EB ## ONE POT BF3.MeCN CATALYZED SOLVENT FREE SYNTHESIS OF 3,4-DIHYDROPYRIMIDINE-2-ONE ANALOGUES ## Ajit A. Kharpe $^{[a]}$, Tukaram S. Choudhare $^{[a]}$, Santosh N. Mokale $^{[b]}$ and Prashant D. Netankar $^{[a]*}$ Keywords: BF₃.ACN, solvent-free, 3,4-dihydropyrimidine-2-one. One-pot solvent free three components coupling of aryl aldehydes, β -dicarbonyl compounds, urea or thiourea was performed to afford corresponding 3,4-dihydropyrimidine-2-ones and their sulfur analogs 3,4-dihydro-pyrimidine-2-thiones. It is the first report of BF₃.ACN catalyzed the solvent-free synthesis of pyrimidone analogs. - * Corresponding Authors - E-Mail: pdnetchem@gmail.com - [a] Department of Chemistry, Maulana Azad College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004, India - [b] Department of Pharmaceutical Chemistry, Y B Chavan College of Pharmacy, Aurangabad-431 004, India #### INTRODUCTION The multicomponent reactions (MCRs) are established as a simple, convenient method in synthetic chemistry. ¹⁻³ Furthermore, MCRs are extremely economical, high yielding, less time consuming and with less side reactions. ⁴⁻⁵ Therefore, the design of new MCRs with the green procedure has engaged huge attention, especially in the areas of drug discovery, organic synthesis and material science. Pyrimidines have extremely biological importance, ⁶⁻¹¹ they and their analogs are considered as important bioactive heterocycles ⁻⁺exhibiting interesting biological activities like antiviral, ¹² antiprotozoan, ¹³ anti-proliferative, ¹⁴ cytotoxic activity ¹⁵ and anti-inflammatory . ¹⁶ As a part of our ongoing efforts to develop new routes for the synthesis of heterocyclic compounds, ¹⁷ herein, we like to report a solvent-free single step multicomponent synthesis of 3,4-dihydropyrimidine-2-one and 3,4-dihydropyrimidine-2-thione derivatives. CHO $$R_{1} + Q O O + X \\ R_{2} = CH_{3}, R_{3} = C_{2}H_{5}$$ $$R_{2} = CH_{3}, R_{3} = C_{2}H_{5}$$ **Figure 1.** BF₃.ACN catalyzed solvent-free synthesis 3,4-dihydropyrimidine-2-one and 3,4-dihydropyrimidine-2-thione derivatives. It is the first report of solvent-free condensation of β -keto esters, aryl aldehydes and urea or thiourea in the presence of BF₃,MeCN (BF3*ACN)) as an effective catalyst (**Figure 1**). #### RESULTS AND DISCUSSION Initially, a mixture of benzaldehyde, ethyl acetoacetate and urea was refluxed in ethanol in the presence of BF₃.ACN (Table 1) to obtain the corresponding 3,4-dihydropyrimidine-2-one derivative. The product was obtained in good yield (90 %). Solvent optimization studies of the above reaction were carried out and are summarized in Table 1. The reaction proceeded very well in solvent-free condition (Table 1, 97%). **Table 1.** Solvent optimization for one-pot synthesis 3,4-dihydropyrimidine-2-one in the presence of 10 mol % BF3.MeCN catalyst^a | Solvent | Condition | Time,
min | Yield,
% ^b | |----------------|-----------|--------------|--------------------------| | Ethanol | Reflux | 60 | 90 | | Water | Reflux | 130 | 85 | | Water: Ethanol | Reflux | 120 | 88 | | (1:1) | | | | | Methanol | Reflux | 90 | 88 | | Acetonitrile | Reflux | 35 | 92 | | Solvent Free | 90 °C | 20 | 97 | a) Experimental conditions: benzaldehyde (2 mmol), urea (3 mmol), ethyl acetoacetate (2 mmol); b) Isolated yield. Similarly, catalyst optimization studies of the above reaction were also carried out in solvent-free conditions and are summarized in Table 2. When catalyst was used from 5 mol%, 10 mol%, 15 mol% both yield and rate of the reaction was increased. However, the further increment of catalyst amount did not appreciably affect the yield and rate of the reaction. Finally, among all the experimental variations, the 10 mol% BF₃.ACN solvent-free condition at 90 ° C temperature gave the best results with 97% yield (Table 2). To check the generality and scope of the optimized reaction, different aromatic aldehydes, β -ketoesters, urea and thiourea were used. The resultant 3,4-dihydropyrimidine-2-one ($\mathbf{D_{1.9}}$) and 3,4-dihydropyrimidine-2-thione derivatives ($\mathbf{D_{10-12}}$) were obtained in good to excellent yields as mentioned in Table 3. **Table 2.** Catalyst optimization for one-pot synthesis 3,4-dihydropyrimidine-2-one ^a | Sr. No. | Catalyst, mol % | Time, min | Yield, % ^b | |---------|-----------------|-----------|-----------------------| | 1 | 5% | 35 | 85 | | 2 | 10% | 20 | 97 | | 3 | 15% | 15 | 95 | | 4 | 20% | 15 | 95 | | 5 | 25% | 15 | 95 | a) Experimental conditions: benzaldehyde (2 mmol), urea (3 mmol), ethyl acetoacetate (2 mmol) at $90\,^{\circ}$ C; b) Isolated yield. **Table 3.** Synthesis of 3,4-dihydropyrimidine-2-ones and 3,4-dihydropyrimidine-2-thiones from aryl aldehydes, β -ketoesters and urea/thiourea^a | Aldehyde | X | β– | Yieldb | Melting point, [®] C | | |---|---|--------------------|--------|-------------------------------|-----------------------| | | | keto- | | Measured | Reported | | | | ester ^c | | | | | C ₆ H ₅ | Ο | EAA | 97 | 203-204 | 206^{18} | | m-NO ₂ C ₆ H ₄ | О | EAA | 94 | 226-227 | $227-228^{20}$ | | p-HOC ₆ H ₄ | О | EAA | 99 | 223-226 | $227-228^{20}$ | | p-ClC ₆ H ₄ | О | EAA | 95 | 208-210 | 209-21218 | | m-ClC ₆ H ₄ | О | EAA | 98 | 194-196 | 193-194 ²⁰ | | m-HOC ₆ H ₄ | Ο | EAA | 97 | 166-169 | 167-170 ¹⁸ | | C ₆ H ₅ | О | MAA | 92 | 211-213 | 212-21318 | | p-MeOC ₆ H ₄ | О | EAA | 91 | 198-199 | 199-201 ¹⁹ | | p-FC ₆ H ₄ | Ο | EAA | 94 | 175-176 | $176 - 178^{21}$ | | C_6H_5 | S | EAA | 99 | 206-208 | 207-20819 | | m-NO ₂ C ₆ H ₄ | S | MAA | 98 | 273-274 | 273-275 ¹⁸ | | p-HOC ₆ H ₄ | S | EAA | 97 | 201-203 | 202-203 ²¹ | a) Reaction conditions: Aromatic aldehyde (2 mmol), Urea/Thiourea (3 mmol), MAA or EAA (2 mmol) and catalyst (10 mol%) solvent free at 90°C; b)Isolated yield, c) MAA-methyl acetoacetate, EAA-ethyl acetoacetate #### **EXPERIMENTS** All the chemicals were purchased from Sigma Aldrich and used as received without further purification. All compounds were matched with and confirmed by literature data for Melting point, IR, ¹H NMR, ¹³C NMR and mass spectrometry. The melting points were determined on Labstar melting point apparatus and are uncorrected. The IR spectra were taken on a Perkin-Elmer FTIR-1600 spectrophotometer and the data expressed in cm (KBr). ¹H and ¹³C NMR spectra were recorded on Bruker Avance (300 MHz) spectrometer in CDCl₃ using TMS as the internal standard. Mass spectra were recorded on an Agilent spectrometer. #### General procedure for the preparation of 3,4-dihydropyrimidine-2-one and 3,4-dihydropyrimidine-2-thione derivatives ($D_{1\cdot12}$) A mixture of β-ketoester (2 mmol), urea/thiourea (3 mmol), aryl aldehyde (2 mmol) and BF_{3.}ACN (10 mol%) was heated at 90°C till the completion of the reaction, monitored by TLC in Dichloromethane: Methanol (9:1) as a mobile phase. The reaction mixture was cooled and poured in 10 mL ice-water and precipitated solid was filtered out to give the desired crude product. The crude product was pure get recrystallized with ethanol to 3,4-dihydropyrimidine-2dihydropyrimidine-2-one and thione product as shown in (Table 3). The products were analyzed by IR, ¹H and ¹³C NMR. #### Ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-carboxylate White solid, mp. 203–204 °C; IR (KBr) v: 3228, 3106, 2936, 1721, 1695, 1604, 1221 cm $^{-1}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ : 1.23 (t, 3H), 2.35 (s, 3H), 4.10 (m, 2H), 5.25 (s, 1H), 5.98 (s, 1H), 7.88–7.13 (m, 5H), 8.25 (s, 1H); 13 C NMR (75 MHz, CDCl $_{3}$) δ : 14.1, 18.3, 54.4, 61.4, 102.3, 126.2, 127.2, 128.7, 143.5, 146.1, 163.6 ppm. ## Ethyl 1,2,3,4-tetrahydro-6-methyl-4-(3-nitrophenyl)-2-oxopyrimidine-5-carboxylate (D₂) Off-white solid, mp. 226-227°C; IR (KBr) v: 3408, 3106, 2954, 1670, 1605, 1590, 1524, 1348, 1215 cm $^{-1}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ : 1.21 (t, 3H), 2.54 (s, 3H), 4.37 (q, 2H), 5.21 (s, 1H), 7.18-7.25 (m, 2H), 7.88 (d, 2H, 3J = 8.7 Hz), 8.17 (s, 1H), 8.81 (s, 1H); 13 C NMR (100 MHz, CDCl $_{3}$) δ : 165.7, 158.5, 148.7, 148.4, 131.8, 130.6, 129.5, 125.7, 121.8, 118.8, 61.2, 53.4, 25.4, 17.3 ppm. ## Ethyl 1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate (D₃) White solid, mp. 223-226°C; IR (KBr) v: 3510, 3285, 3115, 2968, 1658, 1523, 1466, 1218 cm $^{-1}$; ^{1}H NMR (300 MHz, CDCl₃) δ : 1.14(t, 3H), 2.24 (s, 3H), 3.96 (m, 2H), 5.06 (s, 1H), 6.75 (d, 2H), 7.05 (d, 2H), 9.15 (s, 1H), 9.36 (s, 1H); ^{13}C NMR (100 MHz, CDCl₃) δ : 166.5, 159.1, 152.8, 147.9, 136.8, 126.3, 124.8, 115.8, 62.8, 49.3, 24.4, 19.4 ppm. #### Ethyl 4-(4-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxopyrimidine-5-carboxylate (D4) White solid, mp 208-210°C; IR (KBr) v: 3239, 3117, 2969, 1715, 1646, 1458, 1225, 1093 cm $^{-1}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ : 1.21 (t, 3H), 2.38 (s, 3H), 4.11 (m, 2H), 5.85 (s, 1H), 7.31 (d, 2H), 7.30 (d, 2H), 8.06 (s, 1H); 13 C NMR (100MHz, CDCl $_{3}$) δ : 168.2, 158.6, 146.8, 143.3, 145.5, 132.1, 129.2, 117.1, 61.4, 51.2, 22.4, 18.3 ppm. #### Ethyl 4-(3-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxopyrimidine-5-carboxylate (D₅) White solid, mp. 194-196°C; IR (KBr) v:3245, 3110, 2975, 1705, 1655 cm⁻¹; H NMR (CDCl₃ 300 MHz) δ : 1.21 (t, 3H), 2.43 (s,3H), 4.21 (m, 2H), 5.42 (s, 1H), 7.22 (d, 2H), 7.33 (d, 2H), 7.61 (brs, 1H), 8.12 (brs, 1H). ¹³C NMR (CDCl₃ 100 MHz) δ : 168.2, 158.4, 146.5, 143.2, 145.3, 131.6, 129.2, 117.1, 61.4, 51.4, 22.3, 18.5 ppm. ## Ethyl 1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate (D₆) White solid, mp. 166-169°C; IR (KBr) v: 3515, 3310, 3106, 2958, 1724, 1645, 1612, 1466, 1223 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 1.14 (t, 3H), 2.25 (s, 3H), 4.06 (m, 2H), 5.06 (s, 1H), 6.62 (d, 1H), 6.68 (d, 2H), 7.10 (t, 2H), 9.11 (s, 1H), 9.31 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.7, 157.8, 150.2, 146.4, 133.9, 131.7, 130.2, 124.7, 121.3, 115.8, 60.9, 54.7, 26.2, 18.1 ppm. ## Methyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-carboxylate (\mathbf{D}_7) White solid, mp. 211-213°C, IR (KBr) v: 3415, 3320, 3106, 2950, 1728, 1660, 1632, 1475, 1234 cm⁻¹; ¹H NMR (CDCl₃ 300 MHz) δ: 9.23 (s, 1H), 7.74 (s, 1H), 7.45-7.35 (m, 2H), 7.28-7.26 (m, 3H), 5.18 (d, 1H), 3.55 (s, 3H), 2.26 (s, 3H); ¹³C NMR (CDCl₃ 100 MHz) δ: 166.3, 152.8, 150.1, 145.3, 129.4, 128.4, 127.5, 99.8, 54.6, 51.8, 18.8 ppm. ## Ethyl 1,2,3,4-tetrahydro-4-(4-methoxyphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate (D_8) White solid, mp. 198-199°C; IR (KBr) v: 3254, 3105, 2955, 1710, 1645, 1515, 1464, 1225 m $^{-1}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ : 1.13 (t, 3H), 2.24 (s, 3H), 3.38 (s, 3H), 4.1 (m, 2H), 5.11 (s, 1H), 6.90 (d, 2H), 7.16 (d, 2H), 7.71 (s, 1H), 9.14 (s, 1H); 13 C NMR (100 MHz, CDCl $_{3}$) δ : 168.0, 158.2, 152.4, 149.5, 136.7, 130.2, 123.3, 118.8, 62.4, 61.8, 49.7, 25.7, 19.7 ppm. #### Ethyl 4-(4-fluorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxopyrimidine-5-carboxylate (D₉) White solid, mp. 175-176°C; IR (KBr) v: 3243, 1698, 1638 cm^{-1} ; ¹H NMR (300 MHz, CDCl₃) δ : 9.24 (s, 1H), 7.81 (s, 1H), 7.23 (m, 4H), 5.14 (s, 1H), 4.12 (m, 2H), 2.23 (s, 3H), 1.11 (t, 3H); ¹³C NMR (100 MHz CDCl₃) δ : 165.8, 160.1, 152.2, 148.5, 141.4, 128.3, 115.3, 99.4, 59.4, 53.8, 17.6, 14.8 ppm. ## Ethyl 1,2,3,4-tetrahydro-6-methyl-4-phenyl-2-thioxopyrimidine-5-carboxylate (\mathbf{D}_{10}) White solid, mp. 206-208°C, IR (KBr) v: 3236, 3126, 2946, 1728, 1698, 1226 cm⁻¹; 1 H NMR (300 MHz, CDCl₃) δ : 9.63 (1H, s), 8.94 (1H, s), 6.67-6.54 (m, 5H), 4.53 (d, 1H), 3.37 (m, 2H), 1.61 (3H, s), 0.44 (t, 3H); 13 C NMR (CDCl₃ 100 MHz) δ : 175.3, 166.3, 145.9, 144.4, 129.3, 128.4, 127.1, 101.7, 60.5, 54.8, 18.1,14.8 ppm. #### Ethyl 1,2,3,4-tetrahydro-6-methyl-4-(3-nitrophenyl)-2-thioxopyrimidine-5-carboxylate(D_{11}) White solid, mp. 273-274°C, IR (KBr) v: 3325, 3215, 3105, 2963, 1715, 1634, 1520 cm $^{-1}$; 1 H NMR (300 MHz,CDCl $_{3}$) δ : 9.38 (s, 1H), 8.17- 7.69 (m, 4H), 3.88 (m, 2H), 2.24 (s, 3H), 1.13 (t, 3H); 13 C NMR (CDCl $_{3}$ 100 MHz) δ : 165.3, 151.9, 149.6, 147.9, 147.2, 133.2, 130.2, 122.3, 121.4, 98.4, 59.3, 53.7, 17.8, 14.2 ppm. ## Ethyl 1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-6-methyl-2-thioxopyrimidine-5-carboxylate (D_{12}) White solid, mp 201-203 °C; IR (KBr) v: 3223, 3098, 2980, 1742, 1655, 1459, 1251 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 1.24 (t, 3H), 1.89 (s, 3H), 4.16 (m, 2H), 5.87 (s, 1H), 7.32(d, 2H), 7.33 (d, 2H), 8.07 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ: 168.2, 158.6, 146.8, 143.3, 145.5, 132.1, 129.2, 117.1, 61.4, 51.2, 22.4, 18.3 ppm. #### **CONCLUSION** In summary, it is the first report of cost-effective, solvent-free mild protocol for the synthesis of 3,4-dihydropyrimidine-2-one and 3,4-dihydropyrimidine-2-thione derivatives using BF₃.ACN as a catalyst. This MCRs protocol offers several significant advantages like operational simplicity, superior atom-economy, shorter reaction time with good to excellent yields. #### **ACKNOWLEDGMENT** The authors are thankful to the Head, Department of Chemistry, Maulana Azad College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004, India, for allowing the work.□ #### **REFERENCES** ¹Bienayme, H., Hulme, C. H., Oddon, G., Schmitt, P., Maximizing Synthetic Efficiency: Multi-Component Transformations Lead The Way, *Chem. Eur. J.*, **2000**, *6*, 3321-3329. https://doi.org/10.1002/15213765(20000915)6:18%3C321::AID-CHEM3321%3E3.0.CO;2-A ²Weber, L., Illgen, K., Almstetter, M., Discovery of New Multi-Component Reactions with Combinatorial Methods, *Synlett*, 1999, 3, 366-374. https://doi.org/10.1055/s-1999-2612 ³Armstrong, R. W., Combs, A. P., Tempest, P. A.; Brown, S. D. Keating, T. A., Multiple-Component Condensation Strategies for Combinatorial Library Synthesis, *Acc. Chem. Res.*, 1996, 29, 123-131. https://pubs.acs.org/doi/10.1021/ar9502083 ⁴Domling, A., Ugi, I., Multicomponent Reactions with Isocyanides, *Angew. Chem. Int. Ed.*, **2000**, *39*, 3168-3210. https://doi.org/10.1002/1521- 3773(20000915)**39**:18<3168::AID- <u>ANIE3168>3.0.CO;2-U</u> ⁵Ramon, D. J., Yus, M., Asymmetric Multicomponent Reactions (AMCRs): The New Frontier; *Angew. Chem. Int. Ed.*, **2005**, 44, 1602-1634. https://doi.org/10.1002/anie.200460548 - ⁶Li, Z. H., Liu, X. Q., Geng, P. F.; Feng; Suo, Z., Jin, L. M., Zhou, Z.Q., Liu, H. M., Discovery of [1,2,3]Triazolo[4,5-d]pyrimidone Derivatives as Novel LSD1 Inhibitors, *ACS Med. Chem. Lett.*, **2017**, 8, 4, 384-389. https://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.6 b00423 - ⁷Ajmal, R. B., Rajendra, S. D., Gowhar, A. N., Israr U.; Tabassum, A.; Proficient synthesis of bioactive annulated pyrimidine Derivatives: A review, *J. Taibah Univ. Sci.*, **2017**, 11, 1047-1069. - https://www.tandfonline.com/doi/pdf/10.1016/j.jtusci.2017.05.005 - ⁸Vitaku, E., Smith, D. T., Njardarson, J. T., Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals, J. Med. Chem., 2014, 57, 10257-10274. https://pubs.acs.org/doi/10.1021/jm501100b - ⁹Further Reading Online Resources: <u>http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/default.htm</u> - Further Reading Online Resources: <u>http://www.click2drug.org/encyclopedia/chemistry/fda</u> <u>-based-rings.html</u> - ¹¹Pedro, M., Joao J., Sofia S., Luis R. R., Catarina, R. R., Pedro, V. B., Alexandra, R. F., Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box., *Molecules*, **2015**, *20*, 16852-16891. https://doi.org/10.3390/molecules200916852 - ¹²Ayse, O., Chaitan K., Michael, C. B., Human pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy., *Curr. Opin. Biotech.*, **2017**, 48, 127-134. https://europepmc.org/abstract/med/28458037 - ¹³Khalid, J. A., Elena, S. M., Anastasia L., Harry, P. de Koning., Evaluation of the antiprotozoal properties of 50-norcarbocyclic pyrimidine nucleosides, *Biol. Med. Chem. Lett.*, **2017**, 27, 3081-3086. https://doi.org/10.1016/j.bmcl.2017.05.052 - ¹⁴Shaikha, S. A., Abdu A., Naheed A., Alaa, A. S., Ibrahim, M. A., Synthesis and in vitro biological evaluation of new pyrimidines as glucagon-like peptide-1 receptor agonists.; *Biol. Med. Chem. Lett.*, **2017**, 27, 5071-5075. https://doi.org/10.1016/j.bmcl.2017.09.032 - ¹⁵Manikanta, M., Karanam, V. P., Godefridus, J. P., Mayur, Y. C., Acridone-pyrimidine hybrids- design, synthesis, cytotoxicity studies in resistant and sensitive cancer cells and molecular docking studies, *Eur. J. Med. Chem.*, 2017, 139, 961-981. https://doi.org/10.1016/j.ejmech.2017.08.023 - ¹⁶Mokale, S. N., Shinde, S. S., Elgire, R. D., Sangshetti, Jaiprakash, N., Shinde D. B., Synthesis and anti-inflammatory activity of some 3-(4,6-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)propanoic acid derivatives.; *Biol. Med. Chem. Lett.*, **2010**, 20, 4424-4426. https://doi.org/10.1016/j.bmcl.2010.06.058 - ¹⁷Kharpe, A. A., Mokale, S. N., Netankar, P. D., BF₃.OEt₂ Catalyzed Solvent-Free Synthesis of Highly Functionalized Piperidine Derivatives., *Int. J. Chem. Phys. Sci.*, 2018, 7, 7-11. https://www.ijcps.org/abstract.php?article_id=639 - ¹⁸Karthikeyan, P., Aswar, S. A., Muskawar, P. N., Bhagat, P. R., Kumar, S. S., Development and efficient 1-glycyl-3-methyl imidazolium chloride copper(II)complex catalyzed the highly enantioselective synthesis of 3, 4-dihydropyrimidin-2(1H)-ones., *J. Organomet. Chem.*, 2013, 723, 154-162. https://doi.org/10.1016/j.jorganchem.2012.06.022 - ¹⁹Safari, J., Gandomi, R. S., Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3,4dihydropyrimidin-2-(1H)-ones accelerated under microwave irradiation, *New J. Chem.*, **2014**, *38*, 3514-3521. https://pubs.rsc.org/en/content/getauthorversionpdf/C3 NJ01618H - ²⁰Azizian, J., Mohammadi, A. A., Karimi, A. R.; Mohammadizadeh, M. R., KAl(SO₄)₂.12H₂O supported on silica gel as a novel heterogeneous system catalyzed Biginelli reaction One-pot synthesis of dihydropyrimidinones under solvent-free conditions.; *Appl. Catal. A Gen.*, **2006**, *300*, 85-88. https://doi.org/10.1016/j.apcata.2005.11.001 - ²¹Mahmood K., Abbas S., Maryam S., Seyyed E., One-pot, solvent-free synthesis via Biginelli reaction: Catalyst-free and new recyclable catalysts.; *Cogent Chem.* **2015**, 1, 1081667. https://doi.org/10.1080/23312009.2015.10816 - This paper was presented at the "International Symposium on Exploring New Horizons in Chemical Sciences," January 10–12, **2019**, Aurangabad, India (ENHCS–2019). Received: 11.03.2019 Accepted: 22.06.2019