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Abstract: With intense competition that exists in the mining sector around the world, improvements in both product performance 

and energy economy are absolutely important. This presents a one-of-a-kind obstacle due to the fact that the demand for raw 

resources is constantly growing, despite the fact that vast supply of high-quality commodities are rapidly running out. The ability 

to correctly identify chemicals is a skill that is crucial to the investigation of a wide range of subjects. Conventional methods for 

determining the identity of chemicals take a significant amount of time and demand a substantial number of resources due to the 

fact that they impose a significant amount of reliance on the knowledge of the identifier as well as on external equipment. 

Technology based on deep learning has made it possible for people to identify chemicals in a way that requires significantly less 

time and effort, as well as a significant reduction in the number of errors produced. 
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INTRODUCTION 

In order to treat ore successfully from the mine to the mill and 

beyond, new methods need to be developed to describe the ore 

components and assess the ore prospective performance in 

applications farther down the processing chain [1]. Utilizing 

cutting-edge methods for liberation analysis and chemical 

characterization is necessary if one want to provide a more 

precise description of ore bodies and the subsequent processing 

of ore resources [2] [3].  

Chemical-based technologies have a history of success, 

particularly in the fields of chemical identification and 

liberation analysis (MLA). The process of identifying 

chemicals provides a plethora of information, not only about the 

chemical composition of an ore but also about the textural 

properties of the ore. When planning comminution and leaching 

procedures for chemical processing, one of the most important 

steps is to make use of chemical liberation data [4].  

In a number of investigations, in particular this one, the two-

dimensional chemical layer analysis (MLA) and a matching 

two-dimensional slice derived from micro-CT data were 

compared and contrasted regarding chemical segmentation. On 

the other hand, past knowledge in the form of 2D MLA 

chemical data is not utilized in any way during the segmentation 

phase of the process. This is done so that the procedure can 

proceed more smoothly [5]. 

Complex algorithms [6]-[12] that make use of computer vision 

are required in order to tackle the issues that have been brought 

to light with 2D MLA and current 3D MLA operations. These 

issues have been brought to light as a result of recent research. 

One method that is believed to be on the cutting edge of 

computer vision is the use of a convolutional neural network 

(CNN) that has been trained in a deep learning framework. It 

has been put to extensive use in geoscientific contexts for the 

aim of semantic segmentation.  

BACKGROUND 

The process of anticipating and evaluating the geological 

chemical resources is broken down into several stages. One of 

these stages is called intelligent prospecting. The transition took 

place gradually in the recent years. This phase was brought 
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about as a result of this transition. With the goal of simplifying 

the process of trading huge datasets, a number of distinct big 

data cloud platforms have been established. Some examples of 

these platforms include cloud computing, data clouds, and 

automatic text reading. One aspect that helps to the 

advancement of the quantitative assessment of chemical 

resources is the availability of technologies that are capable of 

analyzing huge amounts of data [12]. This is just one of the 

factors [13], because digital geology in this age of big data 

stimulates the development of geological prospecting.  

In addition, when evaluating and making use of big data in the 

field of geology, it is necessary to take into consideration the 

characteristics of geological data as well as the requirements of 

the geological field [14]. 

In addition, the methodology behind prospecting has been 

comprehensively summed up [15], with an emphasis on the 

usage of huge volumes of geological data [16]. These theories 

are as follows: chemical prediction model theory, chemical 

prediction correlation theory, trend analysis method, and 

differentiation theory. These theories are the trend analysis 

method, differentiation theory, chemical prediction model 

theory, and chemical prediction correlation theory. 

The model in [17] has provided an innovative strategy that is 

driven by models in this day and age of big data science. In this 

approach, geological theory is used to determine how to 

interpret geological data, and computer technology is utilized to 

mine large amounts of geological data. The objective is to arrive 

at more precise forecasts on the times at which chemical 

resources will be available. 

The metallogenic theory and prediction could be brought about 

by geological big data after providing a comprehensive 

summary of the use of geological big data in the study of 

metallogenic regularity, metallogenic series, and metallogenic 

systems. He came to this conclusion after providing a 

comprehensive summary of the use of geological big data in the 

study of geological big data. [18] As a result of this finding, due 

to his belief that the future information wealth could only be 

obtained by efficiently extracting information in accordance. 

He did this because he believed that this was the only way that 

the information wealth could be obtained in the future.  

Big Data relies on the usage of extremely large amounts of data. 

If there is not a need that has been expressed clearly for the data 

or a method that is effective to mine the data, then the data will 

be meaningless. The idea of big data is not predictive in and of 

itself; rather, the process of moving from the known to the 

unknown may be labelled predictive thinking, and it entails 

mining data for probable knowledge. Predictive thinking 

requires shifting from the known to the unknown. The transition 

from the known to the unknown is an essential part of predictive 

thinking. In order to take chemical resource prediction to the 

next level of intellectualization, not only do we need to 

incorporate a wide range of data analysis algorithms, but we 

also need to set up a perfect and effective theoretical system of 

big data prediction methodologies. Only then will we be able to 

take chemical resource prediction to the next level of 

intellectualization. After that, and only then, will we be able to 

advance the amount of intellectualization achieved by our 

chemical resource projection. 

 

PROPOSED METHOD 

In this paper, not only is an intelligent prediction method that 

takes into account, the main focus, the prediction model, is 

successful. All of this is done with the goal of enhancing the 

efficacy and accuracy of the predictions produced on chemical 

resource availability.  

In this manner, the algorithm gradually gets closer to the 

optimal combination and accomplishes the ore targets by 

automatically learning the logical principles and developing the 

mechanism of random combination of the ore-controlling 

components. The algorithm is able to accomplish its ore targets 

as a result of this. This method can be utilized to assist with a 

variety of tasks, including the mining of intelligent 

geographical data as well as the analysis of decisions. 

The Chemical Liberation Analyzer and the QEMSCAN have 

swiftly become the most popular approaches in comparison to 

other semi-automated SEM and optical microscopy 

technologies. This is primarily attributable to the fact that they 

are substantially less costly and need a significantly lower 

amount of time to analyze. It is necessary to collect a significant 

amount of physical information from the MLA in order to 

develop effective ways for processing chemicals. This 

information should include details such as the size of the pieces, 

the quality of the chemicals, how they feel, and how much they 

release. 

It is widely knowledge that sampling mistakes and stereological 

effects may occur whenever a two-dimensional analysis is 

performed on a three-dimensional fragment structure. Because 

of this, it is likely that such an analysis will not be adequate for 

completely defining the physical qualities of the ore samples 

that have been examined. A 2D mapping of a polished ore 

cross-section is generated for automated chemical liberation 

analyzers such as QEMSCAN, which can only identify the 

chemicals on the polished surface.  

Any structural information received from the ore sample is 

pointless because it must first be ground into a powder before 

the XRD instrument can be used on it. The chemical 

composition of a complete sample can be determined using 

XRD measurements; however, these data do not provide any 

information regarding the location of the individual chemicals 

or the associations they have with one another. Because of its 

capacity to explore local information as well as calibrate with 

other methods, micro-XRD is a viable tool for 3D MLA. The 

micro-XRF and QEMSCAN methods are significantly faster 

than this one. 

Recent developments have resulted in the creation of a novel 

technique known as high-resolution 3D X-ray microcomputed 

tomography (micro-CT), which aims to circumvent the 

shortcomings of traditional 2D imaging. The microscale 

structure of rocks may be analyzed with the use of this 

technology, which is non-invasive and non-destructive at the 

same time. Micro-CT has been applied in a number of research 

initiatives conducted by MLA in order to explore the three-

dimensional fragment structure as well as the spatial groupings. 

In MLA, it is required to split images into classes, where each 

voxel represents a certain chemical or pore space. This is done 

using the MLA image classification system. The study that has 

been done utilizing micro-CT for MLA has been beset by a 

variety of methodological difficulties, despite the fact that this 

was a good beginning. 



Chemical Mining Using Big Data Image Analytics With Deep Three-Dimensional Section A-Research paper 

Convolutional Neural Network 

Eur. Chem. Bull. 2022,11(11), 105 – 112                                              107 

Due to the fact that the attenuation of an X-ray is correlated to 

the density of a chemical, micro-CT scans of a variety of 

chemicals that have comparable densities are unable to discern 

amongst one another. This is because the attenuation of an X-

ray is proportional to the density of a chemical. In order to 

determine the chemicals that are present, standard segmentation 

algorithms often make use of the X-ray attenuation, also known 

as the value of each particular voxel. Neither the chemical 

structure nor the textural features were taken into consideration 

when carrying out the procedure of segmentation. 

It is impossible to completely remove human bias from the 

segmentation process due to the fact that the criteria for doing 

so are specified by the user. Because of this, the determination 

of where fragment borders are located and, ultimately, the 

findings of the study are influenced. When it comes to 

segmentation, many research fail to take into consideration the 

cross-sectional data that might be supplied by 2D MLA. This is 

because 2D MLA requires multiple measurements. 

 

3D CNN 

In this part of the article, there is a stacked block convolutional 

neural network (SB-3D-CNN) that uses 3D convolution to 

combine spectral and spatial input together. The proposed 

methodology is broken down into three distinct stages. The first 

step is called dimensional reduction, and it uses principal 

component analysis (PCA) and neighbourhood extraction to cut 

down on the number of spectral and spatial dimensions as well 

as redundant information. This approach is able to maintain the 

spectral dimensions that are considered to be the most 

significant. The example of Indian Pines (IP) is used to explain 

the dimensions reduction aspect of the process. Based on the 

dimensions of the original data, which were 145×145×200, the 

input of the network is turned into patches have been performed 

on it. 

In the subsequent stage, the procedure of feature extraction and 

filtering is carried out. During this stage, a five-block structure 

that includes an attention layer is utilised. Each block contains 

three-dimensional convolutional layers, each of which has a 

one-stride and a two-stride stride. The major contributions of 

this step are the extraction and compilation of abstract features, 

followed by the removal of information that interferes with the 

process. In order to achieve pooling layer downsampling. The 

data from the HSI tensor will not be protected by the proposed 

design because it does not use a pooling layer. Padding can be 

used to control the boundary effect, and while employing this 

method, the size of the output is maintained to be consistent 

with that of the input. The batch normalisation step that comes 

after each convolutional layer has the potential to speed up the 

convergence process even further. 

After that, the spectral-spatial characteristics are categorised 

with the help of a fully linked layer. The softmax activation 

strategy is utilised in the categorising step. The output of the 

fully linked layer contains n different kinds of conditional 

probabilities. It is possible to utilise a formula. 
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where k - weight value, m- belongs to a category and r - bias 

term. 

The 3D-architecture is depicted here in Figure 1. 
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Figure 1: 3D-CNN 

 

RESULTS AND DISCUSSIONS 

The MinDat-Chemical-Image-Dataset repository on GitHub 

makes available for download an assortment of about half a 

million labelled photos of chemicals taken from mindat.org. 

The collection was created by loliverhennigh. The dataset is 

collected from GitHub - loliverhennigh/MinDat-Chemical-

Image-Dataset: A dataset of +500,000 chemical images with 

labels taken from mindat.org. 

In order to validate our neural network model, we selected 

13,911 images out of a total of 220,057 photos to test. This 

allowed us to determine whether or not the model was 

successful. When one of the photos is loaded into the neural 

network, it will provide a classification of the chemicals that are 

most likely to be present in the image. In this part of the study, 

the accuracy of our approach is evaluated and compared to the 

accuracy of a number of different ways, and the findings of our 

inquiry are presented. 

It is necessary to collect a massive amount of data in order to 

put YOLOv5 chemical identification training through its paces 

and validate its results. When a model has access to a greater 

quantity of training data, this leads to increases in the model 

accuracy, generalizability, and robustness. Mindat is the most 

extensive database of chemical information in the entire world, 

and it is handled cooperatively by a network of chemical experts 

from all around the world. As part of the preliminary work for 

the project, images of fifty different types of chemicals were 

gathered. One of the aspects that contributes to the limited 

availability of some chemicals is the rarity of the chemicals 

themselves. For instance, the rarity of certain chemicals makes 

it difficult to obtain an adequate number of samples. This is one 

of the factors. It is essential to make note of the fact that each 

and every chemical specimen has been accurately labelled and 

arranged in accordance with the criteria established by Mindat. 

It is possible that some of the photographs that were 

downloaded from the internet were altered in some manner, or 

that they were captured using a microscope. Both of these 

things could have an effect on the credibility of the findings. As 

a consequence of this, while we were compiling the data, we 

excluded from consideration the photographs that did not meet 

the prerequisites of the dataset based on our own arbitrary 
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criteria. First thing that we did was take all of the collected 

chemical photos and segregate them into three distinct  

sets: a training set, a validation set, and a test set. These sets 

were used for training, validating, and testing the classification 

system. 

 

 

Figure 2: Accuracy 

 

Figure 3: Sensitivity 
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Figure 4: Mean 

 

Figure 5: Standard Deviation 
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Figure 6: MAPE 

 

Figure 2- 6 contains the findings of our experiments that made 

use of the 3D-CNN. When analyzing images with either an 

insufficient or an excessive quantity of light, the results that we 

acquired are presented in this table as an average accuracy. The 

findings of the trials indicate that improving identification 

precision by combining the Laplace and 3D-CNN algorithms in 

some way can greatly increase the accuracy of the process. 

All of our chemicals have been correctly identified to a degree 

of accuracy that is at least 80%, with the exception of a few 

chemicals that are exceptionally uncommon in the general 

population. Four of these chemicals have poor precision since 

they did not acquire adequate training. The reason for this is as 

follows: In instance, the application of Laplace in conjunction 

with 3D-CNN resulted in a 10% increase in the precision of the 

chemical detection process. When compared to the conclusions 

that were obtained without the assistance of Laplace, this is an 

improvement. 

The primary challenge is that many different chemicals have 

shapes and textures that are very similar to one another. This 

makes it challenging for the model to correctly identify the 

chemicals based on photographs that were taken in insufficient 

or extremely high light, which causes chromatic aberrations. 

Because of this, it is one of the components of the problem that 

is the most challenging. Because the chemicals are too dark and 

have less of an effect when exposed to light, using Laplace 

theory does not result in a considerable improvement in 

accuracy.  

CONCLUSIONS 

We present a deep learning approach to chemical detection that 

makes use of 3D-CNN as part of the scope of this work. We are 

able to significantly improve the accuracy rate of chemical 

identification in comparison to the algorithms that were 

traditionally used for chemical identification by lowering the 

impact that the intensity of the illumination has on the chemical 

identification process. We made use of 3D-CNN during the 

portion of the deep learning process that was devoted to 

recognition so that we could achieve an even higher level of 

accuracy. We employed the fine-tuned 3D-CNN to boost the 

identification precision even further, which we did when we 

were selecting models to use. 
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