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The predominant air pollutants in urban cities are (NOx = (NO + NO2), O3 and (OX = (O3 + NO2). This research focused on pollutant 

variables that cause damage to human health as well as to the environment. Thus, seven statistical models {Weibull (W), Gamma (G), Log-

normal (L), Frechet (Fr), Burr (Bur), Rayleigh (R) and Rician (Ri)} were chosen to fit the observations of the air pollutants. An average 

hourly data from one year to 2015 were considered. In addition, performance indicators {Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE), Mean Absolute Percentage Error (MAPE)} were applied, to determine the quality criteria for adjustment of the frequency 

distributions. The best distribution that adapts to the observations of the variables was the RICIAN distribution, the log-normal distribution 

for COD. The probabilities of the concentration of exceedances were calculated,(predicted) from the cumulative density function (cdf) 

obtained from the best fit distributions. 
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INTRODUCTION 

Air pollution in urban areas causes adverse effects on the 
human health and the environment. In addition, cities face 
increasing urban pollution and it has negative effects on the 
rapid population growth. Recent studies have also proven 
over time that industrialization and the use of motor vehicles 
are the two main contributors to urban air pollutions. 

One of the main problems caused by air pollution in the 
urban areas is the presence of photochemical oxidizers. 
Among these pollutants, ozone (O3) and nitrogen dioxide 
(NO2) are particularly important since they are susceptible to 
provoking adverse effects on the human health (OMS, 
2000). The formation of ozone at ground level depends on 
the intensity of the solar radiation, the absolute 
concentration of NOx and the VOCs (Volatile Organic 
Compounds), and the ratio between NOx and VOCs.1  

The ozone concentration increases with the growing 
intensities of solar radiation and the air temperature. The 
concentration of photochemical oxidizers may be reduced 
throughout the control of their precursors, which are 
nitrogen oxides NOx (NO and NO2) and VOCs.2-8  

In Campo Grande, some studies and climate monitoring 
campaigns have been carried out,2,9-17 for studying the 
atmospheric dispersion modelling to explore the results of 
climate change. 

In literature, probability distributions have been used to 
adjust the concentrations of air pollutants, including the: 
Weibull distribution,18 Lognormal distribution,19 Gamma 
distribution,20 distribution of Rayleigh,21 distribution of 
Gumbel22 and Frechet's distribution.23 Using a variety of 
performance indicators, such as the: mean absolute error 
(MAE), root mean square error (RMSE), concordance index 
(d2), bias normalized absolute error (NAE), prediction 
accuracy) and the coefficient of determination (R2). 

The objectives of this study are to adjust the probability 
distributions for the concentration of three air pollutants 
(NOx, O3 and OX) using seven statistical models.  

 

 

 

 

 

 

 

 

 

Figure 1. Location of the Municipality of Campo Grande in the 
State of Mato Grosso do Sul, and the continuous air monitoring 
station located on the campus of the Federal University of Mato 
Grosso do Sul, Campo Grande, MS. 
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MATERIALS AND METHODS 

Studied and observational data 

Campo Grande is the capital city of South Mato Grosso 
(MS) state, located in the southern of Brazil Midwest region, 
sited in the center of the state. Geographically, the city is 
near to the Brazilian border with Paraguay and Bolivia. It is 
located at 20°26’34’’ South and 54°38’47’’ West longitude. 
Figure 1 shows the location of Campo Grande, capital of the 
state of Mato Grosso Sul (MS). It occupies a total area of 
8,096.051 km² or 3,126 mi², representing 2.26 % of the total 
state area, within 860,000 inhabitants (2016) and a 
corresponding HDI of 0.78. The urban area is approximately 
154.45 km² or 60 mi², where tropical climate and dry 
seasons predominate, with two clearly defined seasons: 
warm and humid in the summer, and less rainy and mild 
temperatures in winter months.  

During the months of the winter, the temperature can drop 
considerably, arriving on certain occasions to the thermal 
sensation of 0 ºC or 32 ºF with occasional and light freezing. 
The year average precipitation is usually at 1,534 mm, with 
small up or down variations. The main pollution problems in 
the city are attributed to the: traffic of vehicles, raise of 
building activities, the presence of dumping grounds, use of 
small power generators running on oil to supply power to 
the electric grid, and finally, to the induced fire outbreak 
used to clean up local terrains.  

Ensemble of observational data 

The air quality and meteorological variables are monitored 
by an automatic station operated at the Institute of Physics 
of the Federal University of South Mato Grosso (UFMS). 
This met station is located inside the university campus, 
about 8 km or 5 miles to the west of downtown. The main 
sources of pollution in that area are the building activities; 
therefore, there are no significant precursor sources of ozone 
identified close to the region. The ozone levels of Campo 
Grande area are stored in a regular database since 2004.  

The equipment of measurements was installed at the top 
of a tower from where air samples are extracted throug 
vertical pipes that are placed approximately 2 meters above 
the ground level.  

The three considered pollutants, NOx (NO + NO2), OX 
(O3 + NO2) and O3, were measured continuously for a one–
year period (2015).  

The equipment used for measurements include a nitrogen 
oxide analyzer (AC31M–using chemiluminescence method), 
an ozone analyzer (O341M–LCD/UV Photometry). All 
equipment was made by Environnement S.A.  

Modelling of the climatological datasets 

The statistical models (Weibul, Rayleigh, Gamma, 
Lognormal, Frechet, Burr and Rician) used for fitting of the 
observed datasets (NOx, OX and O3) are defined as follow: 

 

Weibull (W) PDF 

The Weibull probability density function (pdf) of a 2-
parameter distribution is given as the derivative of a 
cumulative distribution function (cdf) expressed in Eqn. (1)  

 

 

          (1) 

 

The Weibull cumulative distribution function (cdf) is 
given by Eqn. (2)  

 

 

                   (2) 

 

where  

 k and C are the shape and scale parameters of the 
 Weibull distributions derived from the time series of 
 the climatological datasets;  

  is the time series observations from each 
 variable/dataset. 

Meanwhile, the shape parameter “k” is obtained from the 
maximum likelihood estimator (MLE) as expressed: 
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Once the k values are calculated, the scale parameter 
values are obtained from Eqn. (4)  
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where N is the number of time series dataset points. 
Meanwhile, Eq. (3) is apply to each climate observations 
and solve iteratively with an initial guess of 2 (k=2) until k 
values converge after several iterations.  
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Rayleigh (R)P DF 

Substituting k=2 into Eqs (1) and (2), the Rayleigh pdf of 
a continuous distribution fr (v,k,C), is given as: 

 

          (5) 

 

The Rayleigh cumulative distribution function (cdf) is 
given: 

 

          (6) 

 

Gamma (G) PDF 

The pdf of a gamma distribution is defined by Olaofe and 
Folly:24 
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where fg  and Γ(k) are the pdf of gamma distribution and the 
gamma function of (k), respectively. k and C are the shape 
and scale parameters of the Gamma distribution derived 
from the time series observations. 

The cumulative density function (cdf) of a Gamma 
distribution is defined as 
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where Fg  is the cumulative density function of a gamma 
distribution. 

Lognormal (L) PDF 

Lognormal was used to fit the ozone concentration data. 
The location parameter of the lognormal distribution is 
estimated from the expression: 
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where  is the variance of the observed dataset and μ is the 
lognormal scale (sigma) parameter  

The scale parameter of the lognormal distribution is 
estimated as  
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where is the  (location) parameter. 

The probability density function and the cumulative 
distribution function of a lognormal pdf are defined below  
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where , μ,
  

fl, Fl and erfc(ln-)2/22 are the location 
parameter, scale (sigma) parameter, lognormal pdf and cdf, 
and error function of (ln-)2/22, respectively. 

In another literature,25 the lognormal distribution with 
probability density function  was given by Lu: 
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The cumulative density function form for normal 
distribution is  

 

           (12b) 

 

𝜎 is obtained by solution below      
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Frechet (F) PDF 

The density function of the generalized extreme value 
(GEV) distribution with shape (k≠0), location (µ) and the 
scale (δ) parameters are given:26  
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where ff is the probability density function of a Frechet 
(GEV) distribution 

Rician (Ri) PDF 

The density function of a Rician distribution is given as:27  
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where  

 s≥0 and δ=0 are non-centrality and scale parameters, 
 respectively;  

 Ι0 is the zero-order modified Bessel function of the first 
 kind. 

The two parameters of the Rician distribution are 
estimated as: 
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where Ι1(z) is the first-order modified Bessel function of the 
first kind and z=is/2. A good numerical optimization 
algorithm with a starting value is needed to solve Eqn. (15). 

Burr (B) PDF 

The density function (pdf) of the Burr distribution is given 
by the expression: 

           (17) 

Accuracy Test 

The accuracy results are essential for determining the 
effectiveness of the statistical models. Thus, accuracy check 
is carried out by comparing the observed climate 
distribution with predicted/modeled distributions. The 
observed data is the values from the monitoring systems 
whereas the modeled datasets are obtained from the fitted 
distributions.26 The various tests for determining the 
goodness-of-fit of the models (pdfs) are expressed below: 

Mean Absolute Error (MAE) 

The mean absolute error is used for testing the predicted 
distribution of observed climatological variables (NOx, OX 
and O3) against the observed distribution. It is often defined 
as the mean of the absolute errors derived from the observed 
and predicted values. The mathematical equation is defined 
as: 
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where 

 xi is the observed values of the air pollutants;  

  is the predicted/modeled values from Weibull, 
 Rayleigh, and Gamma, Lognormal models etc. 

Root Mean Square Error (RMSE) 

It is used for comparison of the predicted from the 
observed values. The root means square error for the best fit 
statistical model is given as:  
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Mean Absolute Percentage Error (MAPE) 

The mean absolute percentage error is calculated as: 
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RESULTS AND DISCUSSIONS 

The description statistics of average values of air 
pollutants for the sampling period (2015) was being shown 
in Table 1. The annual mean values of the gases  (NO, NO2, 
NOx, OX and O3) was higher than the median, indicating a 
high concentration recorded for the studied period.  Most of 
the data is concentrated to the left of PDF charts with few 
high values. There was an increase in mean, median, 
roughness and persuasion values, indicating a growing 
problem of air pollution in Campo Grande. 
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Table 1. Descriptive analysis of pollutants for the sampling period (2015). 

Variable Count Mean St.Dev Coef.Var Minimum Median Maximum Skewness Kurtosis 

NO (ppb) 8776 7.069 11.583 163.87 0.000 3.700 165.000 5.11 38.11 

NO2 (ppb) 8776 5.6624 5.6530 99.84 0.0000 4.1000 60.2000 2.41 9.63 

NOx (ppb) 8776 12.721 13.708 107.76 0.000 8.800 165.000 3.39 18.25 

OX (ppb) 8776 21.766 10.826 49.74 2.000 20.200 95.400 1.04 2.23 

O3 (ppb) 8776 16.109 9.832 61.03 1.000 15.100 79.700 1.00 1.99 

Source: UFMS-Institute of Physics 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Average of measured values for a daily period of NO, NO2, NOx, O3 and Ox concentrations. The interval between measurements 
equals 1 hour.  

 

Hourly variation of O3, NO, NO2, OX and NOx concentrations 

The average per diem variation observed for the NO, NO2, 
NOx, OX and O3 concentrations are presented in Fig 2. 
Generally, the daily cycle of the ozone concentration 
reaches its peak at middle day and presents smaller 
concentrations during the night. The ozone concentration 
slowly increases after the first rays of the sunshine, getting 
to its maximum value during the daylight period, and after 
which it starts to decrease slowly until the next morning. 

Figure 2 shows a displacement of about 2 hours in the 
morning between the NO and NO2 peaks. In the morning, 
NO2 is produced by oxidation of NO,2 because NO can be 
converted to NO2 in the presence of peroxy radicals, but at 
night, NO and NO2 concentrations have a slight increase 
caused by increased in vehicular traffic during the rush hour 
(6:00 p.m.) and the influence of night boundary layer 
stability. At this time NO2 reached its peaks at 6:00 p.m. 

Figure 2 shows an increase in O3 concentrations during 
the day, starting at 8:00 p.m. and peaking at 2 p.m. NO is 
converted to NO2 by reaction with O3, but during the 
daytime, NO2 is converted back to NO as a result of 
photolysis, which leads to O3 regeneration.8 O3 
concentration in urban atmospheres peaked during the 
daytime from at 14:00 - 15:00, when there is a maximum in 
solar radiation intensities and air temperature. This increase 
is by photolysis of NO2 and by the increase in the height of 
the boundary layer during the daytime that can result in the 
O3 mixture due to thermal stratification and convective heat 

transfer to the surface of the air at higher altitudes. After 
reaching the maximum concentration at 14:00-15:00 hr., the 
concentration of O3 decreases due to a decrease of the 
photochemical activity. 

Higher OX concentrations occurred in the afternoon, thus 
revealing an influence of the photochemical processes.5,8 
Also, OX decreases due to the absence of solar radiation at 
night. This lack of radiation hinders the formation of NO2 
and O3 by photolytic reactions, as well as the reactions of 
NO2 with NO3, and of NO2 with O3.28 

While O3 and a large percentage of NO2 concentrations 
are the secondary contaminants, NO is a primary 
contaminant, formed through a complex set of chemical 
reactions. At 07:00 a.m, the sunlight begins to induce a 
series of photochemical reactions. NO is converted in NO2 
through a reaction with O3. During the shining hours, NO2  
is converted again into NO because of photolysis, which 
induces the regeneration of O3.  

Another factor influencing the atmospheric air pollutant 
concentrations is the height of the mixture layer over the 
city. In a shiny day, the pollutants are diluted when the 
mixture layer increases during the day and stays limited to 
the inside of NPBL during the night. Emitted pollutants, like 
NO, are kept underneath (such an inversion), and it can 
cause an increase of hourly average concentration of NOx 
overnight. 
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Chemistry of O3, NO and NO2 

The basic chemistry that  led to the production and 
destruction of ozone has been detailed elsewhere.28  

NO2 + h    NO + O    (21) 

O + O2     O3 + M    (22) 

O3 + NO    NO2 + O2    (23) 

M represents a molecule absorbing the excess of 
vibrational energy and thus stabilizing the O3 molecule that 
has been formed, normally it is N2 or O2; h represents the 
photon energy, with a 424 nm wavelength; and O is an 
active monoatomic molecule of oxygen.  

The plots of the pdfs and cdfs for three air pollutant 
variables (NO, O3, OX) in Campo Grande are presented in 
Fig 3. The plots show that for: NO - the functions (W, R, and 

G), fit well in the range of 0 to 30 ppb ; For the functions (L, 
Ri, NP), they overestimate in the range of 0 to 3, 
underestimate in the range of 3 to 12 and overestimate in the 
range of 12 to 30 ppb. The functions that fit the NO 
concentration best are Rayleigh and Rician. (please confirm 
again W, R, G, L, Ri, NP. Also, I don't know what NP 
stands for) 

O3- the functions (W, R and G) underestimates the 
concentrations of 0 to 18 ppb and overestimate in the range 
of 18 to 35 ppb, while the R function overestimates in the 
range of 13 to 18 ppb . For the other functions (L, Ri, NP) 
overestimated in the range of 0 to 12 ppb, underestimated in 
the range of 12 to 17 ppb; for Ri underestimated in the range 
of 12 to 17 ppb and underestimated in the range of 17 to 25 
ppb; For the functions (Fr, Bur) they fit well in the 0 to 23 
ppb range, with the exception of Bur that underestimates in 
the range of 17 to 25 ppb and the range of 25 to 35 the 
overestimate functions. For ozone the best function that fits 
is the Rician;  
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Figure 3. – Plots of the pdfs and cdfs for three air pollutant variables (NO, O3, OX) in Campo Grande. 

 

OX- for the functions (W, R, G) underestimates the 
concentrations of 0 to 25 ppb and overestimate in the range 
of 25 to 40 ppb; For the functions (L, RI, NP) overestimated 
in the range of 0 to 15 ppb, underestimated in the range of 
15 to 28 for Ri and overestimated for L and NP in the range 
of 15 to 23 ppb, in the range of 28 to 40 overestimate To Ri 
and underestimated for L and NP. The best function that fits 
for OX is Rician. In order to compare the quality of several 
pdfs to sample variable concentration data, several statistics 
were used in related studies for analysis of O3, NO and OX. 
The most used are coefficient of determination, Chi-square 
(χ2) test results, Kolmogorov-Smirnov test (KS) and square 
root mean square error (RMSE). In most studies, a visual 
evaluation of overlapping adjusted pdfs To the histograms 
of the data is also performed The RMSE are applied in 
theoretical cumulative probabilities against empirical or 
theoretical cumulative probabilities of the concentrations of 

the observed variables. These statistics are also calculated 
with variable data in the form of frequency histograms. 

In addition to the analysis performed on the distributions 
of the variables, some authors also evaluated the adequacy 
of pdfs to adjust the concentration distributions obtained by 
the sample variables or to predict the concentrations. In this 
case, the pdfs are first adjusted to the data of the variables. 
Then, the theoretical distributions of concentration density 
are derived from the pdfs adjusted for the variables. Finally, 
the fit quality measurements are calculated using the 
theoretical density distributions and the distribution 
estimated from the NO, O3, OX variables of the sample. 

Figure 3 shows seven PDFs, namely Weibull (W), gamma 
(G), log-normal (L), Frechet (Fr), Burr (Bur), Rayleigh (R) 
and Rician (Ri) Of the variables studied in the data set. 
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Graphically, it can be seen that the Rician PDF produces the 
best fit. Rayleigh and gamma distributions correspond to the 
histogram to a lesser extent and provide the poorest 
adjustments. It can be seen from the figures that these 
variables present different forms of histograms. The 
parameter values obtained for these distributions and the 
assembly precision based on the performance index criteria 
presented in Table 2. It can be seen that both statistical 
indicators gave similar results in all cases. The Weibull (W), 
Rician (Ri), log-normal (L) functions provide the smallest 
adjustment error for the data sets. This is also verified in 
Figure 3. Statistical tests show that the Rician distribution is 
the best choice for the data set. However, the Weibull PDF 
also provides fairly accurate results for the variables. 
Rayleigh PDF gives a very poor performance and is a poor 
fit. The performance of these three PDFs to evaluate the 
concentrations of the variables were also analyzed and the 
results are summarized in Table 2.  

The Rayleigh PDF produced the maximum error between 
the PDFs and produced significant errors in the evaluation 
of the concentrations of the variables. Overall, Weibull, 
Rician, and lognormal PDFs resulted in fewer errors, and 
among the three functions, while Rician was ranked number 
1 based on performance index criteria. It can be said that the 
evaluation of these distribution functions based on the 
quality of the adjustment criteria alone is not enough. These 
criteria should be used to identify appropriate distributions 
before a detailed analysis is made. As these PDFs installed 
can be used for different applications by the industries, 
public managers in decision-making, the performance of 
these PDFs for specific applications, such as prediction of 
the concentration of pollutants, should also be evaluated. 
The results show that there are an underestimation and 
overestimation of the concentration density of the pollutants 
in general, depending on the concentration range. The 
percentage errors mainly show that this underestimation and 
overestimation of the concentrations of these pollutants, 
which may be due to the heating effect and the atmosphere. 

The distributions gamma has also been used to fit the 
probability density functions of daily air pollutant 
concentration.29  The pollutants studied have a different 
statistical distribution, due to the different diffusion 
characteristics of the individual pollutant in the air and to 
the interaction of diffusion characteristics and local 
geography, climatic conditions in Campo Grande. The 
distributions gamma has also been used to fit the probability 
density functions of daily air pollutant concentration.29 

The current study showed that the pollutants studied O3, 
OX and NO had different statistical distribution. The 
difference might be due to the different diffusion 
characteristics of individual pollutant in the air, and the 
interaction of diffusion characteristics and local geography, 
weather conditions in Campo Grande. The underlying 
mechanisms need to be further explored. 

The current analysis shows that the statistical distributions 
of better performance of several air pollutants in Campo 

Grande are different. For example, Nan-Hung Hsieh and 
Chung-Min Liao claimed that the probability distributions 
for all air pollutants in Taiwan were approximate to be a 
lognormal distribution.30 In addition, Neustadter31 revealed 
that the total suspended particulate is obviously logically 
distributed, whereas sulfur dioxide and nitrogen dioxide are 
rationally estimated by lognormal distributions. However, 
Oguntunde32 showed that the Gamma pdf is the best 
distribution model for the carbon monoxide concentration 
modelling in Lagos State, Nigeria. Hai-Dong Kan and Bing-
Heng Chen indicated that the best fit distributions for PM10 
concentrations in Shanghai were lognormal.33 

In Malaysia, Noor et al.26 found that the best distribution 
fits the PM10 observations in Nilai was the Gamma 
distribution while the log-normal distribution is more 
appropriate in Shah Alam. Razali et al. referred to lognormal 
distribution as the best distribution that fitted to the carbon 
monoxide data in Bangi, Malaysia.34 Accordingly, there is 
no common distribution of air pollutants and it differs from 
the studied region and time. It is important to carry out a 
comparative analysis in order to find out which distribution 
better fits the air pollutants in a particular location in order 
to provide a better estimate of the air quality at that location. 

Table 2 presents the results tests for fitting for different 
distributions to the air pollutants data. The preferable results 
were highlighted by italicizing and bold. We found that out 
of the distributions considered, the Rician and Gamma 
distribution significantly fits with most of the air pollutants 
data in Campo Grande which are  NO, O3 and OX, while O3 
is fitted well with Weibull distribution. 

Performance Indicators 

The values of the performance indicators for the variables 
concentration in Campo Grande were tabulated in Table 2. 
A small value of the MAE indicates that the distribution of 
the Rician fits well the sampled data of the variables (O3 and 
OX), while the best fit that is appropriated is the function of 
Rayleigh. The smaller MSE and RMSE values indicate that 
the physician's distribution best fits the variables data while 
the lower COD value indicates that the Rician distribution 
fits the variable data 

CONCLUSION 

Based on the statistical characteristics of the concentrated 
air variables studied in Campo Grande,  result findings 
indicate that the mean of the concentrations of the variables 
for the monitoring data sets was higher than the values of 
the medians showing that all observations are positively 
inclined to the right, with few extreme concentrations. The 
Weibull (W), gamma (G), log-normal (L), Frechet (Fr), Burr 
(Bur), Rayleigh (R) and Rician (Ri) distributions have been 
analyzed with the selected datasets.  

 

 

Table 2. Performance indicators for variables concentration in Campo Grande.  
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MAE 

Datasets Weib Rayl Gam Logn Rician Frechet Burr 

NO 0.0121 0.0100 0.0185 0.0665 0.0118 0.0224 0.0217 

O3 0.0025 0.0167 0.0088 0.0422 0.0015 0.0237 0.0083 

OX 0.0024 0.0152 0.0057 0.0437 0.0003 0.0247 0.0275 

 

 

MSE 

Datasets Weib Rayl Gam Logn Rician Frechet Burr 

NO 0.00021 0.00014 0.00048 0.000997 0.0001422 0.00069 0.00064 

O3 0.00001 0.00040 0.00010 0.00023 0.0000031 0.00079 0.00011 

OX 0.00001 0.00033 0.00004 9.49E-05 0.0000001 0.00094 0.00108 

 

 

RMSE 

Datasets Weib Rayl Gam Logn Rician Frechet Burr 

NO 0.0143 0.0119 0.0220 0.031571 0.0119 0.0263 0.0252 

O3 0.0029 0.0201 0.0101 0.015156 0.0018 0.0281 0.0107 

OX 0.0028 0.0182 0.0065 0.009742 0.00032 0.0306 0.0328 

 

 

COD 

Datasets Weib Rayl Gam Logn Rician Frechet Burr 

NO 0.8662 0.9305 0.8117 0.658254 0.9306 0.8046 0.8278 

O3 0.9854 0.4589 0.9173 0.847021 0.9945 0.7032 0.8540 

OX 0.9958 0.6093 0.9465 0.890939 0.9998 0.2916 -0.1592 

 

 

MAPE 

Datasets Weib Rayl Gam Logn Rician Frechet Burr 

NO 6.6708 8.0654 6.7749 -3.2820 8.0636 4.8187 5.7405 

O3 3.1229 -67.4508 4.5800 -45.0314 1.6711 -22.5415 -1.2100 

OX -0.5213 -37.8984 1.7815 -1.6104 0.3108 -32.7144 82.4431 

 

Performance indicators were also applied, which were 
mean absolute error (MAE), root mean square error 
(RMSE), the mean absolute percentage error (MAPE) to 
determine the quality criteria for the adjustment of the 
distributions. 

The best distribution that adapts to the observations of the 
variables was the Rician, Weibull and the lognormal 
distribution. The pdf and cdf graphs obtained in this 
research can be used to predict the probabilities of 
exceedances. 

The importance of statistical analysis in the field of 
atmospheric pollution for environmental engineering is 
shown in this research as it’s useful for to adjustment of the 
data sets of pollutants with the best statistical model, in turn, 
to successfully estimate the exceedances of pollutants.  

However, this work can still be improved with the 
application of other types of distributions and to adjust the 
monitoring data of the time series of air pollution. 
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E. Pires, J. C.; Ikefuti, P., Meteorological Impact Factors on 
the Modeling of Ozone Concentrations Using Analysis of 
Temporal Series and Multivariate Statistic Methods. Holos 
(Natal. Online), 2017, 5, 2-16. 
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