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In large urban centers, the major contributors to much of the degradation of air quality are motor vehicles on the road. In some cities, the 

levels of concentrations of air pollutants have reached levels that pose a risk to human health. Ozone (O3) is a secondary pollutant formed 

from photochemical reactions of nitrogen oxides (NOx). Numerous studies have found associations between daily levels of ozone with a 

number of health effects. In the state of South Mato Grosso (MS), there has been a growing increase of ozone levels in the atmosphere in 

recent years. Considering the above, this study aimed to identify the best estimator for the Weibull distribution, in analyzing the ozone 

concentration, for the city of Campo Grande-MS. For this, electronic data from the continuous air monitoring station located on the campus 

of the Federal University of South Mato Grosso (UFMS), Campo Grande was utilized. According to the results presented by the tests, it 

was verified that the LSRM method presented the poorest performance. The EPFM, MOM and MSDM are most efficient methods to adjust 

the Weibull distribution curves for the evaluation of ozone concentrations in the atmosphere. 

 
*Corresponding Authors 
 E-Mail: amaury.de@uol.com.br 
[a] Universidade Federal de Mato Grosso do Sul, Campo Grande, 

MS, Brasil 
[b] University of Campina Grande, PB, Brazil. 
[c] University of Cape Town: Rondebosch, Western cape, South 

Africa 
[d] Department of Civil Engineering, Room No. EB 577, 

Engineering Building (EB), Xi'an Jiaotong-Liverpool 
University (XJTLU), Suzhou Industrial Park, Suzhou, P. R. 
China.  

[e] University of Belgrade, Technical faculty in Bor, Serbia.  
[f]  Department of Mechanical Engineering, M'Sila University,        

B.P 166 Ichbelia, M'Sila 28000, Algeria. 
[g]  Department of Mechanics, Mohamed Boudiaf University,  

M'sila, Algeria. 

Introduction 

Ozone (O3) and nitrogen oxides (NOx) comprising of 
nitrogen dioxide (NO2) and nitric oxide (NO) are among the 
most important contaminants in urban areas as they have 
adverse effects on human health and the natural 
environment. The main source of NOx in urban areas is the 
exhaustion of motor vehicles. The main proportion of NOx 
is emitted as NO, while a smaller proportion is emitted 
directly as NO2. Even if the concentration of NOx has a 
downward trend, NO2 share in NOx emissions has increased 
in recent years and depends on vehicle type fuel technology, 
exhaust treatment technology and the driving conditions.1 

In South Mato Grosso, measurement of ozone 
concentration at ground level began in 2004. The ozone 
concentration has shown an increasing trend in the state of 
South Mato Grosso since the first measurements took place 
in 2004, and this has been the main pollutant in many areas 
of the state.2-4 

Since most existing policies to reduce tropospheric levels 
of O3 in urban areas focus on reducing precursor emissions, 

their success depends heavily on an accurate development of 
the sensitivity of the O3 production. The European Union 
(EU) has established air quality standards for ambient ozone 
concentrations. Directive 2008/50 defines information and 
alert thresholds which refer to hourly values and equal to 
180 and 240 mg m-3. The same directive also defines a 
guideline for the protection of human health and the 
maximum daily average value of 8 hours should not exceed 
the target value of 120 mg m-3 on more than 25 days per the 
calendar year over a period of three years. 

In Brazil, there is the CONAMA Resolution of July 28, 
1990, which defines atmospheric pollution and establishes 
the pollution limits of any form of matter or energy with 
intensity and in quantity, concentration, time or 
characteristics in disagreement with the established levels, 

that renders the air inappropriate, harmful or offensive to 
health, inconvenience to the public welfare, damage to 
materials useful for fauna and flora, detrimental to safety, 
use and enjoyment of property, and normal community 
activities.5 

Monitoring data and scientific studies on ambient air 
quality show that some of the air pollutants in several major 
cities were increasing over time and not always at 
acceptable levels according to WHO standard. There are 
very limited sampled data and few case studies focusing on 
air pollution in Brazil, while most air modelling cases using 
probability distribution have been applied in foreign 
countries. Although such application is almost non-existent 
in Brazil, it is an attractive analytical option since it can 
reasonably predict the return period and its concentration in 
the subsequent period to meet evolving information needed 
for environmental quality management. 

The use of statistics is important in the analysis and 
interpretation of sample data in which the results can be 
used as forecasting tools that have become the main 
objective of environmental engineering.6 Many types of 

 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ihaddadene%20Razika.QT.&newsearch=true


Modeling of ozone distribution of surface           Section B-Research paper 

Eur. Chem. Bull. 2018, 7(3), 98-105   DOI: 10.17628/ecb.2018.7.98-105 99 

probability distributions have been used to adjust the 
concentrations of air pollutants which include Weibull 
distribution.7 lognormal distribution,8 range distribution,9 
Rayleigh distribution,10 distribution of Gumbel11 and 
distribution of Frechet.12 From scientific findings, Lu 13 and 
Chen et al.14 studied the fit for selected probability 
distributions using various performance indicators, such as 
the mean absolute error (MAE), root mean square error 
(RMSE), concordance index (d2), bias (B), absolute 
normalized error (NAE), prediction accuracy (BP) and 
determination coefficient (R2). The objective of this study is 
to analyze and compare the Weibull distribution parameters 
in five cities with the results obtained for Campo Grande for 
modelling of the ozone concentration in MS, Brazil. 

Experimental 

Studied area and observational data 

Campo Grande is the capital city of South Mato Grosso 
(MS) state, located in the south of Brazil Midwest region, 
and sited in the centre of the state. Geographically the 
considered city is near to the Brazilian border with Paraguay 
and Bolivia. It is located at 20°26’34’’ South and 54°38’47’’ 
West. Figure 1 shows the location of Campo Grande in the 
state of South Mato Grosso. 

 

 

 

 

 

 

 

 

Figure 1. Location of the Municipality of Campo Grande in the 
State of South Mato Grosso, and the continuous air monitoring 
station.  

The city occupies the total area of 8,096.051 km² or 3,126 
mi², representing 2.26 % of the total state area, within 
860,000 inhabitants (2016) and a corresponding HDI of 0.78. 
The urban area is approximately 154.45 km² or 60 mi², 
where tropical climate and dry seasons predominate, with 
two clearly defined seasons: warm and humid in summer, 
and less rainy and mild temperatures in winter. During the 
months of winter, the temperature can drop considerably, 
arriving on certain occasions to the thermal sensation of 0ºC 
or 32ºF with occasional light freezing.  

The yearly average precipitation is estimated at 1,534 mm, 
with small up or down variations. The main pollution 
problems in the city are attributed to the traffic of vehicles, 
the rise of building activities, the presence of dumping 
grounds, the use of small power generators running on oil to 

supply electric grids power, and to the induced fire outbreak 
used to clean up local terrains.  

The instruments used for the measurements are recorded 
in Table 1. 

Meteorology 

For the development of this work, we used electronic data 
from the continuous air monitoring station located on the 
campus of the Federal University of Mato Grosso do Sul, 
Campo Grande (MS), as shown in Figure 1. 

Table 1. Instrumentation for measuring the atmospheric pollutants 
and meteorological parameters 

Parameter  
Ozone 

Instrument model Thermo Environmental 49C 

Detector Chemiluminescence 

PA Equivalent Method 

Number 

EQOA-0880-047 

Error (±) 1 ppb 

Probability Distributions 

In order to model the sampled data sets for South Mato 
Grosso, Weibull probability distributions were used. 
Performance indicators are calculated by comparing the 
observed values with predicted values. The observed values 
are the classified values of the monitoring data, while the 
predicted values are the values obtained from the adjusted 
distribution of any statistical function. 

Weibull distribution 

The distribution function of Weibull two parameters for 
the concentration of ozone emission is expressed by the 
probability density function (eqn.1) where f (v) is the 
probability of observed ozone concentration (v), k is the 
dimensionless Weibull parameter/factor and c is the Weibull 
scale parameter (m s-1). The scale parameter can be related 
to the mean ozone concentration through the shape factor, 
which is the consistency of ozone concentration at a given 
location. 

 𝐹(𝑣) =
𝑑𝑓(𝑣)

𝑑𝑣
= (

𝑘

𝑐
) (

𝑣

𝑐
)

k−1

𝑒𝑥𝑝 [− (
𝑣

𝑐
)

k

]  (1) 

The cumulative distribution F(v) is an integral part of the 
probability density function and can be expressed eqn. (2). 

  𝐹(𝑣) = ∫ 𝑓(𝑣)𝑑𝑣
v

V
= 1 − 𝑒(

𝑣

𝑉
)

𝑘

  (2) 

The entire distributions can be used to resolve the 
probability of occurrence affecting the shape of probability 
curve of the wind regime. The cumulative curve probability 
nature typically fits the Weibull distribution function.  

Various methods for estimation of Weibull parameters as 
reported in the literature are furnished below. 
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Energy pattern factor method (EPFM) 

The energy pattern factor is connected to the average data 
of ozone concentration and can be defined as the ratio of the 
mean of cubic ozone concentration to the cube of mean 
ozone concentration. The energy pattern factor (EPF) can be 
expressed as eqn. (3), where vi is the wind speed in meter per 
second for ith observation, N is the total number of ozone 
concentration observations, and 𝑣̅ is the monthly mean wind 
speed. 

  𝐸𝑃𝐹 =
1

𝑣̅3    (∑
𝑣i

3

𝑁

n
i=1 )  =

𝛤(1+
3

𝑘
)

𝛤3(1+
1

𝑘
)
  (3) 

Once EPF is calculated, the Weibull shape and scale 
factors can be estimated from the following formulae. 

   𝑘 = 1 + 
3.69

𝐸𝑃𝐹2     (4) 

   𝑐 =  
𝑣̅

𝛤(1+
1

𝑘
)
     (5) 

Least-squares regression method (LSRM)  

LSRM is well known as a graphical method implemented 
by plotting a graph in such a way that the cumulative 
Weibull distribution becomes a straight line where the time - 
series data must be sorted into bins. The equation of PDF,15  
after transformation and taking into consideration of natural 
logarithms on both sides, the expression can be written as 
eqn. (6) 

 𝑙𝑛[− 𝑙𝑛(1 − 𝐹(𝑣))] = 𝑘. 𝑙𝑛(𝑣) − 𝑘. 𝑙𝑛(𝑐) (6) 

Therefore, eqn. (6) is linear and can be fitted using the 
following least square regression method. 

𝑦 = 𝑎𝑥 + 𝑏,  𝑦 = 𝑙 𝑛[−𝑙 𝑛(1 − 𝐹(𝑣))],  𝑥 = 𝑙 𝑛(𝑣),   

  𝑏 = −𝑘 ln(𝑐), 𝑘 = 𝑎;  𝑐 = 𝑒−
b

k   (7) 

 

The cumulative distribution function, F(v) can be easily 
estimated from an estimator (eqn. 8), which is the median 
rank according to Benard’s approximation, where i is the 
number of the wind speed measurements and N is the total 
number of observations.16  

The relationship between ln (𝑣)  as a function of 
ln (−ln (1 − 𝐹(𝑣))) represents a straight line with slope k, 
and the intersection point with Weibull line gives the value 
of scale parameter (c) derived from ozone concentration in 
part per billion (ppb). 

    𝐹(𝑣) =
𝑖−0.3

𝑁+0.4
    (8) 

Method of moments (MOM) 

MOM is one of the iterative techniques commonly used in 
the field of applied sciences for evaluating the Weibull 
parameters. It is based on the numerical iteration of mean 
(𝑣̅) and standard deviations (σ) of ozone concentration and 
expressed as follows. 
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The dimensionless Weibull and scale parameters can be 
calculated by eqns. (10) and (11). 

   𝑘 = (
0.9874

𝜑 𝑣⁄
)

1.0983

    (10) 

   𝑣̅ = 𝑐𝛤 (1 +
1

𝑘
)     (11) 

The average ozone concentration can be expressed as a 
function of Weibull scale parameter (c) and dimensionless 
Weibull shape parameter (k) derived from the Gamma 
function defined in eqn. (12), where 𝑦 = (𝑣/𝑐)𝑘  e(𝑣/𝑐) =
𝑦𝑥−1 𝑎𝑛𝑑 𝑥 = 1 + 1/𝑘 . Therefore, the expression is 
reduced to eqn. (13). 

   𝛤(𝑥) = ∫ 𝑦x−1 𝑒−y𝑑𝑥
∞

0
   (12) 

𝑣̅ = 𝑐𝛤 (1 +
1

𝑘
) = 0.8525 + 0.0135𝑘 + 𝑒−(2+3(k−1)) (13) 

Mean standard deviation method (MSDM) 

MSDM is used where only the two parameters such as the 
mean wind speed and standard deviations are available. It is 
well known as an empirical method and could be considered 
as a unique case of MOM method, in which the Weibull 
shape and scale parameters are estimated by eqns. (14) and 
(15), where σ is the standard deviation and 𝑣̅ is the mean 
ozone concentration in ppb. Alternatively, Weibull scale 
parameter can be projected from the following expression 
given by eqn. (16). 

   𝑘 = (
𝜎

𝑣
)

1.086

     (14) 

   𝑐 =
𝑣̅

𝛤(1+
1

𝑘
)
     (15) 

   𝑐 =
𝑣̅ 𝑘2.6674

0.184+0.816𝑘2.73855   (16) 
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Statistical Accuracy Analysis / Goodness of Fit 

To find the best model method for analysis, several 
statistical tools have been used by researchers to analyze the 
efficiency of above-mentioned methods. The following tests 
are utilized as follows:  

(a) Relative percentage error (RPE) 

     𝑅𝑃𝐸 (%) = (
𝑥i,w−𝑦i,m

𝑦i,m
) ×  100    (17) 

(b) Root mean square error (RMSE) 

  𝑅𝑀𝑆𝐸 = [
1

𝑁
 ∑ (𝑥i,w − 𝑦i,m)

2
 n

i=1 ]

1

2
    (18) 

(c) Mean percentage error (MPE) 

  𝑀𝑃𝐸 =
1

𝑁
 ∑ (

𝑥i,w−𝑦i,m

𝑦i,m
) ∗ 100%n

i=1   (19) 

(d) Mean absolute percentage error (MAPE) 

  𝑀𝐴𝑃𝐸 =
1

𝑁
 ∑ |

𝑥i,w−𝑦i,m

𝑦i,m
| ∗ 100%n

i=1   (20) 

(e) Chi square error 

   𝜒2 =
∑ (𝑥i,w−𝑦i,m)

2
 n

i=1

𝑦i,m
    (21) 

(f) Kolmogorov – Smirnov test 

    𝑄95 =
1.36

√𝑁
     (22) 

(g) Analysis of variance (or) Regression coefficient 

  𝑅2 =
∑ (𝑦i,m−𝑧i,v̅)

2
−∑ (𝑦i,m−𝑥i,w)

2
 N

i=1  N
i=1

∑ (𝑦i,m−𝑧i,v̅)
2

 N
i=1

  (23) 

where  

 N is the number of ozone concentration observations, 
 yi,m is the frequency of observation of ith calculated 
 value from measured data,  

 xiw is the frequency of ith calculated value from the 
 Weibull distribution and  

 zi,v is the mean of ith calculated value from the 
 measured dataset.  

In general, RPE shows the percentage deviation between the 
calculated values from the Weibull distribution and the 
calculated values from measured data. Similarly, the MPE 
shows an average of percentage deviation between the 

calculated values of the Weibull distribution and the 
calculated values from measured data, and MAPE shows the 
absolute average of percentage deviation between the 
calculated values of the Weibull distribution and the 
calculated values from measured data. Perfect results are 
obtained when these values are nearest to zero. Regression 
coefficient (R2) determines the linear relationship between 
the calculated values from the Weibull distribution and 
measured data. An ideal value of regression coefficient is 
equal to 1. 

Coefficient of Variation (COV) 

COV is defined as the ratio between the mean standard 
deviation to the mean ozone concentration expressed in 
terms of percentage. It demonstrates the uncertainty of 
ozone concentration and can be expressed as eqn. (24), 
where σ is the standard deviation and v is the mean wind 
speed (m s-1).  

    𝐶𝑂𝑉(%) =
𝜎

𝑣̅
× 100   (24) 

RESULTS AND DISCUSSION 

The description of statistics of ozone concentration for the 
sampling period of 2015 is shown in Table 2. The mean 
value of the ozone concentration was higher than the median 
indicating that there was a high concentration recorded 
during the study period, the positive numbers indicate 
roughness effect that defines the occurrence of extreme 
events and the emissions of ozone gas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Weibull scale (a) and shape factors (b) designed by 
statistical approaches in Campo Grande. 
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Table 2. Descriptive analysis of ozone concentration for the sampling period (2015) 

Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean 21.60 16.46 16.75 16.70 13.23 11.28 12.41 17.01 18.88 16.94 16.11 15.97 

StDev 11.45 9.09 9.36 9.73 7.06 7.69 8.04 13.20 11.06 8.83 7.75 7.61 

Cvariation 53.00 55.26 55.89 58.27 53.38 68.15 64.76 77.60 58.57 52.13 48.10 47.66 

Median 18.90 15.25 15.80 15.50 13.20 10.20 12.10 15.55 17.60 15.80 15.20 14.75 

Minimum 1.90 2.20 2.20 2.10 2.00 2.00 2.00 1.60 2.00 2.00 2.30 1.00 

Maximum 79.7 70.9 58.5 61.2 41.3 34.5 44.4 55.9 57.7 47.7 46.6 36.4 

Skewness 1.13 1.39 0.96 1.11 0.40 0.38 0.47 0.65 0.71 0.71 0.67 0.42 

Kurtosis 2.11 4.98 1.49 1.95 0.11 -1.04 -0.32 -0.44 0.38 0.47 0.44 -0.54 

Count 742 672 742 742 742 720 742 742 720 742 720 742 

k 1.99 4.98 1.88 1.80 1.99 1.52 1.59 1.31 1.78 2.03 2.21 2.23 

O3 (ppb) 24.36 17.93 18.81 18.76 15.03 12.51 13.71 18.43 21.13 19.11 18.19 18.00 

 

 

These results also show how ozone distributions were 
distorted to the right. Most of the sampled data was 
concentrated to the left of the PDF chart (Figure 3b) with 
few high values of ozone concentration (ppb). An average, a 
median, roughness and persuasion values have increased, 
indicating a growing problem of air pollution in Campo 
Grande. 

Figure 2 shows the plots of monthly variations of the 
Weibull distributions generated by four statistical 
approaches considered for the Weibull shape and scale 
parameters. It can be seen that the divergence of the 
parameters of the form and the methods is more significant 
than the parameters of the scale. The dimensionless Weibull 
shape parameters observed less significant values obtained 
from EPFM and LSRM. Consistency is achieved in the 
Weibull scale parameters, and both MOM and MSDM have 
a comparable range of Weibull scale and shape parameters. 

Table 2 lists the expressive ozone concentration statistics, 
which show evident variations for different time periods. 
The range of the ozone concentration can be represented as 
the discrepancy between the maximum and minimum ozone 
concentration. The concentration of ozone varies between 1 
and 79.7 ppb with a mean value of 16.1 ppb. Likewise, 
standard deviations range from 13.2 to 7.06 ppb.  

The critical values at 95 % confidence level in the 
Kolmogorov-Smirnov (Q95) test are 0.0248 and 0.0246 for 
months at 31 days and 30 days, respectively. In the end, the 
maximum error in the CDF never exceeds the corresponding 
significant values, which implies that the proposed 
technique is applicable to generate the necessary variables in 
the selection of the site. 

Figure 3 shows the histogram and the comparison of the 
Weibull probability functions of the monthly average ozone 
concentration. The ozone data robustly characterized by the 
Weibull probability density function (PDF) and the 
cumulative distribution function (CDF). The maximum CDF 
errors are below or close to critical values in the 
Kolmogorov-Smirnov test at the 95 % confidence level. A 
similar behaviour was observed and the least squares 
regression method does not satisfy precisely all other 
methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. CDF (a) and PDF (b) plots for Weibull distribution 
obtained for 2015. 

It is observed that for the Weibull distribution, the 
parameter of form k oscillated considerably in the 
comparison between the months, varying from 4.9815 to 
1.3137, with the lowest value occurring in August and the 
highest value in the month of February, it is observed that 
the value of k is inversely related to the variance of the 
ozone concentration, which implies low variances if k is 
high and vice versa. In this sense, the values of k obtained 
for Campo Grande were in full agreement with the previous 
statement, where the highest values of k were related to the 
smallest variances shown in Table 2. The scale parameter c 
also varied within the range of 24.4 to 12.5 ppb, with 
minimum values, suggesting for this period a higher 
probability of occurrence of lower ozone concentration. 
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In order to compare the quality of the PDFs to sample 
variable concentration data, several statistics were used in 
related studies for O3 analysis. The most used are the 
coefficient of determination, the results of the Chi-square 
test (χ2), and the mean square error (RMSE). In most studies, 
a visual evaluation of the adjusted PDFs superimposed on 
the data histograms is also performed. The RMSE is applied 
in theoretical cumulative probabilities against empirical or 
theoretical cumulative probabilities of the concentrations of 
the observed variables. These statistics are also calculated 
with variable data in the form of frequency histograms. 

In addition to the analysis performed on the variable 
distributions, some authors also evaluated the adequacy of 
PDFs to adjust the concentration distributions obtained by 
the sample variables or to predict the concentrations. In this 
case, the PDFs are first adjusted to the variables data. Then, 
the theoretical density distributions are derived from the 
PDFs adjusted for the variables. Finally, the fit quality 
measures are calculated using the theoretical density 
distributions and the distribution estimated from the O3 
variables of the sample. 

The performance of these PDFs to evaluate the 
concentrations of the variables was also analyzed and the 
results are summarized in Table 2. It can be said that the 
evaluation of these distribution functions based on the 
quality of the adjustment criteria alone is not enough. These 
criteria should be used to identify appropriate distributions 
before a detailed analysis is done. Because these installed 
PDFs can be used for different applications by industries, 
public decision-makers, the performance of these PDFs for 
specific applications, such as the predicted concentration of 
pollutants, should also be evaluated. The results show that 
there are underestimation and overestimation of the 
concentration density of the pollutant in general, depending 
on the concentration range. The percentage errors show 
mainly that this underestimation and overestimation of the 
concentrations of these pollutants, which may be due to the 
effect of heating and the atmosphere. 

The concentration of ozone increases slowly after sunrise, 
peaking during the day and then decreasing until the 
following morning. This is due to the photochemical 
formation of O3. The shape and amplitude of ozone cycles 
are strongly influenced by climatic conditions (solar 
radiation) and by prevailing levels of precursors (NOx). 

For example, Hsieh and Liao17 argued that the probability 
distributions for all air pollutants in Taiwan were 
approximate to be a lognormal distribution. Besides that, 
Neustadter et al18 revealed that the total suspended 
particulate is obviously logically distributed, whereas sulfur 
dioxide and nitrogen dioxide are rationally estimated by 
lognormal distributions. However, Oguntunde et al19 showed 
that the Gamma distribution is the best distribution for 
carbon monoxide concentration modelling in Lagos State, 
Nigeria. Kan and Chen20 indicated that the best fit 
distributions for PM10 concentrations in Shanghai were 
lognormal. 

In Malaysia, Noor et al21 found that the best distribution 
fits of the PM10 observations in Nilai was the Gamma 
distribution while the log-normal distribution is more 
appropriate in Shah Alam. Razali et al22 refer to the 
lognormal distribution as the best distribution corresponding 

to carbon monoxide data in Bangi, Malaysia. Consequently, 
there is no common distribution of air pollutants and it 
differs by region and time studied. It is important to conduct 
a comparative analysis to find out which distribution best 
fits the air pollutants at a specific location in order to 
provide a better estimate of the air quality at that location. 

The four methods mentioned above were used to estimate 
the two Weibull parameters, i.e., shape and scale parameters. 
These values are averaged and presented in Figures 2a and 
2b It can be clearly seen that a strong linear relationship 
between the monthly parameters of the Weibull average 
scale and the mean concentration measure of ozone. The 
values of the regression coefficients (R2) are extremely high 
and show a counterpart to the linear model (R2 = 0.999927). 
Figure 4 shows the linear relationship between the Weibull 
scale parameter and the monthly mean values observed in 
Campo Grande, the correlation between the monthly scale 
parameter, and the monthly average ozone concentration 
measured, a linear relationship was found with a directly 
proportional slope to the average of the monthly parameters 
of the scale k. 

 

 

 

 

 

 

 

Figure 4. The relation between Weibull O3 parameters monthly 
scaled (averages of all four methods) and the mean values of the 
average ozone concentration. 

The ozone concentration can be demonstrated by the 
coefficient of variation. It can be defined as the ratio 
between the standard deviation of the ozone concentration 
and is an indicator and not an absolute value. The average 
monthly VOC values are shown in Table 2. The coefficient 
of variation varies from 77.60 to 47.65 % and the highest 
percentage variation in the month of August. In general, the 
VOC is lower when the concentration of ozone is maximum 
and vice versa. 

To judge the relative efficiency of the statistical methods, 
six statistical tools, i.e., RPE, RMSE, MPE, MAPE, χ2 and 
R2 are employed. Many researchers have already used 
methods at different geographic locations to estimate ozone 
concentration. In general, only one column is needed to 
classify statistical methods, since the above approaches give 
virtually identical results. For a more accurate diagnosis, 
these six statistical tools were used to classify the methods. 

From Table 5, it is clear that MSDM, MOM, and EPFM 
give very close results and perform better than LSRM. The 
most important criteria are chi-square error (ideally χ2 = 0) 
and regression coefficient (ideally R2 = 1). 
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Table 5. Relative efficiency of statistical methods used. 

Method K O3 (ppb) Bias MAE MSE RMSE χ2 R2 

         MSDM 2.1088 17.9975 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

MOM 2.0990 17.9897 0.0078 0.0078 0.0002 0.0000 0.0000 0.9990 

EPFM 3.6383 17.8638 0.1338 0.1338 0.0902 0.3004 0.0049 0.9920 

LSRM 1.3463 2.4239 -6.2416 6.2416 48.5026 6.9644 3.1889 0.2000 

 

The average monthly variation of the amplitude observed 
in the ozone concentration (10.32 ppb) can be attributed to 
the fact that it is related to the winter solstice. At this time, 
the region under study suffers from the constant penetration 
of cold fronts coming from the South, these cold fronts alter 
the fields of atmospheric pressure and can directly influence 
the direction and speed of the wind. The north-east, 
northwest-northeast, north-west, north-east and north-
northwest winds occur every month of the year. In these 
directions, the northwest direction is what predominates 
more in the region. 

With the entry of cold front, there is a decrease in pressure, 
causing the wind to recede and increase its speed. During its 
passage, there is an increase in atmospheric pressure, 
causing sudden changes in the direction of the wind, which 
is usually accompanied by bursts. As with the front, the 
pressure rises slowly and continuously and can present 
bursts with subsequent stability.23 

It is known that the climate of the region and the entire 
state is influenced by several factors, such as the infiltration 
of cold air masses, especially during the winter months, 
possibly the Atlantic Polar Mass. Another mechanism that 
has been changing the region's climate in recent years is the 
"El Niño" and "La Niña" phenomena.24 

With respect to the Atlantic Polar Mass, with continental 
dislocation, it originates on the sub-Antarctic waters to the 
south of South America, penetrates in the state by West and 
Southwest and predominates in autumn and winter. It is dry 
and does not get moisture throughout the season. The 
Atlantic Polar Mass with maritime displacement also 
originates to the south of the South American continent, 
predominates during the winter and the spring. It is dry at 
the source and absorbs moisture from the ocean, mainly 
from the warm current of Brazil.25 

These results prove the need to carry out regional studies 
by testing a greater number of probabilistic models for the 
adjustment of this climatic variable, since physical space 
peculiarities and the interference of climatic phenomena in 
the region, in monthly, daily and even hourly, are able to 
change the behavior of the ozone-climate variable 
significantly. As shown in Tables 3 and 4 discussed above, 
the Weibull distribution adequately adjusted the mean wind 
concentration data. This extremely important result could 
only be verified by the investigation of a probabilistic model 
less used in other studies and regions. 

CONCLUSIONS 

Parameter estimation is one of the important steps in 
assembling distribution, allowing predictions to be made 
accurately. The objective of this study was to compare 
several parameter estimators and to find the most 
appropriate estimator and distribution to predict ozone 
concentration. The quality and reliability of the models 
developed were evaluated through four performance 
indicators and the result of this study shows that the EPFM, 
MOM and MSDM is the most appropriate method to 
estimate the parameter for Campo Grande using the Weibull 
distribution.  

From the analysis of the test results, it was evidently 
revealed that LSRM presented worse performance than 
other methods. The EPFM, MOM and MSDM methods are 
the most efficient methods to adjust the Weibull distribution 
curves for the evaluation of ozone concentration data.  

The study revealed that the air quality status was not good 
at all times. Four distributions were compared and the 
Weibull distribution offers the best fit because three 
performance indicators offer the best results for this 
distribution. The scatter plot of observed O3 concentrations 
versus predicted values obtained from the Weibull 
distribution shows a very good fit with the coefficient of 
determination of 0.999. 
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