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Abstract: When it comes to the problem of expressing intricate non-linear interactions, one relatively recent development in the 

field of mathematical modelling is the application of artificial neural networks, which are also abbreviated as ANNs in some 

instances. In this paper, we develop a machine learning prediction model for predicting the flow of mass transfer in an alumina 

matrix porous media. Consider of a cylinder with a catalyst layer on its surface and a porous media surrounding it that is completely 

filled with fluid except for the one end. This cylindrical device is typical of a catalytic reactor. When the cylinder is heated to a 

constant temperature, the chemically reactive zeroth-order material is predicted to completely coat the outside of the vessel. 

Reinforced porous materials undergo a continual, temperature-dependent chemical reaction in their fluid phase. The model shows 

an improved predictive performance in all its experimentation. 
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INTRODUCTION 

A significant variety of natural and man-made processes 

involve the movement of fluids across a body or across a 

stretched surface in some capacity. As a direct consequence of 

this, the stagnation-point flow has been the focus of a 

considerable amount of interest within the field of classical 

hydrodynamics [1]. However, a stagnation-point flow can be 

formed in porous media in a variety of different circumstances. 

One technique to increase heat transmission in microreactors 

that are hosting highly exothermic activities is to fill the pores 

of a porous medium that is hosting such activities [2]. 

Rarely is the topic of chemical systems, particularly those 

involving stagnation flows across a curved body that is enclosed 

by a porous substance, brought up for discussion. Solute 

diffusion, heat transmission by chemical radiation, 

hydrodynamics and chemical reaction of stagnation flows are 

some of the many factors that could be at play here. 

Electrochemical systems and thermochemical solar reactors are 

examples of industrial applications that make use of impinging 

flows in porous media [3].  

As a result of this, it is absolutely necessary to research, 

enhance, and imitate them. The local thermal equilibrium 

(LTE) is widely used when talking about porous catalytic 

reactors due to the fact that it takes into account a thermally 

homogeneous mixture of fluid and solid. This assumption, 

however, is not valid in circumstances in which there are steep 

temperature gradients as a consequence of the existence of a 

major heat source or sink, in addition to the impacts of Soret 

and Dufour [4].  

One technique that can be utilised in order to imitate the natural 

processes that take place inside of the brain is known as an 

artificial neural network, or ANN for short. This approach gets 

its cues from the neural system and is built upon its three 

fundamental components, which are the input data, the training 

process, and the output data. This method takes its cues from 

the neural system and is constructed upon its three primary 

components. Over the past few years, this method has evolved 

into a cutting-edge instrument that can optimise, forecast, and 

analyse a wide variety of complex engineering systems [5].  

The conventional methods for modelling such a large data set 

call for an excessive amount of time and are prone to errors; 

ANN offers a novel option. The application of ANN to the 

management of energy has proven to be beneficial in the 
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resolution of a variety of challenging problems, including those 

that are encountered in multiphase flow. ANN has also been 

shown to be beneficial in the resolution of a number of other 

difficult problems [6]. 

It takes a lot of time and requires a lot of processing power to 

investigate many different fluid mechanics difficulties using 

typical methods. The examination of these difficulties is made 

more difficult as a result of the complexity that is brought about 

by the presence of a large number of characteristics that are 

interrelated. It is often necessary to perform a large number of 

calculations in order to accurately predict how an issue will 

behave in such a setting; however, machine-learning 

approaches such as ANN can be of assistance. In order to 

accurately predict how an issue will behave in such a setting, it 

is often necessary to perform a large number of calculations. It 

is self-evident that a modelling tool with a price point that is fair 

is required in order to properly handle the situation that is 

currently at hand [9]. 

In order to identify an algorithm that offers a high level of 

performance, we investigate a variety of ANNs to see what we 

can come up with. The use of non-linear heat transfer, which 

has been shown to improve both the accuracy of forecasts and 

the quality of studies, is the method that is applied in order to 

accomplish this goal. Additionally, utilising the thermal non-

equilibrium hypothesis helps produce more detailed modelling 

of local heat transport than would otherwise be possible. This is 

because the hypothesis assumes that temperatures are not in 

equilibrium [10]. 

LITERATURE SURVEY 

Sheri and Shamshuddin [11] analysed the boundary layer of a 

chemically reactive flow in the vicinity of a porous plate. It was 

hypothesised that there was also a magnetic field in the region, 

in addition to the radiation heat transfer and viscous dissipation 

that were already known to be there.  

The first major efforts to discover a solution to this problem 

were performed by Chao et al. [12]. Their approach entailed the 

utilisation of a catalytic porous bed, a chemical reaction, and a 

stagnation-point flow. The governing equations could be solved 

by combining two distinct methods, namely the perturbation 

approach and the finite element methodology. Both of these 

methods are examples of how governing equations can be 

solved. As a result of a higher rate of conversion from reactants 

to products, it was found that the temperatures required to be 

higher, but the concentrations of the reactants needed to be 

lower. This was due to the fact that the activation energy and 

the solute diffusion rate were both decreased as a consequence 

of the increased conversion. 

Pal and Biswas [13] used the singular perturbation method to 

carry out analytical research of double-diffusive transport. This 

study was an investigation of analytical behaviour. During the 

investigation, which took place in a porous media and involved 

oscillatory flow, it was carried out across a plate. When the 

response parameter was increased, there was a subsequent 

decrease in concentration, which was accompanied by an 

increase in the skin frictional coefficient. 

Tlili et al. [14] conducted an investigation on the effects of 

chemical and thermal radiation on the magnetohydrodynamic 

(MHD) was surrounded by porous substance. It has been 

established that thermal slip, magnetic fields, a rise in the 

Reynolds number, and an increase in the proportion of solid 

volume all have a detrimental impact on the amount of heat that 

is transferred via convective means. 

Khan et al. [15] conducted their research on a porous medium 

in order to investigate the convective heat transfer in an MHD 

flow over a stretched sheet. This type of heat transfer takes 

place during the stagnation point of the flow. The similarity 

technique, which was used to reduce the number of governing 

equations, was followed by the discovery of numerical 

solutions for the chemical process that was a part of the domain. 

This discovery came about as a result of the usage of the 

similarity method. In addition to this, it was demonstrated that 

an increase in the number of chemically reactive species, the 

Prandtl number, or the Lewis number all have the effect of 

dampening the temperature and concentration profiles. 

Alizadeh et al. [16] focused their attention on the double 

diffusion that takes place in catalytic porous media when an 

impinging flow is applied to a cylinder. In order to get as close 

as possible to the underlying physics of the problem, 

mathematical modelling was done. The goal of this modelling 

was to get as close as possible to the underlying physics of the 

problem. They followed the lead of previous research in 

emphasising the preponderant influence of the Biot number. 

This was done to emphasise the relationship between the three 

numbers.  

PROPOSED METHOD 

Specific gravity of a porous medium can range anywhere from 

2.45 to 19 gigapascals (GPa) in hardness. Specific gravity is 

determined by the soot content as well as the medium overall 

composition. If the bulk hardness of alumina needs to be 

preserved, the utilisation of fullerene soot comes highly 

suggested. By comparing these data to those for alumina, one 

may potentially get at the conclusion that the hardnesses of the 

materials listed here are up to 4.3 times higher than those stated 

for alumina. This is a plausible conclusion to arrive at. The 

comparison of the data presented here with those for alumina 

will lead to the discovery of this finding. The samples that have 

been sintered maintain the hardness of very pure and 

exceptionally dense alumina at a level that is within 97% of the 

level it was at when it was in its original state.  

The most long-lasting samples were those that had been 

strengthened by one minute of heating at temperatures of 1300 

and 1500 degrees Celsius with one weight percent fullerene 

soot. Testing for alumina is practically necessary because of the 

low levels of soot. This is because there is a relatively modest 

amount of soot. The problem is that doing so reduces resilience, 

and that where the challenge lies. In contrast, the samples that 

were reinforced with MWCNT soot have a higher porosity, 

which results in a reduced overall hardness which is shown in 

fig 1. 
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Figure 1: Reinforced Porous Material 

 

 

Figure 1, which may be seen at this location, provides a concise 

representation of the conditions that have contributed to the 

current issue that we are dealing with. Consider a cylinder that 

is only open on one end, that has a catalyst layer on its surface, 

and that is surrounded on all sides by a porous media that is 

totally filled with fluid. This cylinder would be an example of a 

catalytic reactor. It is expected that the chemically reactive 

zeroth-order substance completely covers the exterior of the 

cylinder, which is heated to a constant temperature. There is a 

continuous chemical reaction going on in the fluid phase of the 

reinforced porous substance, and this reaction is dependent on 

the temperature. 

In the following paragraph, we will go over the process by 

which the surface of the cylinder transforms into the position of 

a stagnation point flow that is uniform. In the equations, the 

terms solid and liquid are denoted by the s and f, respectively 

(8). 

The following boundary conditions need to be satisfied in order 

to ensure that the equation for mass transfer can be completely 

solved: 

r=a:∂C/∂r=−kRD=Constant; r=∞:C→C∞ 

where,  

kR - kinetic catalytic reaction,  

D - molecular diffusion coefficient, and  

C∞ - flow of mass concentration. 

 

ANN 

With the assistance of a type of artificial neural network called 

a Multilayer Perceptron, we generate forecasts in this 

investigation concerning the temperatures of non-dimensional 

solids (θs), fluids (θf), and concentrations (ϕ). This network is 

made up of many layers of neuronal connections. In general, 

people refer to the most frequent ones as the input, hidden, and 

output layers, in that particular sequence which is shown in fig 

2. 

 

 

Figure 2: ANN 

 

Reinforced Porous Media 

Thermal Radiation  
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Figure 2 depicts an artificial neural network (ANN) in a 

simplified form of its architecture, which consists of n inputs, k 

hidden neurons, and a single output neuron. The ANN was 

designed to simulate natural neural networks. When a neuron 

connects to the neurons in the layer above it, it brings with it a 

weight coefficient that it uses to calculate the strength of the 

connection. Backpropagation of error is used during the training 

process to fine-tune the weights across a number of rounds. This 

is done over the course of several sessions. This procedure is 

repeated repeatedly until the required degree of precision is 

reached. An epoch or an iteration is a full forward-backward 

cycle that integrates new weight coefficients. In this context, 

either term can be used interchangeably. The accuracy of the 

algorithm forecasts is evaluated based on how closely they 

correspond to another collection of data referred to as 

benchmarking data. 

ANNs are computational structures that, through an iterative 

learning process, are able to learn the link between a set of input 

variables and a set of output variables. Even the most complex 

and non-linear questions can be answered by these networks 

with nothing more than elementary mathematical operations 

like addition and multiplication. After a neural network has 

been trained, it can be used to make predictions about a target 

variable by drawing on the information contained in a separate 

dataset referred to as a holdout, with just a minimal amount of 

additional fine-tuning being necessary. 

The vast majority of neural networks, which are often referred 

to as ANNs, are constructed up of neurons, which are weighted 

connections between successive layers of the network (edges). 

Each and every artificial neural network (ANN) has at least one 

hidden layer, along with at least one input layer and at least one 

output layer. A perceptron is a fundamental building element 

that is used in the construction of artificial neural networks. 

Each individual input in a perceptron is given a weight, and the 

sum is computed by using a function referred to as activation of 

the neuron.  

A different function is utilised to perform the calculations 

necessary to determine the outcome. An artificial neural 

network, often known as an ANN, is a structure that consists of 

multiple layers and is built from stacked perceptrons. If we 

make the assumption that the outputs of the network, which are 

symbolised by the symbol zi, are decided by a summing 

function, then we obtain the following result if the inputs to the 

ith perceptron are as follows: 

zi = ∑xijwij+bi 

where  

n - inputs;  

m - neurons in a layer;  

wij - jth neuron weight, and  

bi - bias term.  

It is possible to reduce the complexity of the zi matrix 

representation to the following: 

zi=wiTxi+bi 

where 

wi=[wi1,wi2, …, win]T 

bi=[bi1,bi2, …, bin]T 

Iterative change of the weights and bias components of a 

perceptron can be used to improve the capacity of a perceptron 

to improve its estimates of the output values in response to a 

specific loss function. The approach corrects the network 

parameters in line with the errors that are computed with the 

help of observed and estimated data. This correction is based on 

the parameters of the network. The disparity between the 

expected value of the network output at iteration n (i.e., dn) and 

the actual value of the output is referred to as a loss term (yn). 

L(n)=Loss(dn, yn) 

where  

Loss - function for the yn and dn, that quantifies the difference 

between the actual output values and the estimated values, and 

where yn and dn are the actual output values and the estimated 

values, respectively. In order to update the weights of the 

network based on this loss term, it is possible to utilise gradient 

descent learning at the neuron level. 

wij(n+1) = wij(n)−η (∂L(n)/∂wij(n)0 

where,  

n - iteration,  

wij - weight between j neuron to i,  

η - step size, and  

∂ L(n)/∂wij(n) - Loss gradient w.r.t wij.  

Experimentation is the primary way for fine-tuning a network 

hyperparameters, including the step size, and is the one that is 

most commonly used. In the process of updating biassed terms, 

a methodologically analogous approach is utilised as part of the 

process. 

The values of each neuron can be transformed from an unknown 

range using a non-linear function that is referred to as the 

activation function. This function is capable of converting 

values from a range such as [1, 1] or [0, 1], respectively. The 

sigmoid function, the hyperbolic tangent (tanh), and the 

rectified linear unit (ReLU) are the three activation functions 

that are most frequently used in artificial neural networks 

(ANNs). A summation term that reflects the activation function 

of the perceptron is included in the below equation. 

σ(z)=1/(1+e−z)  (sigmoid) 

tanh(z)=21+e−2z−1 

ReLU(z)={z    if z>00    if z≤0 

At this location, research is being conducted to investigate the 

efficacy of neural networks in accurately predicting the spread 

of disease across the United States. The ANN is a popular type 

of feedforward ANN that extends the (single) Perceptron model 

by including one or more hidden layers in the middle of the 

input and output layers. The ANN is put to use for classification 

and regression work during the supervised learning process. 

RESULTS AND DISCUSSIONS 

The use of artificial neural networks (ANN) should be avoided 

unless it can be shown that the numerical approach used to solve 

the governing equations adequately represents the physics that 

lies behind them. Until this can be proved, the use of ANN is 

not warranted. After that, the ANN algorithm is trained by 

employing the outcomes of the computations carried out on the 

set of equations. The materials and its configurations are shown 

in table 1, and the results achieved by performing several 

metrics are shown in fig 3- fig 7. 
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Table 1: Material and its configuration 

Model Algorithm structure Functions 

Porous Media 8:4:1 Gaussian 

Reinforced Porous Media 8:4:1 Polynomial kernel 

Reinforced Porous Media with ANN 8:100:1 Ensemble 

  

 

Figure 3: RMSE 

 

Figure 4: MAE 
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Figure 5: R2 

 

Figure 6: ROC 

 

Figure 2-6 provides a comparison of the non-dimensional 

components of temperature with the non-dimensional 

components of velocity. The relative error of these findings, 

which were derived from the prior study, is often less than 0.1% 

of the time. The fact that this possibility already exists and that 

it has been properly investigated is very encouraging news. In 

addition, it was found that the results based on the current local 

thermal non-equilibrium and those of LTE reported 

demonstrate no noticeable difference in the limit of a large 

value of Biot numbers in the porous medium, which is 

physically expected.  

The introduction of radiation into the flow field has the ability 

to bring about shifts in the way temperatures are distributed 

throughout the environment. Surprisingly, radiation does not 

have any effect whatsoever on the temperature of the fluid. This 

is because the temperatures of the fluid and the solid are 

different in a non-equilibrium thermal environment, which is 

essential for the radiation heat transfer mechanism to function 

properly. The condition must be non-equilibrium in order for 

the mechanism to work properly. However, if the value of the 

radiation parameter is increased to its maximum, the 

temperature of the solid will reach the temperature of the 

freestream over a shorter radial distance.  
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Figure 7: Accuracy 

This occurs when the value of the radiation parameter is 

increased to its maximum. Because of this, we are aware that 

there is a limit to the extent to which radiation heat transport 

can have an impact on a porous domain. This came about as a 

direct result of the previous point. The study is able to see how 

the temperature of the wall effects the temperature distribution 

of the fluid and the porous solid. Find out how much of a role 

the temperature parameter has in determining the system's 

overall thermal response, and use this information to make 

decisions. Both convection and radiation are able to move heat 

more effectively when the temperature of the wall increases. 

If the temperature does not influence the rate of the reaction, 

then the concentration must have a substantial impact on how 

the temperature is maintained. In order to accomplish the 

desired outcome of reducing the non-dimensional concentration 

by one order of magnitude near the cylinder wall, it is necessary 

to increase the reaction rate. This indicates that the mass 

boundary layer is becoming thinner as a result of greater species 

formation at the surface of the catalyst as a result of the 

increased reaction rate. This is because the increased reaction 

rate is the cause of the increased species formation at the surface 

of the catalyst. This is due to the fact that a higher reaction rate 

is the root cause of a greater number of species being created.  

In addition, this image illustrates the impact that various values 

of the Soret number have on the mass distribution when applied 

to a variety of heat-generating intensities at a range of different 

levels. Because it is simpler for mass to migrate from the warm 

zone to the cold zone when the SORET number is negative, the 

mass boundary layer can be regarded complete at smaller radial 

distances. This allows for more efficient mass transfer from the 

warm zone to the cold zone. This is because when the Soret 

number is negative, heat transfer stimulates the transfer of mass, 

but when the Soret number is positive, heat transfer and mass 

transfer work in the opposite manner. The reason for this is that 

when the Soret number is negative, heat transfer stimulates the 

transfer of mass. Because of this, the mass boundary layer gets 

thicker as the SORET number goes up. This is a direct result of 

the situation. 

Boosts that are applied to the Nusselt number are significantly 

influenced by increases in the heat source parameter, which can 

have a considerable multiplicative effect. This indicates that an 

increase in temperature differential, which can be induced 

either by an increase in the heat source or an increase in the 

response rate strength, is what makes the convective heat 

transfer more effective. This increase in temperature 

differential can be induced by either an increase in the heat 

source or an increase in the response rate strength.  

Changes in the Damkohler number have a relatively minor 

impact on the Nusselt number. Because of this, it is possible to 

maximise the correspondingly negative value of the Nusselt 

number whenever the Soret number has a value that is in the 

negative. The absolute value of the Soret number will cause the 

Nusselt number to decrease. This is due to the fact that thermal 

diffusion will become more prevalent than convection as the 

Soret number grows. In spite of the fact that the activation 

energy might take on a variety of different values, the Nusselt 

number has a propensity to converge on a single maximum. 

CONCLUSIONS 

As part of this investigation, we develop a machine learning 

prediction model in order to compute an estimate of the rate of 

mass transfer in a porous medium whose foundation is an 

alumina matrix. This conclusion was reached after it was 

determined that both sets of results are based on the current 

local thermal non-equilibrium. After demonstrating that both 

sets of results were consistent with one another, this conclusion 

was reached as a result. These two comparisons show how 

trustworthy the equations that were selected and the numerical 

technique that was utilised are by demonstrating their 

dependability. In previous publications that they have authored, 
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the writers have provided a lengthy list of proofs and provided 

further depth of explanation regarding the numerical strategy 

that they applied. 

REFERENCES  

i. Seenivasan, D., Elayarani, M., & Shanmugapriya, M. 

(2021). Heat and Mass Transfer Analysis of Al 2 O 3-

Water and Cu-Water Nanofluids Over a Stretching 

Surface with Thermo-diffusion and Diffusion-Thermo 

Effects Using Artificial Neural Network. Trends in 

Mechanical and Biomedical Design, 417-434. 
ii. Hajimirza, S., & Sharadga, H. (2021). Learning thermal 

radiative properties of porous media from engineered 

geometric features. International Journal of Heat and 

Mass Transfer, 179, 121668. 
iii. Duan, J., & Li, F. (2021). Transient heat transfer 

analysis of phase change material melting in metal foam 

by experimental study and artificial neural 

network. Journal of Energy Storage, 33, 102160. 
iv. Pati, S., Borah, A., Boruah, M. P., & Randive, P. R. 

(2022). Critical review on local thermal equilibrium and 

local thermal non-equilibrium approaches for the 

analysis of forced convective flow through porous 

media. International Communications in Heat and Mass 

Transfer, 132, 105889. 
v. Shilpa, B., Leela, V., Prasannakumara, B. C., & 

Nagabhushana, P. (2022). Soret and Dufour effects on 

MHD double-diffusive mixed convective heat and mass 

transfer of couple stress fluid in a channel formed by 

electrically conducting and non-conducting 

walls. Waves in Random and Complex Media, 1-22. 
vi. Barnoon, P., Toghraie, D., & Rostami, S. (2020). 

Optimization of heating-cooling generators with porous 

components/cryogenic conductors on natural 

convection in a porous enclosure: Using different two-

phase models and single-phase model and using 

different designs. International Communications in 

Heat and Mass Transfer, 111, 104472. 
vii. Sheikholeslami, M., Gerdroodbary, M. B., Moradi, R., 

Shafee, A., & Li, Z. (2019). Application of Neural 

Network for estimation of heat transfer treatment of 

Al2O3-H2O nanofluid through a channel. Computer 

Methods in Applied Mechanics and Engineering, 344, 

1-12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii. Mehdi, S., Nannapaneni, S., & Hwang, G. (2022). 

Structural-material-operational performance 

relationship for pool boiling on enhanced surfaces using 

deep neural network model. International Journal of 

Heat and Mass Transfer, 198, 123395. 
ix. Maddah, H., Ghazvini, M., & Ahmadi, M. H. (2019). 

Predicting the efficiency of CuO/water nanofluid in heat 

pipe heat exchanger using neural network. International 

Communications in Heat and Mass Transfer, 104, 33-

40. 
x. Xi, L., Xu, L., Gao, J., Zhao, Z., & Li, Y. (2022). 

Cooling performance analysis and structural parameter 

optimization of X-type truss array channel based on 

neural networks and genetic algorithm. International 

Journal of Heat and Mass Transfer, 186, 122452. 
xi. Sheri, S., & Shamshuddin, M. D. (2018). Finite element 

analysis on transient magnetohydrodynamic (MHD) 

free convective chemically reacting micropolar fluid 

flow past a vertical porous plate with Hall current and 

viscous dissipation. Propulsion and Power 

Research, 7(4), 353-365. 
xii. Chao, B. H., Wang, H., & Cheng, P. (1996). Stagnation 

point flow of a chemically reactive fluid in a catalytic 

porous bed. International journal of heat and mass 

transfer, 39(14), 3003-3019. 
xiii. Pal, D., & Biswas, S. (2018). Magnetohydrodynamic 

convective-radiative oscillatory flow of a chemically 

reactive micropolar fluid in a porous 

medium. Propulsion and Power Research, 7(2), 158-

170. 
xiv. Tlili, I., Khan, W. A., & Khan, I. (2018). Multiple slips 

effects on MHD SA-Al2O3 and SA-Cu non-Newtonian 

nanofluids flow over a stretching cylinder in porous 

medium with radiation and chemical reaction. Results 

in physics, 8, 213-222. 
xv. Khan, M., El Shafey, A. M., Salahuddin, T., & Khan, F. 

(2020). Chemically Homann stagnation point flow of 

Carreau fluid. Physica A: Statistical Mechanics and its 

Applications, 551, 124066. 
xvi. Alizadeh, R., Karimi, N., Mehdizadeh, A., & 

Nourbakhsh, A. (2019). Analysis of transport from 

cylindrical surfaces subject to catalytic reactions and 

non-uniform impinging flows in porous media. Journal 

of Thermal Analysis and Calorimetry, 138(1), 659-678. 


