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Abstract: The mechanical behaviour of eccentrically compressed stocky bars of rectangular cross 
section, having no-tension material is well known. The aim of the structural analysis is to determine the 
distribution of the stresses arisen from the effect of an eccentrically compressive force, i.e. to describe the 
shape of the stress block, and to calculate the compressive resistance of the bar. Some important details 
of the phenomenon could not be found in the technical literature. In our paper we study these details. 
We evaluate the analytical functions of the curves, bounding areas lain around the kern or the point of 
gravity, on which areas the eccentric force acts a pentagonal compressed zone arisen. Furthermore, we 
determine the resistance of the stocky bar in the cases of triangular and rectangular compressive zone. 

Keywords: eccentric compression, rectangular cross section, stocky bars.

1. INTRODUCTION 

In elastic state at the four sides of the kern we can determine areas of three edges, bounded 
by the side of the kern and two curves, on which a compressive force acts, the shape of the 
compressed zone is a pentagon. We aim at providing the analytical functions of the curves 
bounding the area. Moreover, we give the shape of the stress block and its resultant – which 
supply the magnitude of the resistance of the bar – in case of triangular and rectangular 
compressed zone.

In plastic state the phenomenon of the kern disappears and only the role of the point of 
gravity remains. Then, stretching from the point of gravity into four directions lanceolate areas 
bounded with two curves could be given. The compressive force acting at this area causes 
a pentagonal compressed zone. We strive to evaluate the analytical functions of the curves 
bounding the area. Further, we determine the shape of the stress body and its resultant in case 
of triangular and rectangular compressed zone.  
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2. MY RESULTS 

2.1. Analysis of the elastic state

In course of the elastic analysis of an eccentrically compressed stocky bar, having material 
that resists only compression and having rectangular cross section, regarding mechanical 
behaviour, three areas of the possible locations of the point of action could be specified which 
considerably differ from each other: the force acts on the area of the kern (with the edge of the 
kern together) or it lies between the edge of the kern and the edge of the cross section 
(without the edges) or it is at the edge of the cross section or outside it. When eccentricity of the 
axial force is small (the load lies within the kern) the normal stresses will have the same sign 
throughout the cross section (in our case it has a minus sign i.e. the force is compressive). A 
condition of this kind is important, for instance, when a compressive load acts on the material, 
which is only suitable resisting compression, such as concrete, stone or masonry materials. For 
such materials, it may be necessary to ensure that the load produces no tension at any point of 
the cross section. The kern, regarding the mechanical behaviour is a bounded region, i.e. 
when compressive force acts at a point of its edge, the mechanical behaviour is the same as, if 
the force acts at an inside point of the kern. Some additional details about the analysis of the 
middle kern can be found in [1,2,3]. When the eccentric force acts outside the kern, but inside 
the edge of the cross section, only a region of the cross section is compressed, and three areas 
of the cross section could be determined, having different mechanical behaviour in eccentric 
compression (Figure 1). This figure can be found in [4].

Figure 1 The different parts of the cross section

This is an open region, because, when the force acts at its edges, the mechanical behaviour 
differs from the behaviour as if, the force acts on the inside region.
Eccentric forces acting on the cross section, depending on the location of their point of action 
produce compressive zones of different shape. If the force acts at the outside quarters, close to 
the corners, the shape of the compressed zone is a right-angled triangle (blue shaded). This issue 
is analysed in [5]. A trapezoidal compressed zone belongs to those regions, which are outside 
of the curves and the rectangular parts (green shaded). The curves separate these previously 
mentioned areas from the zones, where the load would cause a pentagonal compressed zone 
(red shaded). The position of the dividing straight lines is already known, but we could not find 
the functions of the curves in the literature.
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That is why the first part of the elastic analysis of this essay is the analytic determination 
of curves, limiting the arched-shape regions, fitted to the kern. Having got the parameters of 
the location of the eccentric force and the formulae deduced of the compressed zone in this 
present essay, the resistance of the eccentrically loaded stocky bar having material that resists 
only compression, and having rectangular cross section could be determined as the volume of 
the stress body of linearly varying height. At one of the corner of the stress body (a truncated 
pyramid) the value of the stress is the yielding stress. In elastic state, when the greatest stress 
value does not reach the value of the yielding stress, the calculation could be made even in an 
inverse way. Taking the value of the eccentric force, the greatest corner stress of the stress body 
could be determined. 

For the analysis of the curves, it is essential to know the sizes of the stress block which 
belongs to the simpler case of the trapezoid compressed zone (Figure 2, green shaded area). 
Getting the sizes of the trapezoid compressed zone, the volume of the stress block, which is 
equal to the load bearing capacity of the stocky bar, could be calculated.

Figure 2 The stress body

During the calculation a coordinate system was used, which has the origin at the more 
compressed corner of the cross section (Figure 3). The stress block would be determined if we 
can calculate the length of the “x” and “y” edges of the pyramid.

Figure 3 The coordinate system 
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The same method can be used when we determine the place of the centre of gravity, but 
this time a reversed procedure should be applied. In this case the place of the centre of the 
gravity - which is the point, where the load acts – is given but the sizes of the body aren’t 
known. As we can see in Figure 2, the stress body is a truncated pyramid, because a small part, 
which is also a pyramid, exceeds the cross section. We can handle this object with subtracting 
the volume of the small pyramid from the whole, big one. There are two unknowns, so two 
algebraically independent equations are needed to provide solution, therefore we will have to 
use this calculation method referring “x” and “y” directions as well. Let’s start with the “y” 
direction. In Eq. (1) the principle of the calculation can be seen.

Afterwards, we should follow the previous procedure referring to “x” direction too. 
The initial equation can be seen in Eq. (4).

�� ���
� ,                         (1) 

where:

���  – Y coordinate of the point of action; ���       – moment of stresses about the x’ axis; 	      – stress resultant.

In Eq. (2) we can see the initial equation. 
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where:

�  – quantity of the maximum normal stress  

From Eq. (2), “y” can be expressed which is one of our unknowns. It is shown in Eq. (3).
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This calculation method belongs to the point of action of the external force, when the shape 
of the compressed zone is a trapezoid. Actually, when the compressive force acts on the curve 
that is an ultimate situation, because the compressed zone is still a trapezoid, but exceeding the 
curve and arriving to the area between the arcs, the shape of the compressed zone is already a 
pentagon (Figure 4, 5).
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where:

'�
  – X coordinate of the point where the force acts. 

From this starting equation “x” can be expressed which is the second unknown. It is
shown in Eq. (5).
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Both unknowns have been already expressed, so substituting the right parameters into the
equations, the sizes of the stress body can be determined. As we know, the resistance is equal
to the volume of the stress body, therefore the resistance of the stocky element can be
calculated. The resistance is expressed in Eq. (6). �
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where:

	  – volume of the stress body, which is the resistance at the same time; ,(  – yielding compressive strength of the material of the cross section.  �
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Figure 4 The stress body when the force acts on the curve 

Figure 5 The shape of the compressed zone when the force acts on the curve

Thus, the previous equations can be used, assuming that “x” – which was an unknown 
quantity earlier – is equal to the length of the “a” edge of the cross section. This is shown in 
Eq. (7).
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Figure 6 The graph of the function

The result which is the equation of the curve is shown in Eq. (8).

                                     
In this present essay we made the analysis for compressed zones of rectangle triangle and 

quadratic shape. Analysis referring parameters of the compressed zone of pentagon shape could 
be the theme of further research.

2.2. Analysis of the plastic state

In course of the plastic analysis of an eccentrically compressed stocky bar, having material 
that resists only compression and having rectangular cross section, regarding mechanical 
behaviour, two area of the possible location of the point of action could be specified which 
considerably differ from each other: the force lies inside of the cross section (without the edge) 
or it is outside the cross section (with the edge). In plastic state regarding mechanical behaviour 
the cross section has no kern i.e. the kern degenerates into a point (it is the centroid of the 
cross section). Force acting at the centroid of the cross section produces simple, axial, centric 
compression of constant stress distribution. When the eccentric force acts outside the centroid, 
but inside the edge of the cross section, only a region of the cross section is compressed, and 
three areas of the cross section could be determined, having different mechanical behaviour 
(Figure 7). This figure can be found in [6,7,8]. Compressive force acting within this region 
produces only compression of uniform stress distribution.

�

..��%%�(�

��(
��*
(��

*�(�
���(

���"
(���

"%�(
�"%

(��
%�(��

��
��

��
� �� ���������������������������������������������������������(88)�����

Unauthenticated | 193.6.201.128
Download Date | 9/26/13 4:26 PM



77YBL JOURNAL OF BUILT ENVIRONMENT Vol. 1 Issue 1 (2013)

Figure 7 The different parts of the cross section 

This is an open region, because the force acting at its edges, the mechanical behaviour 
considerably differs from the behaviour the force acting on the inside region. Eccentric 
forces acting on the cross section, depending on the location of their point of action produce 
compressive zones of different shape. If the force acts at the outside thirds, close to the corners 
(blue shaded), the shape of the compressed zone is rectangle triangle. A trapezoid compressed 
zone belongs to those regions, which are outside of the curves and the rectangular parts (green 
shaded). The curves separate these previously mentioned areas from the zones, where the load 
would cause a pentagonal compressed zone (red shaded). The position of the dividing straight 
lines is already known. But we could not find the functions of the limiting curves of the regions 
of arched–shape, fitted to the centroid in the literature.
That is why the first part of the plastic analysis of this essay is the analytic determination of 
curves, limiting the arched-shape regions, fitted to the centroid. Having got the parameters of 
the location of the eccentric force and the formulae deduced of the compressed zone below the 
resistance of the eccentrically loaded stocky bar having material that resists only compression, 
and having rectangular cross section could be determined as the volume of the stress body of 
constant height, which is the yielding stress. 

During the calculation we can use the same method as we did previously, and we keep the 
same symbols and coordinate system, which are shown in Figure 3. We are dealing with a very 
similar situation, when the compressed zone is a trapezoid like earlier, but this time, due to the 
uniformly stress distribution the stress body is a prism which is depicted in Figure 8.

Figure 8 The stress body in plastic state
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At first, the sizes of the stress block should be determined. For that, we can use the principle 
of calculation method of the gravity centre again. Apparently, when the compressed zone is a 
trapezoid, then the stress body is a truncated prism. With subtraction the small triangle-based 
prism, which is out of the cross section, from the bigger right-angled triangle based prism the 
truncated prism can be described. Using this method and the previous symbols, the starting 
equation of the calculation in Y’ direction can be seen in Eq. (9).
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As a result, the “y” side of the bigger right-angled triangle can be expressed from the 
previous equation, which is one of our unknowns. The formula of the “y” size is shown in 
Equation 10. 
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Afterwards, using the principle of the gravity centre calculation in the X’ direction too, the 
other, “x” leg of the right-angled triangle can be determined. The starting equation according 
to the previous type of calculation is shown in Eq. (11). 
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From Eq. (11) the “x” leg of the big right-angled triangle, which is illustrated in Figure 3, 
can be expressed. The formula of the “x” size is shown in Eq. (12). 
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Figure 9 The analysis of the function
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In this present essay I made the analyses for compressed zones of rectangle triangle and 
quadratic shape. Analysis referring parameters of the compressed zone of pentagon shape 
could be the theme of further research. 
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3. CONCLUSION 

Using formulae evaluated of the above discussed structural engineering phenomenon, 
the structural designer can easily decide which compressed zone shape belongs to the given 
eccentricity of the load. Following that, the suitable formula can be used to determine the load 
bearing capacity of an eccentrically loaded stocky bar. In this analysis we didn’t consider the 
case of the pentagonal compress zone.

4. NUMERICAL EXAMPLES 

Check the load bearing capacity of the foundation with the following data in elastic and 
plastic state as well! We keep the same symbols and coordinate system, which are shown in 
Figure 3.

The loads - which act below the foundation – are shown in Figure 10.

Figure 10 The loads of the foundation

Sizes of the cross section:

The yielding compressive strength of the soil below the cross section:

/ 0 122�3/4) 0 52�3/64� 0 17�3/6

8 0 192�6: 0 19;�6

,( 0 <22� 3/6%

Unauthenticated | 193.6.201.128
Download Date | 9/26/13 4:26 PM



81YBL JOURNAL OF BUILT ENVIRONMENT Vol. 1 Issue 1 (2013)

Calculation of the magnitudes of eccentricity: 

=) 0 4)/ 0 52
122 0 295�6

=� 0 4�/ 0 17
122 0 2917�6

Calculation of the coordinates of the point of action: 

'�
 0 8
; > =) 0 192

; > 295 0 29;�6

��
 0 :
; > =� 0 19;

; > 2917 0 29?7�6
Analysis in elastic state: 

First of all, we should determine whether the force causes a trapezoid compressed zone or 
a pentagonal one. Using Eq. (3) the length of the “y” edge of the stress body can be 
calculated.

@ 0 >< � 19; � 29?7 A ? � 19;% A 19;B>; � 19;% A 1; � 19; � 29?7 > 1; � 29?7%
< � 19; > 1; � 29?7

@ 0 ;91;1�6
Now, using Eq. (8) the “'�
“ coordinate of the point of the curve can be determined, which 

belongs to the given “��
” coordinate. 

'�
 0
192 � �; � ;91;1* > 5 � ;91;1% � 19; A ; � ;91;1 � 19;% > 19;*; �

< � ;91;1* > < � ;91;1% � 19; A ; � ;91;1 � 19;% 0 29;<5�6

The calculated value is larger, than the “'�
“ coordinate of the point of action, thus the 
force acts outside of the curves, which means, that it causes a trapezoidal compressed zone. 
The point of action and the curve are shown in Figure 11.
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Figure 11 The point of action 

Afterwards, the length of the edge into “x” direction of the stress body should be determined. 
For that, Eq. (5) can be used.

C 0 < � ;91;1* � 29; > < � ;91;1% � 19; � 29; A ; � ;91;1 � 19;% � 29;
; � ;91;1* > 5 � ;91;1% � 19; A ; � ;91;1 � 19;% > 19;*;

0 29D<;�6

With the knowledge of the sizes of the stress body the load bearing capacity of the stocky 
bar can be determined (in elastic state). We can use Eq. (6) for the calculation. 

	 0 19; � 29D<; � <22
; � E1 > 19;

;91;1 A 19;%
5 � ;91;1%F 0 1?G95H�3/

Thus, the elastic load bearing capacity of the foundation is 1?G95H kN. 

	 0 1?G95H�3/ I / 0 122�3/
Thus, the foundation is satisfactory! 

Analysis in plastic state: 

We can use the same method, which we used in elastic state.  At the beginning we should 
analyse whether the point of action is located in the green or the red shaded area in Figure 7. 
For the determination of the length of the edge into “y” direction of the stress body Eq. (10) 
can be used. 

@ 0 ; � 19;% > 5 � 19; � 29?7
5 � 19; > < � 29?7 0 19?�6
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Figure 12 The point of action
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After that, with a substitution into the Eq. (15) the “'�
“ coordinate of the point of the 
curve can be determined, which belongs to the given “��
” coordinate. 

'�
 0 192 � �19;% > 5 � 19; � 29?7 A 5 � 29?7%�
; � 19;% > 5 � 19; � 29?7 0 2955H�6

We can see, that this quantity is larger, than the “'�
“ coordinate of the point of action, 
thus the force acts outside of the curves, which means, that it causes a trapezoidal compressed 
zone. The point of action and the curve are shown in Figure 12. 

Afterwards, using Eq. (12) the length of the “x” edge of the stress body can be calculated.

C 0 ; � 29; � 19?% > 29; � 19; � 19?
19?% > 19; � 19? A 19;%5

0 297GH�6

Thus, we determined the sizes of the stress body. Therefore, we can calculate the load 
bearing capacity of the stocky bar can be calculated (in plastic state). For this calculation Eq. 
(13) can be used. 

	 0 <22 � 19; � 297GH � �1 > 19;
; � 19?� 0 ;?;955�3/

Thus, the plastic load bearing capacity of the stocky bar is ;?;955 kN. 

	 0 ;?;955�3/ I / 0 122�3/
Thus, the foundation is satisfactory! 
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