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POLARON ON HARMONIC LATTICE IN ELECTRIC FIELD 

GENERATION OF COHERENT OSCILLATIONS 
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The dynamics of a polaron on a one-dimensional harmonic lattice in an applied constant electric field has been considered. The calculations 

were performed with parameters close to those of polyacetylene and DNA. The polaron in a constant field goes to a stationary state, 

characterized by a constant profile and velocity. In this case, the energy got by the polaron from the electric field is transformed into 

longitudinal coherent lattice vibrations. For several thousand lattice sites, these oscillations have constant frequency and wave number, and 

these values depend weakly on the electric field. 
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INTRODUCTION 

Presently, nano-sized electronic devices is widely used in 
various fields1-10 and their uses have been reviewed also. 11,12 
It is supposed that polarons are charge carriers in 
nonmetallic systems. Really, a minimum energy state of a 
charged elastic lattice with electron-phonon interaction 
corresponds typically to polaron formation. 

Historically, polaron studies on one-dimensional lattices 
started with the modelling of a charged soliton in 
polyacetylene (PA).13-17 First, an analysis of the effect of an 
external electric field on a charged soliton was done .18 Later, 
the study of polaron in an external electric field was 
conducted.19 

The energy and charge transfer in biological 
macromolecules, such as DNA and polypeptides, has been 
intensively investigated for a long time. The conduction 
mechanism picture in such systems evolved from the 
Marcus theory20 to the tunneling21 and hopping 
mechanism.22 Further, the polaron mechanism of 
conductivity was proposed. Conwell and coworkers first 
applied polaron paradigm to DNA.23-26 Later, various 
models and approximations of the polaron charge transport 
in DNA were developed.27-37 

One of the most common methods for calculating the 
electronic structure and transport properties is the tight-
binding approximation (TBA),38,39 otherwise called the 
Huckel method. In this approximation, the wave function is 
represented as a linear combination of localized states. In 
the particular case of molecular systems, this is a linear 
combination of atomic orbitals. The most popular method 
for describing the electron-phonon interaction is the Su-
Schrieffer-Heeger (SSH) approximation, first used to 
describe charged solitons in PA.16,17  

The SSH model for PA includes minimum parameters 
necessary for polaron description. Namely, σ bonding is 
taken into account through harmonic interaction between 
nearest units (representing CH groups) of one dimensional 
lattice, and π electrons are treated in TBA. The units 
displacements are measured from positions of undimerized 
chain and dimerization is taken into account by the 
alternation of displacements sign. Another way to include 
dimerization is Brazovskii-Kirova symmetry breaking 
terms.40,41 Subsequently, the SSH model became widely 
used for description not only for simple conjugated 
polymers but more complicated systems, for example, 
DNA,23-26,42-44 polypyrrole45 and paraphenylene polymers 
(PPP).46 The electron-phonon coupling can be taken into 
account in a slightly different way also, as in the case of 
Frohlich or Holstein polarons52-55 or in Davydov-Scott 
model.57 However, in all models the general polaron 
behaviour is similar. Nonlinearity has also been included in 
dependence of the hopping integral on the distance between 
chain units.58 Further, the polaron models were complicated 
by addition spin and Coulomb interactions for 
bipolarons,40,46,47 thermal48,59-61 and disorder62,63 effects, and 
impurities.64,65 Two-dimensional lattices including 
interchain interactions were also considered.49-51,55,56 Higher 
order tight binding SSH model has been developed for DNA 
charge transport.70   

Polarons as charge carriers can be accelerated under an 
external electric field.19,68-70 The charge motion in 
semiconductors and insulators was first considered 
by Feynman.71 It was found that the polaron transforms the 
energy of interaction with the electric field into vibrational 
energy. For Al2O3 the transferred energy is ~0.025 eV per 
1 Å.  

In the SSH model, the electric field can be taken into 
account either by vector potential or by a term which 
explicitly describes the voltage drop between neighbouring 
sites.68,80 These descriptions are equivalent and interrelated 
through a gauge transformation.  

It was found that polaron achieves maximum velocity in 
electric field. In simple SSH model without dimerization 
maximum polaron velocity is always less than the sound 
velocity. If dimerization is taken into account supersonic 
velocities can be achieved when optical mode is excited.66,73 
There is maximum electric field which destroys polaron.72 
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The reported value of the critical electric field in PA widely 
varies in the literature (10 mV/Å,47,74,75 4 mV/ Å,50 0.54 
mV/Å46 and 1.6 mV/Å76 in polyparaphenylene). Critical 
field values for a number of inorganic polymers have 
reported72 e.g., 3.9 mV/Å for PA, 1.3 mV/Å for 
polystannane, 1.3 mV/Å for polygermane, and  1.3 mV/Å 
for polysilane. In some papers the lattice vibrations 
following moving polaron in electric field are reported.77,78 
Above the critical field, the dissociated polaron propagates 
in the form of a free electron and performs spatial Bloch 
oscillations.67 On the other hand, Bloch oscillations in the 
electric field can generator polarons in a 1D crystal.79 
Theoretical investigation of the simple SSH model with one 
electron on the harmonic lattice has been reported by Basko 
and Conwell.80 Here, analytical dependence of the polaron 
velocity versus applied electric field has been presented. The 
critical electric field value is also estimated.       

In present study, the polaron dynamics on harmonic lattice 
in an electric field is thoroughly investigated numerically in 
the framework of SSH model. A harmonic lattice with 
parameter close to polyacetylene and DNA has been 
considered. A weak logarithmic dependence of the 
stationary polaron velocity on the value of applied electric 
field is found. Mechanisms of energy transfer from a 
moving polaron to a lattice are discussed. The parameters of 
coherent vibrations generated by polaron moving in external 
electric field are investigated. Critical field for PA and DNA 
parameters are estimated. We found good agreement with 
the reported theoretical prediction.80   

MODEL 

We use the following generally accepted Hamiltonian,68 
where eqn. (2) describes the dynamics of regular harmonic 
lattice. Here, xj and vj are the deviation of the j-th particle 
from the equilibrium and its velocity, K is the rigidity, M is 
the particle mass.  

𝐻 = 𝐻lat + 𝐸el         (1) 

 

𝐻lat =
𝐾

2
∑ (𝑥j+1 − 𝑥j)

2
+

𝑀

2
∑ 𝑣j

2
jj      (2) 

The second, quantum term in eqn. (1) is the electronic part 
of the total Hamiltonian. It is written in the TBA 
approximation in an external constant electric field as eqn. 
(3). 

𝐻el = − ∑ [𝑡0 − χ(𝑥j+1 − 𝑥j)][exp(i𝛾𝐴)𝑐j
+𝑐j+1 + c. c. ]j    

 (3) 

Here, the electron-phonon interaction (EPI) is described in 
SSH approximation, t0 is the equilibrium hopping integral, χ 
is the EPI parameter, and cj

+ /cj are the creation/annihilation 
operators for the electron at the site j, and c.c. stands for 
complex conjugation.  

As a rule, dimensionless quantities were used. For non-
dimensionalization, four independent parameters should be 
chosen. It is convenient to choose M, K, t0, and the electron 
charge e. The numerical values70 of these parameters for 

DNA are M   = 4.35  10-25 kg, K = 13.6 kg s-2, t0 = 4.8  10-

20 kg m2 s-2, e = 1.6  10-19 C. At the non-dimensionalization, 
the numerical values of these parameters are taken to be 
unity. After that, all other parameters can be dimensionless. 
The dimensionless unit length is defined as [[L]] = (t0/K)1/2, 
and it corresponds to 0.59 Å. Similarly, the dimensionless 
time unit is defined as [[t]] = (M/K)1/2, which corresponds to 
0.18 ps. The dimensionless unit of energy is 0.3 eV. 
Dimensionless values of other parameters of the 
Hamiltonian are defined similarly: ħ ≈ 10-2 and χ ≈ 1.2. 

Since the numerical values of the parameters M, K and t0 
in PA differ from those in DNA,67 the corresponding 
dimensionless parameters were renormalized. The length, 
time, and energy units are [[L]]=0.35 Å, [[t]]=8 fs, [[E]]=2.5 
eV, respectively, and the EPI parameter χ≈0.4. Note that 
χ=0.4 is maximum value for which the continuum 
approximation works well. So, exact expressions for the 
polaron shape and the wave function are available.81,82    

The external electric field is taken into account by a factor 
exp(iγA), where γ=ea/ħc and e is the electron charge, a is the 
lattice constant, c is the light speed, ħ is Dirac's constant. 
The relation between the vector potential A and electric field 
E is 𝐸 = − 1 𝑐 d𝐴 d𝑡⁄⁄ . It is convenient to write the 
exponential term as exp(-iBt), where B=eEa/ħ. Below, we 
use B and call it an electric field parameter. For DNA and 
PA, the dimensionless value B=1 corresponds to 
E ≈ 1.1107 V m-1 and E ≈ 6.8  108 V/m, respectively.  

After non-dimensionalization we get the following 
evolutionary equations for both classical and quantum 
degrees of freedom where F ≡ exp(iBt). 

𝑥̈j = −(2𝑥j − 𝑥j+1 − 𝑥j−1)

+  𝜒 ⌊𝐹𝜓j
∗𝜓j−1 − 𝐹∗𝜓j−1

∗ 𝜓j   +  𝐹𝜓j+1
∗ 𝜓j

+ 𝐹∗𝜓j
∗𝜓j+1   

⌋ 

      (4) 

 

𝜓̇j = −
𝑖

ℏ
{[−1 + 𝜒(𝑥j+1 − 𝑥𝑗)]𝐹𝜓j+1 + [−1 +

𝜒(𝑥j − 𝑥j−1)]𝐹∗𝜓j−1}        (5) 

 

The time evolution of a polaron in electric field is 
obtained by numerical integration of eqns. (4) and (5) with 
free boundary conditions. The integration step Δt is 
determined by the most "fast" quantum dynamics for the 
wave function, and therefore Δt = 10-4 is chosen. 

POLARON IN ELECTRIC FIELD 

The polaron on a harmonic lattice in an electric field 
reaches a steady state with a constant velocity and an 
unchanged profile of the polaron.80 However, the stationary 
state setting time and the final polaron parameters depend 
strongly on the initial conditions.69 Polaron evolution is also 
sensitive to the method of electric field switching. If the 
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switching time is small, a part of the electron density can 
decouple from the lattice deformation and the polaron can 
fail. 

Initial conditions 

Parameters of the polaron on a harmonic lattice without an 
electric field (velocity, amplitude and width) are uniquely 
related, and the choice, for example, of the velocity 
determines the polaron profile.  

For small EPI parameter (χ ≤ 0.4) the continuum 
approximation is valid and analytical relations83 for relative 
displacements of neighbouring particles qj ≡ (xj - xj-1) and 
the wave function ψj(t) are available (eqn. 6), where A and D 
are amplitudes of relative particles displacements and wave 
function, respectively, 1/d is a polaron width, j0 is the initial 
polaron centre, v is the polaron velocity. 

𝑞j = −
𝐴

cosh2[𝑑(𝑗−𝑗0−𝜈0𝑡)]
 , 

 

𝜓j =
𝐵

cosh[𝑑(𝑗−𝑗0−𝜈0𝑡)]
        (6) 

 

The following three equations relate polaron parameters. 

𝑑 = √𝜒𝐴  , 𝜈0 = [1 − √𝜒3 𝐴⁄ ]
1/2

 and 

 

𝐵 = √𝑑 2⁄           (7) 

 

According to eqn. (7), polaron can be determined by any 
one parameter. It is convenient to choose the velocity v as a 
free parameter. 

The polaron velocity on a harmonic lattice varies from 
zero to the nearly sound velocity, vsnd. Therefore, when 
modelling a polaron evolution in an electric field, the initial 
polaron velocity can be chosen in the range 0 < v0 < vsnd. 
Another simulation parameter is the electric field strength 
(dimensionless parameter B in (eqns. 4 and 5) and the 
method of the field switching-on (Figure 1). 

 

 

 

 

 

 

 

 

 

Figure 1. The dependence of polaron velocity v on time t for 
different values of electric field parameter B. Initial polaron 
velocity is zero. The field switching-on rate is 1/1250, χ = 0.4. 

Let us consider the setting of a stationary polaron velocity 
depending on the electric field for initially standing polaron. 
The time dependence of polaron velocity for different B is 
shown in figure 1. Here, χ = 0.4, which corresponds to the 
PA. In all cases, the field grows linearly (B = ct) for a period 
of time τ up to the maximum value Bmax, and 
c = Bmax/τ = 1/1250. In figure 1, all dependencies start at 
t = τ, when the field reaches its maximum value. At small 
electric field, the polaron accelerates further after reaching 
Bmax as it doesn't reach the maximum possible velocity. 
Hereafter, the polaron velocity is measured in the sound 
velocity.   

 For χ = 0.4, the stationary dimensionless polaron 
velocity vst ≈ 0.86, which is ≈ 1.3  104 m s-1 in dimensional 
units. The dependence of the steady-state polaron velocity 
on the applied electric field is considered in more detail 
below. Polaron behaviour similar, to that in Figure 1, is also 
observed for χ = 1.2, which corresponds to the DNA. Here, 
however, the stationary dimensionless velocity is less and 
vst ≈ 0.6, which corresponds to ≈ 1.1 103 m/s.  

In the examples considered above, the total density of the 
wave function is localized on the polaron and is equal to the 
total charge of the electron. However, for some initial 
conditions, a part of the electron density can partially 
decouple from the lattice deformation,67 and the polaron, 
being stable, carries a partial charge  less than unity. The 
decoupled part of the wave function density is randomly 
distributed along the lattice  (Figure 2). 

 

 

 

 

 

 

 

 

 

Figure 2. A fraction of electron density localized on the polaron 
Δ|Ψ|2 as function of switching-on time τ (solid line, open circles);  
Δ|Ψ|2 vs initial polaron velocity v0 (dashed line, open squares) at 
instant field switching-on;  χ = 0.4. 

If at first the field increases linearly (B = Bmaxt/τ for t  ≤  τ 
and B = Bmax for t > τ), then the fraction of the electron 
density Δ|Ψ|2 left at the polaron depends on τ 
nonmonotonically. The result is shown in figure 2 (solid 
curve and circles). Here, Bmax = 0.08, χ = 0.4, and the initial 
polaron velocity is zero. One can see that when the electric 
field is slowly switched on (τ > 100), the polaron keeps 
practically 100 % of the wave function density. Another 
example of non-conservation of the wave function density is 
shown in the same figure (dashed lines and squares). Here 
the field is switched on instantly, but the initial polaron 
velocity changes from zero to v0 = 0.8. Even if a part of the 
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charge leaves the polaron, it remains stable.  But in this case 
its amplitude decreases, and the width increases because of 
the renormalization of the wave function on the polaron. 
Similar polaron behavior is observed for χ = 1.2. However, 
in this case the polaron is more "compact" (it has a smaller 
width and a larger amplitude), the wave function is better 
attached to the polaron, and the polaron itself is more stable 
to the variation of the initial conditions. 

Thus, figure 2 demonstrates the closer the initial 
conditions correspond to the stationary state of the polaron, 
the faster and more "confident" the polaron reaches this 
stationary, while maintaining the complete norm of the wave 
function. In all numerical simulation, only such initial 
conditions are used below, which provide at least 99 % 
localization of the wave function density at the polaron.  

Stationary polaron velocity 

Numerical simulations reveal that the relations between 
polaron parameters (amplitude, velocity, width) do not 
depend on the presence of the electric field. That is, the field 
initially only accelerates the polaron, and after that it moves 
at a constant velocity as if without the field. The influence 
of the electric field is discussed in more detail below.  

 

 

 

 

 

 

 

 

Figure 3. Amplitude of relative displacements A vs polaron 
velocity v without electric field (solid line is analytics83) and in 
electric field (circles, numerical simulation); χ = 0.4 

Figure 3 shows the relation between the amplitude and the 
velocity of the polaron in the electric field and without the 
field for the EPI parameter χ = 0.4. Circles in 
figure 3corresponds to data in Figure 1 when the polaron 
accelerates in electric field of different values. For larger 
values of χ, e.g. χ = 1.2, the continual approximation is not 
applicable because the corresponding polaron is narrow. 
However, as the polaron with χ = 1.2 is much more stable in 
the electric field and quickly reaches the stationary state, the 
initial values of the polaron parameters are less significant. 
And it is reasonable to set initial conditions according to eqn. 
(6), choosing polaron parameters so that at least 99 % of the 
wave function density is localized at the polaron during the 
further evolution. In this case the wave function is the 
lowest-energy eigenfunction at the Hamiltonian 
diagonalization (eqn. 3).  

The dependence of the steady-state velocity on the field 
strength B is weakly logarithmic. Figure 4 demonstrates less 

than 10 % difference in stationary polaron velocities within 
four orders of magnitude of the field strength. Therefore, in 
polyacetylene and DNA, the stationary polaron velocity 
slightly depends on the applied electric field. The small 
polaron velocity in very low field can be explained by the 
fact that the polaron has not yet reached a stationary state 
during the numerical simulation (t ≤ 10000). Note, the 
dependences in Figure 4 are in good agreement with the 
dependences of the polaron velocity on the applied field.80  

 

 

 

 

 

 

 

Figure 4. Stationary polaron velocity v vs electric field parameter 
B for χ = 1.2 (dashed line and squares) and χ = 0.4 (solid line and 
circles). The dimensionless velocity is measured in units of sound 
velocities. The inset shows dependencies in linear coordinates. 

Generation of longitudinal coherent vibrations 

The energy transferred from the electric field to the 
polaron, in general, can be used in several ways. First, this 
energy can be spent on accelerating the polaron and, 
accordingly, on increasing its kinetic energy.  Secondly, 
energy can provide growth of potential energy due to a 
change in the polaron shape with an increase of the 
amplitude and a decrease of the width. Correspondingly, the 
electron energy changes due to the electron-phonon 
interaction. Finally, some of the energy can be transferred to 
lattice vibrations. 

After the polaron reached a stationary state, the polaron 
continues to receive energy due to the interaction of the 
charge with the electric field. The constant power of this 
interaction is p = fvst, where f = eE (e is the polaron charge, 
E is the electric field strength, vst is the stationary polaron 
velocity). In this case, the total energy of the "polaron + 
external field" system grows linearly with time. Since the 
polaron self-energy does not change, all the power 
consumed is converted only into lattice vibrational energy. 
Thus, the polaron velocity is determined by the balance of 
energies: the energy gained by the polaron in the electric 
field should be equal to the energy dissipated into the lattice.  

The two top panels of figure 5 show snapshots of particles 
relative displacements qj  ≡ (xj+1 - xj) for χ = 0.4 (left top 
panel) and χ = 1.2 (right top panel). The polaron moves from 
left to right and is located on right ends. The lattice 
oscillations following the moving polaron can be divided 
into two regions. In region a, the oscillations are irregular 
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because they are generated during the field switching-on 
period. Region b can cover several thousand lattice periods 
and represents coherent oscillations. (Figure 6.) 

The time dependence of chosen bond q500 = x501 - x500 
oscillations is shown in Figure 6. Polaron passes the bond at 

t = 762. After this, the bond oscillates with constant 
frequency and amplitude. The apparent amplitude 
modulation is due to the incommensurability of the 
oscillations period and the period of the particle 
displacement measurement, as illustrated in the inset to the 
figure. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Snapshots of the relative displacements qj at the time t. Upper row: polaron on the harmonic lattice in electric field. The left 
upper panel: χ = 0.4, v0 = 0.8, B = 0.1, t = 2250. The right upper panel: χ = 1.2, v0 = 0.65, B = 1.0, t = 2825. In both cases, the polaron was 
initially located at j0 = 2500 and the field switching-on rate is c = 1/1250. Polarons are centered at j = 4380 and j = 4420 in the left and 
right panels, respectively. Lower row: the "demon" model (see Section 3.5). The lower left panel: vd = 0.862, t = 2320. The right lower 
panel vd = 0.617, t = 2430. In both cases, the excitation is initially localized at j0 = 2500. 

 

 

 

 

 

 

 

 

Figure 6. Relative displacement q500 vs time, χ = 1.2. The inset 
illustrates the incommensurability of the true oscillations period 
(dashed line) and the period of numerical calculation (solid line). 

Both space and time Fourie spectra have one peak 
corresponding to the wave number k (the wavelength 
λ = 2π/k), and frequency ω of the generated oscillations, 
respectively. Thus, moving polaron generates stable 
coherent oscillations described by the equation 
qj = C sin(kj + ωt + φ), where φ is the phase. The values of k 
and ω are determined by the polaron velocity and the 
amplitude is determined by the applied field strength, which 
is in agreement with the reported value.80 The dependence of 
k and ω on polaron velocity is discussed below.  

Spectral characteristics of generated coherent vibrations 

In the previous section, it was shown that the generated 
vibrations have definite values of k and ω. Because of the 

fact that the field parameter B is uniquely related with the 
stationary polaron velocity (Figure 3), it is convenient to 
depict the spectral characteristics k and ω through the 
stationary polaron velocity v. These dependences are shown 
in figure 7. 

 

 

 

 

 

 

 

 

 

Figure 7. Dependences of the wave number k (upper curve and 
symbols) and the frequency ω (lower curve and symbols) on the 
polaron velocity for χ = 1.2 (empty squares) and χ = 0.4 (empty 
circles) and on the "demon" velocity (filled triangles). Symbols for 
the wave number refer to the left axis, and symbols for the 
frequency refer to the right axis. 

It is seen that the wave numbers k of the oscillations 
generated by the polaron do not vary very much, 
1.8 ≤  k ≤ 2.1 for χ = 0.4 in the velocity range 
0.82 ≤ v ≤ 0.86 (empty circles in Figure 7), and 2.7≤k≤3.1 
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for χ=1.2 in the velocity range  0.55≤v≤0.62  (empty squares 
in Figure 7). The character of k versus v dependences is 
different. The wave number increases with increasing speed 
for χ = 1.2 (empty squares), and decreases for χ = 0.4 (empty 
circles). The wavelength of the shortest-wave "optical" 
mode on the harmonic lattice is λ = 2 in the lattice constants, 
which corresponds to k = π. This means that for χ = 1.2 the 
polaron excites the shortest-wave mode with λ ≈ 2.2. For 
χ = 0.4, the wavelength of the excited oscillations is slightly 
larger and λ ≈ 3.1. 

The oscillations frequencies are also not very different. 
The steps-like dependence of ω in Figure 7 is due to the 
finite value of the integration step. The decrease of the step 
increases the smoothness of the dependence of ω vs v. In 
dimensional units, the oscillation frequency is ≈ 2  1012 Hz 
at the polaron velocity v = 0.57 (χ = 1.2, DNA), and the 
frequency is ≈ 3  1013 Hz at the polaron velocity v = 0.86 
(χ = 0.4, PA). 

It was shown80 that the wave number k depends on the 
polaron velocity v and it is determined by the following 
equation (mod 2π), where vsnd is the sound velocity and the 
frequency is determined by the dispersion equation 

𝜈𝑘 = 𝜈snd sin(𝑘 2⁄ )        (8) 

 

𝜛𝑘 = 𝜈snd  |sin(𝑘 2⁄ )|       (9) 

Our results are in good agreement with eqns. (8) and (9). 
Indeed, for v = 0.8 and v = 0.65 these equations  give k ≈ 2.3, 
ω ≈ 1.8  and k ≈ 3.1, ω ≈ 2.0, respectively. These points fit 
well in figure 7. 

"Demon" Model 

As shown above, the moving polaron generates coherent 
vibrations, and the wave number and the frequency of these 
vibrations are determined by the applied field (or the 
polaron velocity). One can say that the polaron is an 
effective "generator" of stable coherent lattice vibrations, 
and thousands of lattice sites can participate in these 
oscillations. 

The polaron velocities fall in a narrow range of values 
(0.56≤v≤0.62 and 0.82≤v≤0.86 for DNA and PA, 
respectively). It is a question, whether generation of such 
oscillations is possible in some other way than by localized 
moving compression of special shape. If possible, what are 
the spectral characteristics of these oscillations over a wider 
range of velocities of the generating source, and what should 
be the profile of the generative force.  

In light of these questions, eqn. (8) deserves special 
attention. The fact is that eqn. (4) can be rewritten as 
d2xj/dt2 = - (2xj - xj+1 - xj-1) + fj(t), where fj(t) is a generic 
force. The force has a profile of a moving impulse, while the 
profile itself can be of arbitrary shape. In this case, the wave 
number is determined from the eqn. (8), and the frequency 
from the dispersion law (eqn. 9). 

We propose a simple model called "demon". This is a 
dynamic model of the compression moving on harmonic 
lattice in the absence of EPI. The compression has a step-
like shape with a width of one lattice period. The power 

transferred to the lattice is constant in time and depends on 
the deformation value. In this model, the demon velocity can 
vary within 0 < vd < 1, which is out of the limits of polaron 
velocities for two EPI parameters under consideration. We 
consider the "demon" velocity varying in the range 
0.55 ≤ vd ≤ 0.9. 

Two lower panels of figure 5 show snapshots of the 
relative displacements in the harmonic lattice with moving 
"demon". Comparison of upper and lower panels 
demonstrates that the oscillations generated by "demon" are 
very similar to those generated by polaron moving with the 
same velocity. 

Analysis of the spectral characteristics of the generated 
oscillations shows that the "demon" and the polaron moving 
with the same velocity excite oscillations with the same 
wave numbers and frequencies. In figure 7, the frequency 
and the wave number in the "demon" model are shown by 
filled triangles. It is seen that in the ranges of polaron 
velocities, the dependencies for the "demon" model and for 
polaron in electric field completely coincide. In this case, 
the wave numbers obey eqn. (8), and the frequencies are 
calculated from eqn. (9).  

Eqn. (8) has a simple physical meaning. For all values of 
polaron velocity, the equation has one solution which is in 
the range 0 ≤ k ≤ 2π, and this solution corresponds to the 
wave with phase velocity equal to the velocity of the 
generating source (vphase = ω/k). It is obvious from 
combination of eqns. (8) and (9). For small velocities 
(v ≤ 0.13), eqn. (8) has more than one solutions. For 
example, for v = 0.1 there are three solutions, k1 = 5.705, 
k2 = 14.136, and k3 = 16.846. One can easily check that all 
three waves with corresponding wave numbers are presented 
in the Fourie spectra of vibrations generated by "demon" 
moving with v = 0.1.   

Critical electric field 

The equations of motion (4) and (5) do not imply any 
limitation on value of electric field. Really, we did not find a 
maximum field in the range of reasonable values if 
appropriate initial conditions are chosen, in particular the 
field switching-on rate is rather low. The situation 
drastically changes if the field is switch on instantaneously, 
and it is the instantaneous field switching-on has a physical 
sense.  

The theoretical estimation of critical field has been 
reported.80 Estimations are based on the fact that, when the 
large field is switched on instantly, a tilted potential is 
formed. The heavy and slow lattice does not have time to 
readjust. However, the electron can tunnel through the 
potential. 

The critical field is defined as a field, when the probability 
of tunneling per unit time Γtun is of the same order of 
magnitude as the reciprocal of the lattice readjusting time, 
Γlat. For analytical estimations the triangular barrier is 
considered. Then the tunnelling probability can be estimated 
by the WKB method.84 In the case of initial standing polaron 
the barrier height (the electronic part of the polaron binding 
energy) is eb = χ4/(K2t0)80,85 and tunnelling is  
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𝛤tun = 4exp [−
4𝑒b

3 2⁄

3𝑡0
1 2⁄

𝑒𝐸𝑎
]       (10) 

The lattice readjusting time is estimated as the time 
necessary for the sound to pass a distance equal to the sum 
of the polaron width and the barrier width. Then Γlat has the 
form 

𝛤lat =
𝜈snd

𝑒b 𝑒𝐸𝑎+1 𝜒2⁄⁄
        (11) 

The critical field can be estimated as 

𝛤lat = 𝛤tun         (12) 

 

Since the tunnelling has a physical meaning in the 
continuum limit the above relations are true when the 
continuum approximation works, i.e. for sufficiently small χ. 
As we have already noted, χ = 0.4 is the limiting value of the 
electron-phonon interaction, when the continuum 
approximation is well applicable. So we can expect an 
agreement between analytical and numerical estimations of 
critical field. For χ = 0.4, eqns. (10)-(12) give values 
Ecr ≈ 0.00071 in dimensionless units, which corresponds to 
Bcr = eaEcr /ħ ≈ 0.076.   

In numerical experiment we determine the fraction of 
electron density remaining on the polaron Δ|Ψ|2 if the field 
is switched on instantly in the case of initial standing 
polaron (see figure 8). For field upto B ≈ 0.04, almost 100 % 
of electron density is localized at the polaron. For higher 
values of B, Δ|Ψ|2 drastically decreases. We define the 
critical field as a field at which about 90 % of the total 
electron density remains on the polaron. Then numerical 
experiment gives Bcr

num ≈ 0.07, which is in good agreement 
with analytical estimation. This value corresponds to 4.7·107 
V/m in dimension units. (Figure 8) 

 

 

 

 

 

 

 

 

 

Figure 8. A fraction of electron density localized on the polaron 
Δ|Ψ|2 after the instantaneous switching-on of the electric field vs 
field parameter B; χ = 0.4. 

In the case of χ = 1.2, we can hardly expect such a 
coincidence between theoretical prediction and numerical 
results, because for large values of χ, the continuum 

approximation does not work. However, some estimations 
can be done. For χ = 1.2, the manually fitted parameters are 
A ≈ 0.78 and d ≈ 0.7 for standing polaron and the 
numerically calculated barrier height (the electronic part of 
the polaron coupling energy) is about 0.96. Then equations 
(10)-(12) give the magnitude of the critical field parameter 
B1.2

cr ≈ 18. This value is slightly higher than those estimated 
numerically B1.2

num ≈ 13. However, taking into account that 
equations (10)-(12) are derived in an approximation that 
does not work for χ = 1.2, such a coincidence is surprising. 
Note, B1.2

num corresponds to 2·108 V/m for DNA. 

CONCLUSIONS  

Polarons on harmonic lattice with EPI parameter 
corresponding PA and DNA are very stable in a constant 
electric field.  

The results of the numerical simulation are rather sensitive 
to the initial conditions and to the method of switching-on 
the electric field. The main criterion of the simulation 
correctness is the complete localization of the electron 
density on the polaron. With unsuccessful initial conditions, 
a part of the electron density decouples from the lattice 
deformation. In all presented results at least 99 % of the 
total electron density is localized on the polaron. In the case 
of complete localization of the electron density on the 
polaron, the results do not depend on the initial conditions 
and the method of switching-on the electric field. 

The polaron moves with constant velocity in electric field. 
The dependence of the stationary velocity on the applied 
field is weakly logarithmic. Within four orders of magnitude 
of the field strength, stationary velocities vary ≤ 10 %. This 
means that in polyacetylene and DNA the dependence of the 
polaron velocity on the applied electric field is insignificant. 

The parameters (amplitude, width, velocity) of a 
stationary moving polaron in an electric field coincide with 
the parameters of a polaron moving with the same velocity 
in the absence of an electric field, which indicates the 
adiabatic polaron movement. 

Polaron moving in electric field generates coherent 
oscillations. The spectral characteristics of the generated 
oscillation are well described by a simple ''demon'' model. 
This means that any moving localized excitation of arbitrary 
shape generates coherent oscillations of the harmonic lattice. 
The phase velocity of generated oscillations is equal to the 
polaron/"demon" velocity.  

For appropriate initial conditions, i.e. adiabatically slow 
field switching-on rate or initially moving polaron, we did 
not find maximum value of the electric field resulting in 
polaron destruction. However, in the case of instantaneous 
field switching-on, rather low fields destroy initially 
standing polaron. The estimated values of critical field are 
4.7·107 V m-1 and 2·108 Vm-1 for polyacetylene and DNA, 
respectively.  

The numerical results of present work are in good 
agreement with theoretical predictions reported earlier.80 
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