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Earth Observation (EO-1) data provides a highest spectral resolution to get spectral information of Earth's Surface targets within 242 

spectral bands at 30 m spatial resolution. In this context, the main objective of this paper is to produce a land cover map using hyperspectral 

data acquired by EO-1 Hyperion instrument over one test site. Atmospheric correction on the hyperspectral data was performed using 

ENVI’s Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-cubes (FLAASH) module. Support Vector Machine (SVM) 

classification was implemented on the dominant elements to produce a land cover map for test site. SVM is carried out in this research to 

deal with the multi-class issue of Hyperion data. Classification using the kernel functions in classification made the classifier robust against 

the outliers. The Land Cover Classification System (LCCS) was used to know the land cover classes. The result showed high accuracy for 

land cover map with machine learning classifier like SVM using hyperspectral remote sensing data. The overall classification accuracy 

obtained was 97.85. 
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INTRODUCTION 

Land cover (LC) is very important in a lot of natural 
resource applications. At local and regional scale, 
knowledge of LC forms a basic dimension of recourses 
available to any political unit.1 On a wide scale, LC 
information is of main importance in determining the broad 
patterns of climate and vegetation which form the 
environmental framework for human activities. Furthermore, 
LC maps are also a valuable contribution in the development 
of maintain policies particularly for ecologically protected 
areas and the restoration of native environments, as well as 
the monitoring of desertification and land degradation in 
regions.2 Remote sensing has been appropriate source for 
LC thematic mapping.3 Accordingly image classification4 is 
the most widely used for this purpose it is the most 
frequently applied approach in developing land use and land 
cover spatial distribution maps.5 An overview of different 
remote sensing classification techniques has been 
published.6 

Recently, progresses in sensor technologies have directed 
to the launch of hyperspectral remote sensing systems. 
Hyperspectral sensors are able to register reflected light 
from land surface elements in many narrow continuous 
spectral bands from the visible to the shortwave infrared 
parts of the electromagnetic spectrum.7 this allows 
hyperspectral systems to provide spectral information useful 
for many applications but not limited to land cover maps.8  

The launch of the Hyperion space-borne hyperspectral 
sensor in 2000 under NASA’s New Millennium Program 

on-board the Earth Observer-1 (EO-1) satellite platform.9 
Hyperion acquiring spectral information of Earth’s surface 
objects in 242 spectral bands and at a spatial resolution of 30 
m. The Hyperion sensor has two spectrometers one in the 
visible and near-infrared (VNIR) (bands 8–57, region 427–
925 nm) and one in the shortwave infrared (SWIR) region 
(bands 77–224, region 912–2395 nm). The swath width of 
Hyperion is 7.6 km across-track, and approximately 53.6 or 
80.4 km along-track.  

The potential of Hyperion imagery for land cover 
mapping has been verified by many investigators.10 In this 
context, the main objective of this study is to produce a land 
cover map for east Suez Canal region using hyperspectral 
data acquired by the EO-1 Hyperion instrument with the 
Support Vector Machine (SVM) classification techniques. 
Another goal is to use Land Cover Classification System 
(LCCS) to define the land cover classes. 

Site selection and data source 

The study area was located in El Qantra-sharq District of 
Ismailia Governorate east of Suez Canal covers almost 
34165 feddans. It represents the new reclaimed land for the 
agriculture land use. The coordinates of the upper left corner 
are 30 ̊ 38ˊ 20˝ N and 32 ̊ 23ˊ 20˝ E, while the lower right 
corner coordinates are  30 ̊ 30ˊ 0˝ N and 32 ̊ 28ˊ 20˝ E 
(Figure 1). According to Ismailia weather station (624400), 
it is the nearest recording station to the study area. The 
climate of the study area is aridic regime, which is 
characterized by a short winter season and a long hot 
summer. The temperature sometimes varied widely through 
different periods of the year, as the minimum mean was 8.4 
C in January, while the maximum mean was 35.6 C during 
July. The normal values of the monthly rainfall show that 
the average of annual rainfall was approximately 25 mm / 
year. The relative humidity is higher in winter than in 
summer, it attains a minimum average of 52.2% in May and 
a maximum average of 66.5% in August. The relief of the 
area is variable, with the average altitude varying from 0 to 
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200 m above sea level. Geologically, the area is belong to 
Quaternary deposits were divided into Holocene and 
Pleistocene. The vegetation cover is limited to citrus tree, 
clover and hordeum. 

 The Hyperion imagery of site selection was acquired on 
January 9, 2016. The imagery was received from NASA 
Earth Observer (EO)-1 Hyperion sensor, record as a full 
long scene (185-km strip) and at level 1 (L1GST) processing. 
This processing level product is a geo-tiff image format, and 
is already radiometric corrected, geometrically resampled, 
and registered to a geographic map projection with elevation 
correction applied.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of the study area  

METHODS 

Summary of the methodology adopted in the study is 
explained in (Figure 2) and the image processing details are 
given in the following sections. 

Linear interpolation of sensor  

All pre-processing of the Hyperion imagery was carried 
out using ENVI (5.1). The first step in the pre-processing 
involved the linear interpolation of all the sensor detectors 
on a pixel by pixel, spectrum by spectrum, and band by band 
basis to a common set of wavelengths, which resulted 242-
band image.  

Remove bad band 

 The Hyperion visible and near-infrared (VNIR) 
spectrometer has only 50 calibrated bands, while the short- 
wave infrared (SWIR) spectrometer has only 148 calibrated 
bands. The non-calibrated bands of the Hyperion imagery 
(1–7, 58–76, and 225–242) were removed. The residual 198 

bands cover the entire spectrum from 426 to 2395 nm 
therefore, the Hyperion bands sensitive to water absorption 
(i.e., bands 120–132, 165–182, 185–187, and 221–224) were 
removed in order to reduce the influence of atmospheric 
scattering and water vapour absorption caused by mixed 
gasses to the data.11 Bands 77 and 78 were also eliminated 
as such bands had a low signal to noise value, and 
overlapped with bands 56 and band 57, respectively.12 

 

 

 

 

 

 

 

 

Figure 2. A flow diagram showing the processing scheme for the 
methodology. 

Atmospheric correction  

Remote sensing measurements of the Earth’s surface are 
deeply influenced by atmosphere. Water vapour with 
smaller contributions from carbon dioxide, ozone and other 
gases dominates the absorption by atmospheric gases. To 
retrieve the surface reflection, the atmospheric components 
must be removed. In the study area, ENVI’s Fast Line-of-
sight Atmospheric Analysis of Spectral Hyper-cubes 
(FLAASH) module was applied on Hyperion data for 
atmospheric correction. The different parameters used in 
FLAASH atmospheric correction are contained in (Table 1). 

Table1.Parameters used in FLAASH Atmospheric Correction 

Parameter  Value  

Latitude  30 29 23.28 

Longitude  32 23 51.35 

Sensor Altitude (km)  705  

Ground Elevation (km)  0.050  

Pixel Size (m)  30  

Flight Date  1/9/2016  

Flight Time  6:48:6  

Atmospheric Model  Mid-Latitude Winter  

Aerosol Model  Rural  

Spectral Polishing  9 bands  

CO2 Mixing Ration (ppm)  390  

Zenith Angle  180  

Azimuth Angle  132 57 21.96 

Output Scale Factor  10000  
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A 

B 

FLAASH requires input image in BIL format and ASCII 
file of scale factors number. The scale factors for the VNIR 
and SWIR bands are 400 and 800 respectively in the case of 
nanometers (nm) while 40 and 80 for μm. The study area is 
rural and it located in winter climate. So, Mid-Latitude 
Winter atmospheric and rural aerosol model of FLAASH 
were selected and other parameters were defined based on 
metadata of the Hyperion image file. The change in the 
spectral reflectance curve of vegetation area before and after 
FLAASH correction can be seen in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.Spectral Curve of Vegetation (a) before FLAASH and (b) 
after FLAASH 

Geometric correction  

Geometric correction was carried out for the Hyperion 
image of 2016 using 40-ground control points (GCP’s) 
obtained from a digital topographic map at a scale of 
1:50,000 and Landsat ETM+ using the image- to-image 
technique. The geometric model used in the rectification 
process was three- order -polynomial and the resembling 
method is the nearest neighbor method. 

The image was projected with Transverse Mercator 
projection in WGS-84 spheroid and datum. Finally, the root-
mean-square error (RMSE) images were obtained as less 
than 0.4 pixels, which are acceptable.13  

Support vector machine classification 

Support vector machines classification (SVM) is a 
supervised machine learning method that performs 
classification based on the statistical learning.14 Basically, 
SVM is based on fitting a separating hyperplane that 

provides the best separation between two classes in a 
multidimensional feature space. This hyperplane is the 
surface on which the optimal class separation takes place. 
The optimal hyperplane is the one that maximizes the 
distance between the hyperplane and the nearest positive 
and negative training. In order to represent more complex 
shapes than linear hyperplanes, a variety of kernels 
including the polynomial, the radial basis function (RBF), 
and the sigmoid can be used.15 Also, a penalty parameter can 
be introduced to the SVM classifier to allow for 
misclassification during the training process.  

Training data selection 

It was necessary to use the training sites for the SVMs 
classification process which applied to the Hyperion image 
for land cover map. First, it has been defined for all land 
cover classes according to LCCS system shown in (Table 2). 
The classification system was based primarily on visual 
interpretation of the high resolution quick bird imagery 
acquired from Google Earth, furthermore topographic maps 
scale 1/ 50000. Chosen the date acquisition of the quick bird 
imagery was close to that of Hyperion imagery.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Training sites (GPS) for land cover classes. 

 

 

 

 

 

 

 

Figure 5.The component spectra for landcover classes used for 
SVM in test site. 
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Table 2. Classification key According to LCCS which was used in the land cover classes. 

Class user name  LCCS code  Legend description 

Permanently cropped area with surface 

irrigated tree crop(s) 

Dominant crop: fruits &  mango 

(Mangiferaindica L.)  

Crop Cover: Orchard(s) 

A1 = Trees Continuous irrigated orchard of Citrus Fruits  

A9 = Evergreen The field size varies from 2 to more than 5 fed. 

B1 = Large-Medium The class covers almost 80% of the polygon area 

B5 = Continuous   

C1 = Single Crop   

D3 = Irrigated   

D4 = Surface   

D9 = Permanent   

S0606 = Citrus Fruits (Citrus spp.)   

W8 = Orchards or Other Type of 

Plantations  

  

Permanently cropped area with small 

sized field(s) of surface irrigated 

Herbaceous crop(s) (one additional 

crop) (Herbaceous terrestrial crop 

sequentially). 

Dominant Crop: Clover 

A3 = Herbaceous crop Continuous clover crop 

B2 = Small The field size is less than 1fed. 

B5 = Continuous The class covers almost 80% of the polygon area 

C2 = Multiple Crop   

C3 = 1 add. Crop   

C7 = Herbaceous Terrestrial   

C19 = Sequential   

D3 = Irrigated   

D4 = Surface   

D9 = Permanent   

Zs3 = Clover    

Shifting sands/Dune(s) A2 = Unconsolidated Dunes 

A6 = Loose and shifting sands   

B1 = Dunes   

Non-perennial natural water bodies 

(surface aspect: sand) 

Scattered vegetation: scattered 

vegetation present 

A1 = Natural Water bodies Non-perennial natural water bodies with scattered  

B2 = Non-Perennial Vegetation 

B6 = Sand Non-perennial natural water bodies with scattered  

U1 = Scattered Vegetation Vegetation 

Water seasonality A23 = Waterlogged The water table is very high and at or near the 

surface. These areas could be occasionally 

flooded but the main characteristic is the high level of 

the water table (e.g. bogs). 

 

The training sites were accurately limited to include of all 
land cover classes. Second, training sites representative of 
the classes were collected from the Hyperion imagery 
following a stratified random sampling strategy. Third, it  
used for 1116 regions of interest which keeps of spectral 
signature from Hyperion image that has been used in SVM 
classification and compared it with the large spectral library 
of USGS are shown in (Figures 4 and 5), respectively. 

Accuracy assessment 

The final stage of the image classification process usually 
it include an accuracy assessment step.16 Accuracy 
assessment is the quantification of mapping with the 
associate of remote sensing data, which is helpful in 
estimation of classification algorithms and also in limitation 
of the error level that might be associated with the image. 
The accuracy of classification is calculated in the form of an 
error matrix (also known as a confusion matrix).17 
Numerous methods for accuracy assessment have been 
explained in remote sensing. Accuracy assessment was 

based on the computation of the overall accuracy (OA), 
user’s accuracy (UA), producer’s accuracy (PA), and the 
Kappa (Kc) statistic.18 The OA is the ratio of the number of 
validation pixels that have been correctly classified to the 
total number of validation pixels used for all classes and is 
expressed as a percentage (%). 

RESULTS AND DISCUSSION 

Figure 6 shows the land cover thematic map produced 
from the SVMs classification based on the Hyperion 
imagery acquired for our site selection. Land cover classes 
were extracted: cultivated land (including mango tree and 
clover), sand dunes, submerged area, waterlogged area, 
main roads and irrigation canal. According to the table 3, the 
total study area is 34165 feddans, mango 9445 feddans 
(28%), sand dunes 22940 feddans (67 %), had the highest 
level of the area. In contrast, the submerged area 311feddans 
(1 %), clover5 47 feddans (2 %) and waterlogged area 419 
feddans (1 %) had the lowest level of the area while the 
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main roads had 435 feddans and the irrigation canal 68 
feddans. moreover,19 studied the comparison of 2 
classification methods (MLC and SVM) to extract land use 
and land cover in Johor Malaysia. The results showed that 
the SVM classification based on kappa coefficient 0.86 was 
the most accurate method.20 It further concluded that SVM is 
better than other traditional classifiers (i.e., the ML and the 
SAM classifier) in respect of classification accuracy and 
processing time.21 The authors evaluated various algorithms 
for classification in land use mapping, and concluded that 
the SVM algorithm in comparison with the MLC algorithms 
and decision trees has a higher accuracy in the preparation 
of land use maps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Land cover map for sit selection (2016) based on 
Hyperion image 

 

Table 3. Land cover distribution for the study area(2016). 

* Feddans = .42 hectare 

Classification accuracy assessment 

Classification accuracies of land cover classes using SVM 
classification are depicted in table 4 and table 5. A total 

number of 280 ground control points (GCPs) were used for 
accuracy assessment. 35 point of GCPs within clover, 109 
point of GCPs to mango, 105 point of GCPs to sand dunes, 
13 point of GCPs to submerged area and 17 point of GCPs 
to waterlogged area were taken. The overall classification 
accuracy obtained was 97.85 %. With producers and users 
accuracies from 92.86 % to 100 % for the individual classes, 
corroborating the standard accuracy of 85–90 % for land 
cover mapping studies as has been reported earlier.22 The 
overall result showed that SVM classification process 
employed has got very promising potential to discriminate 
crops and tree classes, with high classification accuracies, 
when combined with high spectral resolution hyperspectral 
remote sensing data. The high accuracy produced by the 
SVM classifier may be due to the ability of the algorithm to 
identify the optimally separating hyperplanes for classes in 
comparison to other pixel-based techniques (e.g., artificial 
neural networks)14 which may not be able to find such 
optimal hyperplanes.  

 

Table 4. Confusion matrix for the land covers classification for the 
study area. 

CL=clover, Ma= Mango, Sa= sand dunes, Su= submerged, Wa= 

waterlogged 

 

 

 

Table 5. Accuracy totals for the classified images. 

Overall classification accuracy = 97.85 % 

CONCLUSIONS 

The aim of this research is to produce a land cover map 
for east Suez Canal area using hyperspectral data acquired 
by the EO-1 Hyperion instrument in conjunction with the 
support vector machines (SVM) classification techniques. 
SVM has a good generalization potentiality which stems 
from the selection of the hyperplane that maximizes the 
geometric margin between classes which helped to 
discriminate between the classes of land cover and various 

LC classes Area / feddans % 

Clover 547 2% 

Mango 9445 28% 

Sand dunes 22940 67% 

Submerged 311 1% 

waterlogged  419 1% 

Irrigation canal 68 0% 

Main roads 435 1% 

Total area 34165 100% 

LC classes Cl Ma Sa Su wa Total 

Unclassified  0 0 1 0 0 1 

Clover 34 1 0 0 0 35 

Mango 1 108 0 0 0 109 

Sand dunes 0 2 103 0 0 105 

Submerged 0 0 0 13 0 13 

waterlogged  0 0 0 1 16 17 

Total 35 111 104 14 16 280 

LC Classes Producers Accuracy Users Accuracy 

Clover 97.14% 97.14% 

Mango 97.30% 99.08% 

Sand dunes 99.04% 98.10% 

Submerged 92.86% 100.00% 

waterlogged  100% 94.12% 
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special types of plants. The result showed that SVM 
classification process has got high classification accuracies, 
when combined with high spectral resolution hyperspectral 
remote sensing data. More research will be done to 
improving the classification accuracy and reducing the 
calculation time. 

REFERENCES 

1Kavzoglu, T., Colkesen, I., Int. J. Appl. Earth Obs. Geoinf., 
2009, 11(5),352-
359.https://doi.org/10.1016/j.jag.2009.06.002 

2Castillejo-González, I. L., López-Granados, F., García-Ferrer, A., 
Peña-Barragán, J. M., Jurado-Expósito, M., de la Orden, M. 
S., González-Audicana, M., Comput. Electron. Agr. 2009, 68, 
2, 207-215. Doi:10.1016/j.compag.2009.06.004 

3Chintan, A. S., Arora, M. K., Pramod, K.V., Int. J. Remote Sens., 
2004,25,481–487. 
doi.org/10.1080/01431160310001618040 

4Mathur, A., Foody, G. M., Int. J. Remote Sens., 2008, 29(8),2227-
2240. http://dx.doi.org/10.1080/01431160701395203 

5Borak, J.S., Strahler, A.H., Int. J. Remote Sens., 1999, 20, 919–
938. http://dx.doi.org/10.1080/014311699212993 

6Lu, D., Weng, Q., Int. J. Remote Sens., 2007,28, 5, 823–870. 
http://dx.doi.org/10.1080/01431160600746456 

7Xu, D.Q., Ni, G.Q., Jiang, L.L., Shen, Y.T., Li, T., Ge, S.L., Shu, 
X.B., ASR., 2008, 411,1800–1817.    
https://doi.org/10.1016/j.asr.2007.05.073 

8Dalponte, M., Bruzzone, L., Vescovo, L., Gianelle, D., Remote 
Sens Environ., 2009, 113(11), 2345-2355. 
https://doi.org/10.1016/j.rse.2009.06.013 

9USGS, 2006, EO1 User’s Guide. http://eo1.usgs.gov 

10Galvão, L. S., Formaggio, A. R., Tisot, D. A., Remote Sens 
Environ.,2005, 94(4),523-534. 
https://doi.org/10.1016/j.rse.2004.11.012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11Beck, R., EO-1 user guide, version 2.3, Satellite Systems Branch, 
USGS Earth Resources Observation Systems Data Center 
(EDC).2003. 

12Datt, B., McVicar, T. R., Van Niel, T. G., Jupp, D. L., Pearlman, 
IEEE Trans. Geo. Sci. Rem. Sens., 2003,41(6),1246-1259. 
https://doi.org/10.1109/TGRS.2003.813206 

13Tucker, C. J., Grant, D. M., Dykstra, J. D., Eng. Rem. Sens., 
2004,70(3),313-322. https://doi.org/10.14358/PERS.70.3.313 

14Licciardi, G., Pacifici, F., Tuia, D., Prasad, S., West, T., Giacco, 
F., Gamba, P., IEEE Trans. Geosci. Remote Sens. 
 2009. 47 (11), 3857-3865. 
https://doi.org/10.1109/TGRS.2009.2029340 

15Fauvel, M., Benediktsson, A., Chanussot, J., Sveinsson, IEEE 
Trans. Geosci. Remote Sens. 
 2008, 46(11), 3804–3814. 
https://doi.org/10.1109/ICASSP.2006.1660467 

16Patil, M. B., Desai, C. G., Umrikar, B. N., Int. J. Geol. Earth 
Environ. Sci., 2012, 2, 189-196.  17Congalton, R. G., RSE., 
1991, 37(1), 35-46.https://doi.org/10.1016/0034-
4257(91)90048-B 

18Congalton, R. G., Green, K., Assessing the accuracy of remotely 
sensed data: Principles and applications, CRC press.1999, 
137. 

19Deilmai, B. R., Ahmad, B. B., Zabihi, H.,  IOP Conf. Ser. Earth 
Environ. Sci., 2014.20, (1), 012052. Doi:10.1088/issn.1755-
1315 

20Moughal, T. A., J. Phys. Conf. Ser., 2013, 439,  012042 
Doi:10.1088/issn.1742-6596 

21Otukei, J. R., Blaschke, T., Int. J. Appl. Earth Observ. Geoinform. 
2010, 12,S27-S31. 
https://doi.org/10.1016/j.jag.2009.11.002 

22Anderson, J. R., A land use and land cover classification system 
for use with remote sensor data, US Government Printing 
Office, 1976, 964. 

     Received:  11.20.2017. 

     Accepted:  10.12.2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.jag.2009.06.002
https://doi.org/10.1016/j.compag.2009.06.004
http://dx.doi.org/10.1080/01431160310001618040
http://dx.doi.org/10.1080/01431160701395203
http://dx.doi.org/10.1080/014311699212993
http://dx.doi.org/10.1080/01431160600746456
https://doi.org/10.1016/j.asr.2007.05.073
https://doi.org/10.1016/j.rse.2009.06.013
http://eo1.usgs.gov/
https://doi.org/10.1109/TGRS.2003.813206
https://doi.org/10.14358/PERS.70.3.313
https://doi.org/10.1109/TGRS.2009.2029340
https://doi.org/10.1109/ICASSP.2006.1660467
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/j.jag.2009.11.002

