with 

1 '

1

max | (.) | 1.4667

0.733

N P B

 
 

 
 
                                                                              

(55) 

According to (49), the minimal overvaluing matrice relatively to the regular vector 

norm is the following 

2.42 0.36 0

0.813 3.9 0.0833

0.216 0.132 5

1

and 1.4667

0.733

M

N

 
 

 
 
  

 
 


 
  

                                                                           

(56) 

It is trivial that the following conditions 

2.42 0

( 2.42 3.9) (0.813 0.36) 0

det( ) 0M

 

    

                                                                      

(57) 

are satisfied,  M is then the opposite of an M-matrix  (Appendix B), 

and we have 

1lim ( )
t

z t M N


 

                                                                                             
(58) 

and 

1lim ( ( ))d
t

p x t M N


 

                                                                                     
(59) 

It comes an estimation, by overvaluation, of the attractor defined by 
1( ( ))dp x t M N  , or 

0.4848

( ( )) 0.4810

0.1802

dp x t

 
 


 
                                                                                               

(60) 

The attractor 1D is finally defined by 
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2 3

2 3

1 2 3

4 4 0.4848

5.333 6.6667 0.4810

1.6 0.8 0.8 0.1802

x x

x x

x x x

  

  

                                                                           

(61) 

In 1D we have 1 0.1732x  , 2 30.9643 and 0.8431x x   

A new description of the system (S) can be defined, in 1D  

As 1 0.1732x   it comes, 1 1sat x x , then this value can be introduced in the 

definition of ( ( ))H x t  

Hence the description 

2
2

1 3

1 1

5.2 1.1 0.1 1

( ( )) 0.1sin 1.05 0.05cos 5

0.1sin 4 0.02sin 8

x
e

H x t x x

x x

  
 

  
 
 
 




                                (62) 

and 

2
2

'
2

0

( ) (.)

0.1
x

B x b

e

 
 

  
 
                                                                                                   

(63) 

By the use of change of variables P, ( )dH x becomes such that 

' ' '

' '

11 12 1

'

' '

3

21 22 23

31 2
'

3 33

( ( ))

d d d

d d d d

d d d

h h h

H x h h h

h h h

t

 
 

  
 
                                                                             

(64) 

with 

2
2

2
2

11 3 1

12 3 1

13

21 3 1

22 3 1

23 1

3

'

'

'

'

'

'

'
1 3 1

3
'

2
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0
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0.0833sin
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d
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

   

   
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  

  

 

   

 3 1

33
'

0.03cos 0.012sin 0.09

5.2dh

x x  

 
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the comparison system corresponding to the vector 

1 2 3( ) , ,
T

d d d dp x x x x    , is in the form (26), with 

1 '

1

max | (.) | 1.4667

0.2

N P B

 
 

 
 
                                                                              

(65) 

Then, in 1D , the comparison system of the process is on the form (27). According 

to (64), the minimal overvaluing matrices relatively to the regular vector norm are 

the followings 

2.9025 0.0605 0

0.1393 3.9828 0.0144

0.0897 0.0783 5.2

1

and 1.4667

0.2

M

N

 
 

 
 
  

 
 


 
  

                                                                  

(66) 

As the following conditions 

2.9025 0

( 2.9025 3.9828) (0.1393 0.0605) 0

det( ) 0M

 

    

                                                      

(67) 

are satisfied, M  is, then, the opposite of an M-matrix. 

It comes an estimation, by overvaluation, of the attractor defined by 
1( ( ))dp x t M N   

or 

0.3525

( ( )) 0.3808

0.0503

dp x t

 
 


 
                                                                                               

(68) 

The attractor 2D is finally defined by 

2 3

2 3

1 2 3

4 4 0.3525

5.333 6.6667 0.3808

1.6 0.8 0.8 0.0503

x x

x x

x x x

  

  

                                                                           

(69) 
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The obtained attractors 1D and 2D  are given in the Figure 1, for which a trajectory 

in the state space is simulated for 2 (.) 0.15sinb t  . 
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Figure 1 

Evolution of the state vector towards the attractors 1D and 2D  (in bold) 

Conclusion 

An efficient technique for determination of attractors characterizing the precision 

of a control law is defined in this paper using the concept of vector norm, 

associated to the definition of comparison systems obtained by the use of the 

Borne and Gentina stability approach. The proposed approach for determination of 

the control law by state or output feedback in presence of uncertainties is based on 

a local linearization and control of the system. Process control through poles 

placement of the linearized system is used in the feedback control. This method 

enables to test the accuracy of a controlled system by providing an estimation by 

overvaluation of the error. The proposed method is applied with success for a third 

order nonlinear complex system to illustrate the efficiency of the proposed 

approach. 

Appendices 

Appendix A. Vector Norms Definition 

Definition1: Let nE R and k1 2E , E E  be subspaces of the space 

1 2 kE, E E E E 
  

Let x be an n vector defined on E and i ix Px  the projection of x on Ei , 

where iP is a projection operator from E into Ei, ip a scalar norm (i=1,2,…, k) 

defined on the subspace Ei and p denotes a vector norm of dimension k and with 

its component 

   i i ip x p x  ,   ( ): n kp x R R+®
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Let y be another vector in space E, with i iy yP , we  have the following properties 

 

 

 

     

   

i

i

0, E 1,2, ,k

0 0, 1,2, ,k

, , E 1,2, ,k

, 1,2, ,k,

i i i

i i i

i i i i i i i i i

i i i i i

p x x i

p x x i

p x y p x p y x y i

p x p x x i R











     

     

       

      λ λ λ
 

If k-1 of the subspaces Ei  are insufficient to define the whole space E , the vector 

norm is surjective. 

If in addition the subspaces Ei are in disjoint pairs, E Ei j  , 

1,2, ,ki j    , the vector norm p  

is said to be regular. 

Appendix B. Overvaluing and comparison systems 

Let the differential equation ( , )x A x t x . The overvaluing system is defined by 

the use of the vector norm ( )p x of the state vector x and the use of the right-band 

derivation ( ) i iD p x
proposed by [28, 29] ( ) i iD p x

is taken along the motion of x 

in the subspace Ei  and ( ) D p x
along the motion of x in E. 

Definition 2: The matrix ( )M x,t defines an overvaluing system of S with respect 

to the vector norm p if and only if the following inequality is verified for each 

corresponding component: ( ) ( )D p(x ) M x,t  p x   

If for the same system we can define a constant overvaluing matrix M, we have 

( , )M M x t  and we have ( ) ( ( ))z t p x t  for 0t t  as soon as this property is 

satisfied at the origin 0t  

When an overvaluing matrix ( , )M x t  of a matrix ( , )A x t is defined with respect to 

a regular vector norm p we have the following properties: 

- The off- diagonal elements of matrix ( , )M x t  are non negative. 

- If we denote by Re( )M  the real part of the eigenvalue of the maximum 

real part of ( , )M x t  the following inequality is verified 

 Re( ) Re( ) , n
A M M t x        ,  

whatever the eigenvalue  A  of matrix ( , )A x t  
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- When all the real parts of the eigenvalues of M (x, t) are negative this 

matrix is the opposite of an M-matrix and it admits an inverse whose 

elements are all non positive. 

- When due to perturbations and/or  uncertainties it is not possible to define 

an homogeneous overvaluing system we can define a non homogeneous 

overvaluing system of the form  ( ) ( ) ( )D p(x ) M x,t  p x N x,t   , where 

all the elements of vector norm nonnegative and when M and N are 

constant,  we can define the comparison system z Mz N   

Remark 1. With  (.) (.)ijM m the verification of the Kotelyanski lemma by the 

matrix (.)M  prove that (.)M  is the opposite of an M-matrix 

1,1 1,2 1,

1,1 1,2 2,1 2,2 2,

1,1
2,1 2,2

,1 ,2 ,

0, 0, , ( 1) 0

k

kk

k k k k

m m m

m m m m m
m

m m

m m m


 

Remark 2. A less conservative approach consists to use a vector norm of size k=n, 

for example 1 2( ) , , ,
T

np x x x x     

Remark 3. If (.)M  is an overvaluing matrix of a matrix (.)A , 
*(.)M M  where 

the elements of 
*M  are all non negative is also an overvaluing matrix of (.)A . 

This property can be used to simplify the determination of an overvaluing matrix 

of (.)A  when some elements of (.)A  are ill defined or subject to uncertainties. 

References 

[1] G. Bartolini, A. Pisano, and E. Usai: Global Stabilization for Nonlinear 

Uncertain Systems with Unmodeled Actuator Dynamics, IEEE 

Transactions on Automatic Control, Vol. 46(11), pp. 1826-1832, 2001 

[2] M. B. Radac, R. E. Precup, E. M. Petriu and S. Preitl: Experiment-based 

Performance Improvement of State Feedback Control Systems for Single 

Input Processes. Acta Polytechnica Hungarica, Vol. 10(3), pp. 5-24, 2013 

[3] J. K. Huusom, N. K. Poulsen and  S. B. Jorgensen: Iterative Feedback 

Tuning of Uncertain State Space Systems. Brazilian Journal of Chemical 

Engineering, Vol. 27(3), pp. 461-472, 2010 

[4] Y. Xia, P. Shi, G.P. Liu, D. Rees, J. Han: Active Disturbance Rejection 

Control for uncertain multivariable Systems with Time-Delay, IET Control 

Theory and Applications, Vol. 1(1), pp. 75-81, 2007 



Acta Polytechnica Hungarica Vol. 13, No. 4, 2016 

 – 37 – 

[5] H. Wu: Adaptive Stabilizing State Feedback Controllers of Uncertain 

Dynamical Systems with Multiple Time Delays, IEEE Transactions on 

Automatic Control, Vol. 45, No. 9, pp. 1697-1701, 2000 

[6] N. Luo, M. de la Sen: State Feedback Sliding Mode Control of a Class of 

Uncertain Time Delay Systems, IEE Proceedings D- Control Theory and 

Applications, Vol. 140(4), pp. 261-274, 1993 

[7] J. C. Gentina, P. Borne and F. Laurent: Stabilité des systèmes continus non 

linéaires de   grande dimension.  RAIRO, Aôut, pp. 69-77, 1972 

[8] L. T. Grujic and D. D. Siljak: Asymptotic Stability and Instability of Large 

Scale Systems. IEEE Trans. on Auto. Control, Vol. 18(6), 1973 

[9] L. T. Grujic, J. C. Gentina and P. Borne: General Aggregation of Large 

Scale Systems by Vector Lyapunov Functions and Vector Norms, 

Inernational. Journal. of Control, Vol. 24(4), pp. 29- 550, 1976 

[10] M. Benrejeb and P. Borne: On an Algebraic Stability Criterion for Non-

Linear Process. Interpretation in the frequency domain. Measurement and 

Control International Symposium MECO, Athens, pp. 678-682, 1978 

[11] L. T. Grujic, J. C. Gentina, P. Borne C. Burgat, and J. Bernussou: Sur la 

stabilité des systèmes de grande dimension. Fonctions de Lyapunov 

vectorielles. RAIRO, Vol. 12(4), pp. 319-348, 1978 

[12] J. C. Gentina, P. Borne C. Burgat, J. Bernussou and L. T. Grujic: Sur la 

stabilité des systèmes de grande dimension. Normes vectorielles, Vol. 

13(1), pp. 57-75, 1979 

[13] P. Borne: Nonlinear System Stability. Vector Norm Approach, System and 

Control Encyclopedia. Pergamon Press, Lille, France, 5, pp. 3402-3406, 

1987 

[14] P. Borne and M. Benrejeb: On the Representation and the Stability Study of 

Large Scale Systems. International Journal of Computers Communications 

and Control, Vol. 3(5), pp. 55-66, 2008 

[15] M. Xiaowu, W. Jumei and M. Rui: Stability of Linear Switched Differential 

Algebraic Equations with Stable and Unstable Subsystems. International 

Journal of Systems Science, Vol. 44(10), pp. 1879-1884, 2013 

[16] M. Benrejeb, P. Borne and F. Laurent: Sur une application de la 

représentation en flèche à l'analyse des processus. RAIRO Automatique, 

Vol. 16(2), pp. 133-146, 1982 

[17] M. Benrejeb and  M. Gasmi: On the Use of an Arrow form Matrix for 

Modeling and Stability Analysis of Singularly Perturbed Non-Linear 

Systems. Systems Analysis Modelling and Simulation, Vol. 40(4): pp. 509, 

2001 



A. Gharbi et al. Study of the Stabilization of Uncertain Nonlinear Systems Controlled by State Feedback 

 – 38 – 

[18] M. Benrejeb: Stability Study of Two Level Hierarchical Nonlinear 

Systems. Plenery lecture. Large Scale Complex Systems Theory and 

Applications IFAC Symposium, Lille, Vol. 9(1): pp. 30-41, 2010 

[19] P. Borne, J. P. Richard and M. Tahiri: Estimation of Attractive Domains for 

Locally Stable or Unstable Systems. Systems Analysis Modeling and 

Simulation, Vol. 78, pp. 595-610, 1990 

[20] D. D. Siljac: Stability of Large Scale Systems under Structural 

Perturbations, IEEE Trans. On Syst. Manand Cyber, Vol. 2(5), 1972 

[21] P. Borne, J. P. Richard and N. E. Radhy: Stability, Stabilization, Regulation 

using Vector Norms, Nonlinear Systems, 2. Stability and Stabilization. 

Chapman and Hall, Chapter 2, pp. 45-90, 1996 

[22] A. Gharbi, M. Benrejeb, and P. Borne: On Nested Attractors of Complex 

Continuous Systems Determination. Proceedings of the Romanian 

Academy, Series A, Vol. 14(2): pp. 259-265, 2013 

[23] A. Gharbi, P. Catalin,  M. Benrejeb and P. Borne: New Approach for the 

Control and the Determination of Attractors for Nonlinear Systems. 2
nd

 

International Conference on Systems and Computer Science (ICSCS), 

Villeneuve d'Ascq, France, August 26-27, 2013 

[24] A. Gharbi, M. Benrejeb, and P. Borne: Tracking Error Estimation of 

Uncertain Lur’e Postnikov Systems. 2
nd

 International Conference on 

Control, Decision, Metz, France, November 2, 3, 2014 

[25] A. Gharbi, M. Benrejeb, and P. Borne: Determination of Nested Attractors 

for Uncertain Nonlinear Systems, 6
th

 Multi Conference on Computational 

Engineering in Systems Application, Marrakech, Marocco, March, 24, 26, 

2015 

[26] A. Gharbi, M. Benrejeb, and P. Borne: Error Estimation in the Decoupling 

of Ill-defined and/or Perturbed Nonlinear Processes. 19
th

 International 

Conference on Circuits, Systems Communications and Computers 

(CSCC2015), Zakynthos Island, Greece, July 16-20, 2015 

[27] A. Gharbi, M. Benrejeb, and P. Borne: A Taboo Search Optimization of the 

Control Low of Nonlinear Systems with Bounded Uncertainties. 

International Journal Of Computers Communications & Control, Vol. 

11(2): pp. 158-166, 2016 

[28] M. N. Rosenbrock. A Lyapunov Function for some Naturally Accuring 

Linear, Homogeneous Time Dependent Equations. Automatica, 1963 

[29] IW. Sandeberg. Some Theorems on the Dynamic Response of Non Linear 

Transistor Network. Bell Syst. Tech. J. Vol. 48(35), 1969 


