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Abstract: 3D model reconstruction plays a very important role in computer vision as well 
as in different engineering applications. The determination of the 3D model from multiple 
images is of key importance. One of the most important difficulties in autonomous 3D 
reconstruction is the (automatic) selection of the ‘significant’ points which carry 
information about the shape of the 3D bodies i.e. are characteristic from the model point of 
view. Another problem to be solved is the point correspondence matching in different 
images. 
In this paper a 3D reconstruction technique is introduced, which is capable to determine 
the 3D model of a scene without any external (human) intervention. The method is based on 
recent results of image processing, epipolar geometry, and intelligent and soft techniques. 
Possible applications of the presented algorithm in vehicle system dynamics are also 
presented. The results can be applied advantageously at other engineering fields, like car-
crash analysis, robot guiding, object recognition, supervision of 3D scenes, etc,. as well. 

Keywords: 3D reconstruction, perspective geometry, point correspondence matching, 
epipolar geometry, fuzzy image processing, features extraction, information enhancement, 
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1 Introduction 

3D reconstruction from images is a common issue of several research domains. In 
recent time the interest in 3D models has dramatically increased [1] [2]. More and 
more applications are using computer generated models. The main difficulty lies 
with the model acquisition. Although, more tools are at hand to ease the 
generation of models, it is still a time consuming and expensive process. In many 
cases models of existing scenes or objects are desired. Traditional solutions 
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include the use of stereo rigs, laser range scanners, and other 3D digitizing 
devices. These devices are often very expensive and require careful handling, and 
complex calibration procedures. 

Creating photorealistic 3D models of a scene from multiple photographs is a 
fundamental problem in computer vision and in image based modeling. The 
emphasis for most computer vision algorithms is on automatic reconstruction of 
the scene with little or no user interaction [3]. 

In this paper an alternative approach is proposed which avoids most of the 
problems mentioned above. The object which has to be modeled is recorded from 
different viewpoints by a camera. The relative position and orientation of the 
camera and its calibration parameters will automatically be retrieved from image 
data. For the reconstruction we use characteristic features, like edges and corner 
points of the objects. The complexity of the technique is kept low on one hand by 
filtering out the points and edges carrying non-primary information (i.e. the so-
called texture edges and points) while on the other by applying recent methods of 
digital image processing (see e.g. [4]-[7]) combined with intelligent and soft (e.g. 
fuzzy) techniques. This makes possible e.g. autonomous point correspondence 
matching which is the hardest step in 3D reconstruction and the biggest difficulty 
towards the automation of the procedure. 

The introduced autonomous 3D reconstruction and its algorithms can be applied 
advantageously at many fields of engineering. In the second part of this paper, we 
will show a possible application in vehicle system dynamics: the usage in car-
crash analysis. 

Crash and catastrophe analysis has been a rather seldom discussed field of 
traditional engineering in the past. In recent time, both the research and theoretical 
analyses have become the part of the everyday planning work (see e.g. [8]). The 
most interesting point in crash analysis is that even though the crash situations are 
random probability variables, the deterministic view plays an important role in 
them. The stochastic view, statistical analysis, and frequency testing all concern 
past accidents. Crash situations, which occur the most frequently (e.g. the 
characteristic features of the crash partner, the direction of the impact, the before-
crash speed, etc.) are chosen from these statistics and are used as initial parameters 
of crash tests. These tests are quite expensive, thus only some hundred tests per 
factory are realized annually, which is not a sufficient amount for accident safety. 
For the construction of optimal car-body structures, more crash-tests were needed. 
Therefore, real-life tests are supplemented by computer-based simulations, which 
increases the number of analyzed cases to 1-2 thousands. The computer-based 
simulations – like the tests – are limited to precisely defined deterministic cases. 
The statistics are used for the strategy planning of the analysis. The above 
mentioned example clearly shows that the stochastic view doesn’t exclude the 
deterministic methods. 
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Crash analysis is very helpful for experts of road vehicle accidents, as well, since 
their work requires simulations and data, which are as close to the reality as 
possible. By introducing intelligent methods and algorithms, we can make the 
simulations more precise and so contribute towards the determination of the 
factors causing the accident. 

The results of the analysis of crashed cars, among which the energy absorbed by 
the deformed car-body is one of the most important, are of significance at other 
fields, as well. They also carry information about the deformation process itself 
and may have a direct effect on the safety of the persons sitting in the car. Thus, 
through the analysis of traffic accidents and crash tests we can obtain information 
concerning the vehicle which can be of help in modifying the structure/parameters 
to improve its future safety. The ever-increasing need for more correct techniques, 
which use less computational time and can widely be applied results in the 
demand and acceptance of new modeling and calculating methods. 

The techniques of deformation energy estimation used up till now can be 
classified into two main groups: The first one applies the method of finite 
elements [9]. This procedure is enough accurate and is suitable for simulating the 
deformation process, but this kind of simulation requires very detailed knowledge 
about the parameters of the car-body and its energy absorbing properties, which in 
most of the cases are not available. Furthermore, if we want to get enough 
accurate results, its complexity can be very high. 

The other group covers the so called energy grid based methods, which starts from 
known crash test data and from the shape of the deformation or from the 
maximum car-body deformation [10]. The distribution of the energy, which can be 
absorbed by the cells, is considered just in 2D and the shape of the deformation is 
described also by a 2D curve which equals the border of the deformation visible 
from the top view of the car-body. The accuracy of this technique is not 
acceptable: In many of the cases, the shape of deformation can not be described in 
2D and furthermore, the energy absorbing properties of the car-body change along 
the vertical axis as well causing serious impreciseness in the results. 

In this paper new methods are introduced which avoid the above discussed 
disadvantages of the recently used techniques. First, the energy distribution is 
considered in 3D. Secondly, for the description of the shape of deformation spline 
surfaces are used, which are very suitable for modeling complex deformation 
surfaces. Third, the computational time and cost need is significantly decreased 
while the accuracy is increased by the application of intelligent techniques. Last, 
the deformation surface is obtained by a new 3D reconstruction method using only 
digital photos of the crashed car-body as input. 

The methods presented in this paper can be applied at different fields of 
engineering. In this paper, we will show how can we construct a system capable to 
automatically build the 3D model of a crashed car as well as to determine the 
energy absorbed by the car-body deformation and the speed of the crash. 



A. R. Várkonyi-Kóczy Intelligent Autonomous Primary 3D Feature Extraction 
 in Vehicle System Dynamics' Analysis: Theory and Application 

 – 8 – 

The paper is organized as follows: In Section II the primary edge extraction 
method is summarized. Section III is devoted to the 3D model estimation from 
multiple images, while Section IV is devoted to the conclusions. Intelligent 
applications in vehicle system dynamics and examples of the presented methods 
can be followed in the second part of the paper. 

2 Primary Edge Extraction 

Images usually contain a lot of different edges, among which there are texture 
edges and object contour edges, as well. From the point of view of scene 
reconstruction and image retrieval the latter ones are important because they carry 
the primary information about the shape of the objects. In we considered all of the 
possible edges during the model building/ searching/comparison, it would cause 
that the complexity/ time need of the procedure might grow to a possibly 
intolerable degree and furthermore, the (probably high number of) non-important 
details (edges) might lead to false decisions and increased the uncertainty of the 
modeling or caused that we disregarded recognizing an object. As a consequence, 
the separation of the ‘significant’ and ‘unimportant’ subsets of the edges, i.e. the 
enhancement of those ones which correspond to the object boundaries and thus 
carry primary information and the filtering out of the others which represent 
information of minor importance, not only significantly decreases the 
computational complexity of the processing but is of key importance from 
interpretation point of view. 

2.1 Surface Smoothing 

Let St be the surface describing the image to be processed, i.e. St = {(x, y, z); z = 
I(x,y,t)}, where the variables x and y represent the horizontal and vertical 
coordinates of the pixel, z stands for the luminance value, which is the function of 
the pixel coordinates and of the time t. The smoothing is performed by image 
surface deformation. Such a process preserves the main edges (contours) in the 
image. The surface deformation process satisfies the following differential 
equation [11]: 

nk
t
I t =
∂
∂ , (1) 

where k corresponds to the ‘speed’ of the deformation along the normal direction 
n. In our case, this value k is represented by the mean curvature of the surface at 
location [x, y], i.e. the speed of the deformation at a point will be the function of 
the mean curvature at that point. The mean curvature is defined as: 
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where k1 and k2 stand for the principal curvatures. Starting from equation (2), the 
following partial differential equation can be derived (for details, see [12]): 
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Here Ix, Iy, Ixx, Ixy, Iyy stand for the partial derivatives with respect to the variables 
indicated as lower indices. Starting from equation (1) the surface at time t+Δt (for 
small Δt) can be calculated as follows [11]: 
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where o(Δt) represents the error of the approximation. 

2.2 Edge Detection 

Let z0,x,y be the pixel luminance at location [x,y] in the original image. Let us 
consider the group of neighboring pixels which belong to a 3x3 window centered 
on z0,x,y. 

The output of the edge detector is yielded by the following equation: 
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where zp
x,y denotes the pixel luminance in the edge detected image and mLA stands 

for the used membership function (see Figure 1). z0,x-1,y and z0,x,y-1  correspond to 
the luminance values of the left and upper neighbors of the processed pixel at 
location [x,y]. L-1 equals to the maximum luminence value (e.g. 255). For more 
details see [5]. 
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Figure 1 

Fuzzy membership function m LA of ’edge’. L-1 equals to the maximum intensity value, p and q are 
tuning parameters 

2.3 Edge Separation 

The obtained smoothed image is used for extracting the most characteristic edges 
of the objects. The procedure is performed as follows: 

For each edge point taken from the edge map of the original image, the 
environment of the point is analyzed in the smoothed image. The analysis is 
realized by calculating the mean squared deviation of the color components (in 
case of grayscale images the gray-level component) in the environment of the 
selected edge point. 

Let p=[px, py] be an edge point in the original image and let M denote a 
rectangular environment of p with width w and height h. The mean squared 
deviation is calculated as follows: 
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where tstop represents the duration of the surface deformation. In case of grayscale 
images, μ denotes the average gray level inside the environment M. For color 
images, the whole process should be done for each component separately and in 
this case μ corresponds to the average level of this color component inside the 
environment M. 

If the so calculated deviation exceeds a predefined threshold value, then the edge 
point is considered as useful edge. As result, an image containing only the most 
characteristic edges is obtained. 
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3 3D Model Estimation from Multiple Images 

The topic of building 3D models from images is a relatively new research area in 
computer vision and, especially when the objects are irregular, not finished at all. 
In the field of computer vision, the main work is done at one hand on the 
automation of the reconstruction while on the other on the implementation of an 
intelligent human-like system, which is capable to extract relevant information 
from image data and not by all means on building a detailed and accurate 3D 
model like usually in photogrammetry is. For this purpose, i.e. to get the 3D model 
of scenes, to limit/delimit the objects in the picture from each other is a key 
importance [13]. 

3.1 Noise Smoothing 

As the first step, the pictures, used in the 3D object reconstruction are 
preprocessed. As a result of the preprocessing procedure the noise is eliminated. 
For this purpose we use a special fuzzy system characterized by an IF-THEN-
ELSE structure and a specific inference mechanism proposed by Russo [4], [6]. 
Different noise statistics can be addressed by adopting different combinations of 
fuzzy sets and rules. 

Let I(r) be the pixel luminance at location r=[x,y] in the noisy image, where x is 
the horizontal and y the vertical coordinate of the pixel. Let I0 =I(r0) denote the 
luminance of the input sample having position r0  and being smoothed by a fuzzy 
filter. The input variables of the fuzzy filter are the amplitude differences defined 
by: 

8,...,1,0 =−=Δ jIII jj  (7) 

where the Ij=I(rj), j=1,…,8 values are the luminance values of the neighboring 
pixels of the actually processed pixel r0 (see Figure 2a). Let K0 be the luminance 
of the pixel having the same position as r0 in the output image. This value is 
determined by the following relationship: 

IIK Δ+= 00  (8) 

where ∆I is determined later (see (11)). 

Let U
9

1=
=

i iWW  be defined by a subset of the eight neighboring pixels around r0. 
Let the rule base deal with the pixel patterns W1,…,W9 (see Figure 2b). The value 
K0 can be calculated, as follows: 

{ }{ }9,...,1;:)( =∈Δ= iWrImMINMAX ijjLPλ  (9) 

{ }{ }9,...,1;:)(* =∈Δ= iWrImMINMAX ijjLNλ  (10) 
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where ∆λ=λ-λ*, L is the maximum of the gray level intensity, mLP and mLN 
correspond to the membership functions and mLP(I)=mLN(-I) (see Figure 2c). The 
filter is recursively applied to the input data. 

r0 r5

r7

r3r2

r4

r1

r6 r8
 

Figure 2a 
The neighboring pixels of the actually processed pixel r0 

 

Figure 2b 
Pixel Patterns 
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Figure 2c 
Membership functions mLN (large negative) and mLP, (large positive), a and b are parameters for the 

tuning of the sensitivity to noise of the filtering 

3.2 Corner Detection 

The edge and corner points are the most characteristic feature points in an image. 
For our modeling system the determination of the corners are very important. The 
applied corner detection algorithm utilizes the principles of the fuzzy filters and 
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edge detection algorithms of Russo. Besides fuzzy reasoning it uses a local 
structure matrix composed of the partial derivatives of the gray level intensity of 
the pixels. As input, we consider the noiseless and smoothed image, while as 
output the corners are got. A corner is indicated by two strong edges [14]. 

Most of the corner detection algorithms are derived from a so called local 
structure matrix, which has the form of 
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where G(x,y) represents the so called 2D Gaussian hump and * stands for the 
convolution. One of the corner detection algorithms, which uses the above local 
structure matrix is the Förstner’s one. Förstner determines corners as local maxima 
of function H(x,y) [15]. 
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In most of the cases we can not unambiguously determine that the analyzed image 
point is a corner or not with only the help of a certain concrete threshold value. 
Therefore in the proposed algorithm, fuzzy techniques are applied for the 
calculation of the values (corners) which increases the rate of correct corner 
detection. As higher the calculated H value as higher the membership value, that 
the analyzed pixel is a corner. Fuzzifying the H values into fuzzy sets and 
applying a fuzzy rulebase we can evaluate the ‘cornerness’ of an analyzed pixel. 
This property of the pixel can advantageously be used also at the searching for the 
corresponding corner points in stereo image pairs (point correspondence 
matching), which is an indefinite step of the automatic 3D reconstruction (see also 
[16] and [17]). 

3.3 Point Correspondence Matching and Determination of the 
3D Coordinates of the Corner Points 

For increasing the efficiency of the process, before starting with the actual model 
building, we can filter out the non-significant (texture type) edges and corners of 
the pre-processed images. The next step is the determination of the 3D coordinates 
of the remaining, primary edge points of the object. First the corner point 
correspondences are determined which is followed by the determination of the 
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edge correspondences. If the angle between the camera positions of the different 
images is relatively small then after the evaluation of the projection matrices of 
the images the corresponding points can be calculated automatically with high 
reliability in each image. The problem to overcome is that a point determines not 
another point but a line (the so called epipolar line) in the other images. To 
decrease the number of candidate points, first, we search the corner or edge points 
of the epipolar line, i.e. those points which belong to a corner or edge of the image 
and then the fuzzy measure of the differences of the environment of the points are 
minimized. The similarity of the above mentioned ‘cornerness’ is also considered. 
Having the most probable point correspondences we can calculate the 3D position 
of the image points and in the knowledge of the 3D coordinates of the significant 
points the spatial model of the object can easily be built. 

3.4 Epipolar Geometry 

Epipolar geometry exists between a two camera system. An important practical 
application of epipolar geometry is to aid the search for corresponding points, 
reducing it from the entire second image to a single epipolar line. The epipolar 
geometry can easily be found from a few point correspondences. Consider the 
case of two perspective images of a scene illustrated by Figure 3. The 3D point M 
is projected to point m1 in the left image and m2 in the right one. Let C1 and C2 be 
the centers of projection of the left and right cameras, respectively. Points m1 in 
the first image and m2 in the second image are the imaged points of the point M of 
the 3D space. The epipolar constraint can be written as 

0=12 FmmT . (15) 

F is known as the fundamental matrix, which defines a bilinear constraint between 
the coordinates of the corresponding image points. If m2 is the point in the second 
image corresponding to m1, it must lie on the epipolar line lm1 (see Figure 3). 

M

C C1 2
e e1 2

m1 m2

lmlm2

lm

Image1 Image2

1

 

Figure 3 
Illustration of epipolar geometry (e1 and e2 are the epipoles, m1 and m2 the corresponding image points, 

lm1 and lm2 are the epipolar lines, C1 and C2 are the camera positions. M is the projected 3D point) 
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3.5 Image Point Matching 

First we have to find the most characteristic image points. These points are the 
corners of the analyzed object. Corners can effectively be detected with the help of 
the fuzzy based corner detector. Then, for each detected corner we have to 
determine the corresponding epipolar line. We know that the corresponding point 
will lay (in fuzzy sense) on this epipolar line and is also a corner point (see Fig. 4). 
Thereinafter the fuzzy measure of the differences of the environments of the point 
to be matched and the so got candidate points are minimized by a fuzzy based 
searching algorithm (see Figs. 4 and 5) which determines the most probably 
corresponding point. The same procedure is applied to edge points. For details see 
[13], [16], and [18]. 

m1

The environment of the point m1

Epipolar line corresponding to point m1

m2

Point of interest
(corner or edge point)

lm1

Search window

The environment 
of the point m2

X

Y

X

Y

Image1 Image2

 
Figure 4 

Illustration of the matching algorithm 

A point in the environment 
of the analyzed cornerAnalyzed corner

Membership functions

:A

:B

 A, B  

Figure 5 
Illustration of an image point from the environment of the point m2 (see Figure 4) and the 

corresponding values of the membership functions of the fuzzy sets A and B) 
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3.6 Camera Calibration by Estimation of the Perspective 
Projection Matrix 

C
Camera

Retinal Plane 
R

m

M

Y

X

X

Y
Z

(0,0)

c

Optical Axis

fl

 
Figure 6 

Perspective projection – illustration of points M=[X,Y,Z] and its projection m=[x,y] in the retinal plane R 

There exists a collineation, which maps the projective space to the camera’s 
retinal plane: 3D to 2D. Then the coordinates of a 3D point M = [MX, MY, MZ]T 
(determined in an Euclidean world coordinate system) and the retinal image 
coordinates m = [mx, my]T (see Figure 6) are related by the following equations: 

PMm =W  (16) 
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where W is a scale factor, m = [mx, my, 1]T and  M = [MX, MY, MZ, 1]T are the 
homogeneous coordinates of points m and M, and P is a 3 × 4 matrix representing 
the collineation 3D to 2D. One parameter of P can be fixed (l = 1). P is called 
perspective projection matrix. Values a, b, c, d, e, f, g, h, i, j, k are the elements of 
the projection matrix P. It is clear that 

1+++= ZYX kMjMiMW  (18) 

From (17) we can calculate the coordinates of point m (mx, my), as follows: 
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All together we have eleven unknowns (the elements of the projection matrix) that 
means that we need six points to determine the projection matrix. For more details 
see [19]. 

4 Primary Edge Extraction 

The basic concept of the primary edge extraction method described in the first part 
includes the following steps: Consider that we have an image and we want to 
extract the edges corresponding to the object contours. 

As the first step, it is necessary to remove the unimportant details from the image. 
The smoothing procedure used for this purpose is based on surface deformation. 
After smoothing the image, only the most characteristic contours are kept. 

Next, the edge map of the original image is constructed using the fuzzy-based 
edge detection method described in [24]. Such an edge map contains all the 
possible edges. 

After this step, the two processed images – the smoothed one and the edge map of 
the original image – are analyzed simultaneously in the following way: In case of 
each of the edge points a small environment of the point is taken in the original 
image and using the smoothed image the variance of the color components inside 
of this environment is analyzed. If the variance is below a predefined threshold 
value then the edge point is removed while otherwise it is considered as a useful, 
primary edge point. 

The effectivity of the above information enhancement method detailed in Section 
II of the first part of this paper is illustrated by two simple examples. In all of the 
examples color images are used. The figures allow the comparison of the original 
edge map and the edges after applying the proposed method. 

Figs. 7 and 8 are illustrations for the virtual process of changing of an image 
surface along the time. The two examples are fine fragments of the next example 
(surface of the car) at time 0 and at time tstop, respectively. 

The next example analyses a photo taken of a car. In Figure 9 the original image 
can be seen, while Figure 10 shows the smoothed image using the discussed 
surface deformation. Figs. 11 and 12 represent the edge maps before and after the 
processing, respectively. As you can see in Figure 12 many of the details 
disappear after the processing and only the charac-teristic edges of the car are left. 
This helps filtering out the non-important details and enhancing the most 
significant features/objects in images thus making easier image retrieval, object 
recognition, reconstruction of scenes, etc. 
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Figure 7 

Illustration of an image surface before the deformation 

 
Figure 8 

Illustration of an image surface after the deformation 

 
Figure 9 

Original image taken of a car 
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Figure 10 

Smoothed image using surface deformation based on mean curvature 

 
Figure 11 

Edge map of the original image 

 
Figure 12 

Edges after applying the proposed information enhancement method 
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5 3D Model Estimation from Multiple Images 

The basic concept of the 3D model estimation method described in the first part 
can be summarized as follows: As the first step, the pictures, used in the 3D-object 
reconstruction are preprocessed, which starts with noise elimination and edge 
detection by applying the fuzzy filters and fuzzy edge detection algorithm 
described in [24], [25]. This is usually followed by the primary edge extraction 
method (see Section V) [38]. 

For the modeling the determination of the primary edges and corners are very 
important because they carry the most characteristic information about the shape 
of the objects to be modeled. The applied corner detection method utilizes that a 
corner is indicated by two strong edges. It also applies fuzzy reasoning and the 
used local structure matrix composed of the partial derivatives of the gray level 
intensity of the pixels is extended by fuzzy decision making. The algorithm 
assigns also a new attribute, the fuzzy measure of being a corner, to the analyzed 
pixel. This property of the corners can advantageously be used at the searching for 
the corresponding corner points in stereo image pairs. 

The next step is the determination of the 3D coordinates of the extracted edge 
points. First the corner point correspondences are determined which is followed by 
the determination of the edge correspondences in the different images. If the angle 
between the camera positions is relatively small then after the estimation of the 
projection matrices of the images (necessary for the calibration) the corresponding 
points can be calculated automatically with high reliability in each image. We 
search for the characteristic corner or edge points lying (in fuzzy sense) on the 
epipolar line and then the point correspondence matching is done by minimizing 
the fuzzy measure of the differences of the environment of the points with the help 
of a fuzzy supported searching algorithm [36]. The similarity of the above 
mentioned ‘cornerness’ is also considered. (The corresponding corner points keep 
their ‘cornerness’ property in the pictures near to each other with high reliability). 
Having the point correspondences we can calculate the 3D position of the image 
points (the camera calibration is solved by the determination of the Perspective 
Projection Matrix [32]) and in the knowledge of the 3D coordinates and the 
correspondences of the significant points the spatial model of the car body can 
easily be built. 

The effectivity of the above 3D reconstruction method detailed in Section III of 
this paper is illustrated by a simple example. 

Figure 13a shows the original photo of the crashed car corrupted by noise. In 
Figure 13b the fuzzy filtered image while in Figs. 13c and 13d the images after 
fuzzy based edge and corner detection can be followed. Figs. 13e-13h illustrate a 
different camera position of the car. The 3D model of the deformed part of the car-
body is shown in Figure 14. 
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a)      b) 

  
c)      d) 

  
e)      f) 

   
g)      h) 

Figure 13 
2 examples of the (a), (e): original photos, (b), (f): fuzzy filtered images, (c), (g): results after edge and 

(d), (h): corner detection of a crashed Audi 100 
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a)   b) 

Figure 14 
3D model of the deformed part of the car body 

6 Car Crash Analysis 

In this Section a possible application of the introduced methods taken from vehicle 
system dynamics will be presented. The system aims the intelligent analysis of 
crashed cars and is able to determine the 3D model, the amount of the energy 
absorbed by the deformation and further important information, e.g. the energy 
equivalent speed and the direction of impact of the crash. 

The block structure of the proposed new car crash analysis system can be followed 
in Figure 9. It contains four well defined sub-blocks. The first (image processing) 
is responsible for the pre-processing of the digital photos (noise 
elimination/filtering, edge detection, corner detection) and for the 3D modeling 
(including the point correspondence matching and the 3D model building). The 
second part of the system (comparison of models) calculates the volumetric 
change of the car body from the deformed and the original 3D models of the car. 
Parallel with it an expert system (Expert system) determines the direction of the 
impact. Based on the direction of impact and volumetric change a hierarchical 
fuzzy-neural network system (Fuzzy-Neural Network) determines the absorbed 
energy and the energy equivalent speed of the car. In the followings we will 
briefly outline the steps of the analysis not discussed previously. 

After constructing the 3D model of the deformed car body (see Figure 8) we have 
to determine the volume of the detoriated car body which means that it is 
necessary to compare the deformed and the undamaged 3D car-bodies. This 
calculation is performed by the module named ‘Comparison of models’ (see 
Figure 15). The inputs of this module are the spatial models of the damaged and 
undamaged car-bodies. As result, we obtain the volumetric difference between the 
two models. 
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Figure 15 

Block-structure of the intelligent car crash analysis system 

The spatial model of the deformed car-body serves as input of another module, as 
well. This module applies an expert system and produces the direction of impact. 
For this we use the so called ‘energy-centers’ of the undamaged and deformed car-
body parts and the direction is estimated from the direction of movement of the 
energy-center. (During the deformation the different 3D cells of the car-body 
absorb a certain amount of energy. The energy-center can be determined by 
weighting the cells by the corresponding energy values.) 

From the volumetric difference and from the direction of impact an intelligent 
hierarchical fuzzy-neural network system evaluates the energy absorbed by the 
deformation and the equivalent energy equivalent speed (EES). For the training of 
this part of the system simulation and crash test data can be used. The training data 
include the volumetric change, the direction of the impact (input data) and the 
corresponding deformation energy (output data). 

 
Figure 16 

Relation among the direction of impact, volumetric change, and the deformation energy based on 
simulation data (Mercedes 290) 
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The relation among the direction of impact, volumetric change, and the 
deformation energy is illustrated by Figure 16. If, as usually is the case, this 
surface is symmetric (to the longitudinal axes of the vehicle), it is enough to deal 
with its half part. The mapping is approximated by a hierarchical fuzzy-NN 
system (subsystem ‘Fuzzy-Neural Network’ in Figure 15). The surface is divided 
into domains, which can ‘easily’ be modeled. Each domain is modeled separately 
by a small NN. Because of the uncertainties in the transitions among the domain, a 
fuzzy system is applied for the determination of the fired domain(s). The mapping 
in Figure 16 needs only to be divided into two domains according to the impact 
direction (see Fig. 17), thus in this very simple case the fuzzy rulebase ‘above’ the 
NN system contains only two rules (The input fuzzy sets are shown in Fig. 18): 

IF the direction IS D1 THEN use NN1 

IF the direction IS D2 THEN use NN2 

Here we would like to remark two things: 

1 In general the mapping is more complex and it can be advantageous to define 
more domains using both inputs to keep the complexity of the used NNs low. 

2 The module responsible for the determination of the absorbed energy applies a 
pre-classification step according to a hierarchical decision-tree (Figure 19), 
because for choosing the correct set of neural networks we have to pre-
determine the category and the type of the analyzed vehicle and the main 
character of the crash (frontal full impact, frontal offset impact, side impact, 
corner impact, rear impact). Cars are categorized into car types according to 
their weights. (In this paper as example a crashed Audi is shown. Although, 
the analysis is based on the NNs taught by the simulation data of a similar, but 
Mercedes car). Side impact means that neither the front nor the rear of the 
vehicle is touched. 

 
Figure 17 

Segmentation of the surface in Figure 10 
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Figure 18 
Membership functions defined on the universe of impact direction 

For approximating domains D1 and D2 we applied simple feed-forward 
backpropagation NNs with one hidden layer and three hidden neurons. The NNs 
are used to determine the deformation’s energy and EES. During the tuning 
(teaching period) of the system, the determined EES values were compared to 
known test results and the parameters of the expert system were modified to 
minimize the LMS error. 

The operation of the introduced intelligent crash analysis system is illustrated on a 
crashed car. The parameters of the car are as follows: 

Vehicle/Mass of the vehicle: Audi 100/1325 kg 

Volumetric change (evaluated): 0.62 m3 

Absorbed deformation energy (evaluated): 171960 Joule 

The resulted 3D model is shown in Figure 14. The results of the analysis are 
summarized in Table 1 (see also [39]). The error of the analysis depends on the 
resolution of the model (i.e. the distance between two layers in the 3D model, 
Figure 14b) and also on the accuracy of the crash test data. 

Light duty 
truck

Car Truck
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NN4 NN5

Type 2 . . . Type n

Corner
Impact

Frontal Offset
Impact

Rear
impact

NN2

Vehicle

Frontal Full
Impact

NN3

Side
Impact

NN1  
Figure 19 

Hierarchical structure of the pre-classification in the EES determination 
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Table 1 
The direction of impact and the energy equivalent speed of the crashed car 

 Direction of impact 
[deg] 

EES of the vehicle 
[km/h] 

Real Data 0 55 
Proposed 
method 

2 58 

2D method 2 59,5 

Conclusions 

In this paper intelligent methods are introduced which open a way for autonomous 
3D model reconstruction. The 3D model reconstruction uses as input only digital 
images taken from different camera positions. The technique combines recent 
results of epipolar geometry, intelligent methods of image processing, and 
different fuzzy techniques. It applies a new edge information extraction procedure, 
as well, which is able to separate the edges carrying primary information and those 
representing only information of minor importance. The methods presented in the 
paper can advantageous be used in many 2D and 3D applications, in computer 
vision, in sketch based image retrieval methods, in vehicle system dynamics, etc. 

As a possible new application taken of the field of vehicle system dynamics, an 
intelligent expert system is also presented which includes significant steps towards 
the autonomous analysis of car-crashes. It makes easy to determine the special 
shape of crashed cars (or other objects), the amount of the energy absorbed by the 
deformation, and further important information, like the energy equivalent speed 
(EES). 
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