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One-pot solvent free three components coupling of aryl aldehydes, β-dicarbonyl compounds, urea or thiourea was performed to afford 
corresponding 3,4-dihydropyrimidine-2-ones and their sulfur analogs 3,4-dihydro-pyrimidine-2-thiones. It is the first report of BF3.ACN 
catalyzed the solvent-free synthesis of pyrimidone analogs. 
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INTRODUCTION 

The multicomponent reactions (MCRs) are established as 
a simple, convenient method in synthetic chemistry.1-3 

Furthermore, MCRs are extremely economical, high 
yielding, less time consuming and with less side reactions.4-5 
Therefore, the design of new MCRs with the green 
procedure has engaged huge attention, especially in the 
areas of drug discovery, organic synthesis and material 
science.  

Pyrimidines have extremely biological importance,6-11 
they and  their analogs are considered as important bioactive 
heterocycles -+exhibiting interesting biological activities like 
antiviral,12 antiprotozoan,13 anti-proliferative,14 cytotoxic 
activity15 and anti-inflammatory .16 

As a part of our ongoing efforts to develop new routes for 
the synthesis of heterocyclic compounds,17 herein, we like to 
report a solvent-free single step multicomponent synthesis 
of 3,4-dihydropyrimidine-2-one and 3,4-dihydropyrimidine-
2-thione derivatives.  

 

 

 

 

Figure 1. BF3.ACN catalyzed solvent-free synthesis 3,4-
dihydropyrimidine-2-one and 3,4-dihydropyrimidine-2-thione 
derivatives.  

It is the first report of solvent-free condensation of β-keto 
esters, aryl aldehydes and urea or thiourea in the presence of 
BF3.MeCN (BF3*ACN)) as an effective catalyst (Figure 1). 

RESULTS AND DISCUSSION 

Initially, a mixture of benzaldehyde, ethyl acetoacetate 
and urea was refluxed in ethanol in the presence of 
BF3.ACN (Table 1) to obtain the corresponding 3,4-
dihydropyrimidine-2-one derivative. The product was 
obtained in good yield (90 %). Solvent optimization studies 
of the above reaction were carried out and are summarized 
in Table 1. The reaction proceeded very well in solvent-free 
condition (Table 1, 97%). 

Table 1. Solvent optimization for one-pot synthesis 3,4-
dihydropyrimidine-2-one in the presence of 10 mol % BF3.MeCN 
catalysta 

Solvent Condition Time, 
min 

Yield, 
%b 

Ethanol Reflux 60 90 
Water Reflux 130 85 
Water : Ethanol 
(1:1) 

Reflux 120 88 

Methanol Reflux 90 88 
Acetonitrile Reflux 35 92 
Solvent Free 90  ͦ C 20 97 

a) Experimental conditions: benzaldehyde (2 mmol), urea (3 mmol), ethyl 
acetoacetate (2 mmol); b) Isolated yield. 

 

Similarly, catalyst optimization studies of the above 
reaction were also carried out in solvent-free conditions and 
are summarized in Table 2. When catalyst was used from 5 
mol%, 10 mol%, 15 mol% both yield and rate of the 
reaction was increased. However, the further increment of 
catalyst amount did not appreciably affect the yield and rate 
of the reaction. Finally, among all the experimental 
variations, the 10 mol% BF3.ACN solvent-free condition at 
90 ͦ C temperature gave the best results with 97% yield 
(Table 2). 
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To check the generality and scope of the optimized 
reaction, different aromatic aldehydes, β-ketoesters, urea 
and thiourea were used. The resultant 3,4- 
dihydropyrimidine-2-one (D1-9) and 3,4-dihydropyrimidine-
2-thione derivatives (D10-12) were obtained in good to 
excellent yields as mentioned in Table 3. 

Table 2. Catalyst optimization for one-pot synthesis 3,4-
dihydropyrimidine-2-one a 

Sr. No. Catalyst, mol 
% 

Time, min Yield, %b 

1 5% 35 85 
2 10% 20 97 
3 15% 15 95 
4 20% 15 95 
5 25% 15 95 

a)Experimental conditions: benzaldehyde (2 mmol), urea (3 mmol), ethyl 
acetoacetate (2 mmol) at 90 ͦ C; b)Isolated yield. 

Table 3. Synthesis of 3,4-dihydropyrimidine-2-ones and 3,4-
dihydropyrimidine-2-thiones from aryl aldehydes, β-ketoesters and 
urea/thioureaa 

Aldehyde X β–
keto-
esterc 

Yieldb Melting point,  °ͦC 
Measured Reported 

C6H5 O EAA 97 203-204 20618 
m-NO2C6H4 O EAA 94 226-227 227-22820 

p-HOC6H4 O EAA 99 223-226 227-22820 

p-ClC6H4 O EAA 95 208-210 209-21218 

m-ClC6H4 O EAA 98 194-196 193-19420 

m-HOC6H4 O EAA 97 166-169 167-17018 

C6H5 O MAA 92 211-213 212-21318 
p-MeOC6H4 O EAA 91 198-199 199-20119 

p-FC6H4 O EAA 94 175-176 176-17821 
C6H5 S EAA 99 206-208 207-20819 
m-NO2C6H4 S MAA 98 273-274 273-27518 

p-HOC6H4 S EAA 97 201-203 202-20321 

a) Reaction conditions: Aromatic aldehyde (2 mmol), Urea/Thiourea (3 
mmol), MAA or EAA (2 mmol) and catalyst (10 mol%) solvent free at  
900C; b)Isolated yield, c) MAA-methyl acetoacetate, EAA-ethyl 
acetoacetate 

EXPERIMENTS 

All the chemicals were purchased from Sigma Aldrich and 
used as received without further purification. All 
compounds were matched with and confirmed by literature 
data for Melting point, IR, 1H NMR, 13C NMR and mass 
spectrometry. The melting points were determined on 
Labstar melting point apparatus and are uncorrected. The  
IR spectra were taken on a Perkin-Elmer FTIR-1600  
spectrophotometer and the data expressed in cm (KBr). 1H 
and 13C NMR spectra were recorded on Bruker Avance (300 
MHz) spectrometer in CDCl3 using TMS as the internal 
standard. Mass spectra were recorded on an Agilent 
spectrometer. 

General procedure for the preparation of 3,4-dihydropyrimidi-
ne-2-one and 3,4-dihydropyrimidine-2-thione derivatives (D1-12) 

A mixture of β-ketoester (2 mmol), urea/thiourea (3 
mmol), aryl aldehyde (2 mmol) and BF3.ACN (10 mol%) 
was heated at 90°C till the completion of the reaction, 
monitored by TLC in Dichloromethane : Methanol (9:1) as a 
mobile phase. The reaction mixture was cooled and poured 
in 10 mL ice-water and precipitated solid was filtered out to 
give the desired crude product. The crude product was 
recrystallized with ethanol to get pure 3,4-
dihydropyrimidine-2-one and 3,4-dihydropyrimidine-2-
thione product as shown in  (Table 3). The products were 
analyzed by IR, 1H and 13C NMR.  

Ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-
carboxylate  

White solid, mp. 203–204 °C; IR (KBr) ν: 3228, 3106, 
2936, 1721, 1695, 1604, 1221 cm−1; 1H NMR (300 MHz, 
CDCl3) δ: 1.23 (t, 3H), 2.35 (s, 3H), 4.10 (m, 2H), 5.25 (s, 
1H), 5.98 (s, 1H), 7.88–7.13 (m, 5H), 8.25 (s, 1H); 13C 
NMR (75 MHz, CDCl3) δ: 14.1, 18.3, 54.4, 61.4, 102.3, 
126.2, 127.2, 128.7, 143.5, 146.1, 163.6 ppm. 

Ethyl 1,2,3,4-tetrahydro-6-methyl-4-(3-nitrophenyl)-2-
oxopyrimidine-5-carboxylate (D2) 

Off-white solid, mp. 226-227°C; IR (KBr) ν: 3408, 3106, 
2954, 1670, 1605, 1590, 1524, 1348, 1215 cm−1;  1H NMR 
(300 MHz, CDCl3) δ: 1.21 (t, 3H), 2.54 (s, 3H), 4.37 (q, 
2H), 5.21 (s, 1H), 7.18-7.25 (m, 2H), 7.88 (d, 2H, 3J = 8.7 
Hz), 8.17 (s, 1H), 8.81 (s, 1H); 13C NMR (100 MHz, CDCl3) 
δ: 165.7, 158.5, 148.7, 148.4, 131.8, 130.6, 129.5, 125.7, 
121.8, 118.8, 61.2, 53.4, 25.4, 17.3 ppm.  

Ethyl 1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-6-methyl-2-
oxopyrimidine-5-carboxylate (D3) 

White solid, mp. 223-226°C; IR (KBr) ν: 3510, 3285, 
3115, 2968, 1658, 1523, 1466, 1218 cm−1; 1H NMR (300 
MHz, CDCl3) δ: 1.14(t, 3H), 2.24 (s, 3H), 3.96 (m, 2H), 
5.06 (s, 1H), 6.75 (d, 2H), 7.05 (d, 2H), 9.15 (s, 1H), 9.36 (s, 
1H); 13C NMR (100 MHz, CDCl3) δ:  166.5, 159.1, 152.8, 
147.9, 136.8, 126.3, 124.8, 115.8, 62.8, 49.3, 24.4, 19.4 
ppm. 

Ethyl 4-(4-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-
oxopyrimidine-5-carboxylate (D4) 

White solid, mp 208-210°C; IR (KBr) ν: 3239, 3117, 
2969, 1715, 1646, 1458, 1225, 1093 cm−1; 1H NMR (300 
MHz, CDCl3) δ: 1.21 (t, 3H), 2.38 (s, 3H), 4.11 (m, 2H), 
5.85 (s, 1H), 7.31 (d, 2H), 7.30 (d, 2H), 8.06 (s, 1H); 13C 
NMR (100MHz, CDCl3) δ: 168.2, 158.6, 146.8, 143.3, 
145.5, 132.1, 129.2, 117.1, 61.4, 51.2, 22.4, 18.3 ppm.  
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Ethyl 4-(3-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-
oxopyrimidine-5-carboxylate (D5) 

White solid, mp. 194-196°C; IR (KBr) ν:3245, 3110, 
2975, 1705, 1655 cm−1; 

1
H NMR (CDCl3, 

300 MHz) δ: 1.21 
(t, 3H), 2.43 (s,3H), 4.21 (m, 2H), 5.42 (s, 1H), 7.22 (d, 2H), 
7.33 (d, 2H), 7.61 (brs, 1H), 8.12 (brs, 1H). 13C NMR 
(CDCl3, 

100 MHz) δ: 168.2, 158.4, 146.5, 143.2, 145.3, 
131.6, 129.2, 117.1, 61.4, 51.4, 22.3, 18.5 ppm. 

Ethyl 1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-6-methyl-2-
oxopyrimidine-5-carboxylate (D6) 

White solid, mp. 166-169°C; IR (KBr) ν: 3515, 3310, 
3106, 2958, 1724, 1645, 1612, 1466, 1223 cm−1;   1H NMR 
(300 MHz, CDCl3) δ: 1.14 (t,  3H), 2.25 (s, 3H), 4.06 (m, 
2H), 5.06 (s, 1H), 6.62 (d, 1H), 6.68 (d, 2H), 7.10 (t, 2H), 
9.11 (s, 1H), 9.31 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 
163.7, 157.8, 150.2, 146.4, 133.9, 131.7, 130.2, 124.7, 
121.3, 115.8, 60.9, 54.7, 26.2, 18.1 ppm. 

Methyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-
5-carboxylate (D7) 

White solid, mp. 211-213°C, IR (KBr) ν: 3415, 3320, 
3106, 2950, 1728, 1660, 1632, 1475, 1234 cm−1; 1H NMR 
(CDCl3, 

300 MHz) δ: 9.23 (s, 1H), 7.74 (s, 1H), 7.45-7.35 
(m, 2H), 7.28-7.26 (m, 3H), 5.18 (d, 1H), 3.55 (s,  3H), 2.26 
(s, 3H); 13C NMR (CDCl3 

100 MHz) δ: 166.3, 152.8, 150.1, 
145.3, 129.4, 128.4, 127.5, 99.8, 54.6, 51.8, 18.8 ppm. 

Ethyl 1,2,3,4-tetrahydro-4-(4-methoxyphenyl)-6-methyl-2-
oxopyrimidine-5-carboxylate (D8) 

White solid, mp. 198-199°C; IR (KBr) ν: 3254, 3105, 
2955, 1710, 1645, 1515, 1464, 1225 m−1; 1H NMR (300 
MHz, CDCl3) δ: 1.13 (t, 3H), 2.24 (s, 3H), 3.38 (s, 3H), 4.1 
(m, 2H), 5.11 (s, 1H), 6.90 (d, 2H), 7.16 (d, 2H), 7.71 (s, 
1H), 9.14 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 168.0, 
158.2, 152.4, 149.5, 136.7, 130.2, 123.3, 118.8, 62.4, 61.8, 
49.7, 25.7, 19.7 ppm.  

Ethyl 4-(4-fluorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxo-
pyrimidine-5-carboxylate (D9) 

White solid, mp. 175-176°C; IR (KBr) ν:  3243, 1698, 
1638 cm−1; 1H NMR (300 MHz, CDCl3) δ: 9.24 (s, 1H), 
7.81 (s, 1H), 7.23 (m, 4H), 5.14 (s, 1H), 4.12 (m, 2H), 2.23 
(s, 3H), 1.11 (t, 3H); 13C NMR (100 MHz CDCl3) δ: 165.8, 
160.1, 152.2, 148.5, 141.4, 128.3, 115.3, 99.4, 59.4, 53.8, 
17.6, 14.8 ppm. 

Ethyl 1,2,3,4-tetrahydro-6-methyl-4-phenyl-2-thioxopyrimidi-
ne-5-carboxylate (D10) 

White solid, mp.  206-208°C, IR (KBr) ν:  3236, 3126, 
2946, 1728, 1698, 1226 cm−1; 1H NMR (

 
300 MHz, CDCl3) 

δ: 9.63 (1H, s), 8.94 (1H, s), 6.67-6.54 ( m, 5H), 4.53 (d, 
1H), 3.37 (m, 2H), 1.61 (3H, s), 0.44 (t, 3H); 13C NMR 
(CDCl3, 

100 MHz) δ: 175.3, 166.3, 145.9, 144.4, 129.3, 
128.4, 127.1, 101.7, 60.5, 54.8, 18.1,14.8 ppm. 

Ethyl 1,2,3,4-tetrahydro-6-methyl-4-(3-nitrophenyl)-2-
thioxopyrimidine-5-carboxylate(D11) 

White solid, mp. 273-274°C, IR (KBr) ν:  3325, 3215, 
3105, 2963, 1715, 1634, 1520 cm−1; 1H NMR (300  
MHz,CDCl3) δ: 9.38 (s, 1H), 8.17- 7.69 (m, 4H), 3.88 (m, 
2H), 2.24 (s, 3H), 1.13 (t, 3H); 13C NMR (CDCl3 100 MHz) 
δ: 165.3, 151.9, 149.6, 147.9, 147.2, 133.2, 130.2, 122.3, 
121.4, 98.4, 59.3, 53.7, 17.8, 14.2 ppm.  

Ethyl 1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-6-methyl-2-
thioxopyrimidine-5-carboxylate (D12) 

White solid, mp 201-203 °C; IR (KBr) ν: 3223, 3098, 
2980, 1742, 1655, 1459, 1251 cm−1; 1H NMR (300 MHz, 
CDCl3) δ: 1.24 (t, 3H), 1.89 (s, 3H), 4.16 (m, 2H), 5.87 (s, 
1H), 7.32(d, 2H), 7.33 (d, 2H), 8.07 (s, 1H); 13C NMR 
(100MHz, CDCl3) δ: 168.2, 158.6, 146.8, 143.3, 145.5, 
132.1, 129.2, 117.1, 61.4, 51.2, 22.4, 18.3 ppm.  

CONCLUSION 

In summary, it is the first report of cost-effective, solvent-
free mild protocol for the synthesis of 3,4-
dihydropyrimidine-2-one and 3,4-dihydropyrimidine-2-
thione derivatives using BF3.ACN as a catalyst. This  MCRs 
protocol offers several significant advantages like 
operational simplicity, superior atom-economy, shorter 
reaction time with good to excellent yields. 
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