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EXCHANGE SPATIAL-ENERGY INTERACTIONS 
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The notion of spatial-energy parameter (P-parameter) is introduced based on the modified Lagrangian equation for relative motion of two 

interacting material points, and is a complex characteristic of important atomic values responsible for interatomic interactions and having the 

direct connection with electron density inside an atom. Wave properties of P-parameter are found, its wave equation having a formal analogy 

with the equation of -function is given.  With the help of P-parameter technique, numerous calculations of exchange structural interactions 

have been performed and the applicability of the model for the evaluation of the intensity of fundamental interactions has been demonstrated. 

Initial theses of quark screw model are also discussed. 
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SPATIAL-ENERGY PARAMETER 

When oppositely charged heterogeneous systems interact, 
a certain compensation of the volume energy takes place, 
which results in the decrease in the resultant energy e.g. 
during the hybridization of atom orbitals.1 But this is not a 
direct algebraic deduction of corresponding energies. The 
comparison of numerous regularities of physical and 
chemical processes leads us to assume that in such and similar 
cases the principle of adding reverse values of volume 
energies or kinetic parameters of interacting structures are 
observed. For instance, during the ambipolar diffusion, when 
joint motion of oppositely charged particles is observed in the 
given medium (in plasma or electrolyte), the diffusion 
coefficient (D) is found as follows: 
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where  

а+ and а are the charge mobility of both atoms and η is the 
constant coefficient.  

Total velocity of the topochemical reaction (υ) between the 
solid and gas is found as follows: 
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where  

υ1 is the diffusion velocity of the reagent and  
υ2 is the velocity of reaction between the gaseous reagent 
and solid.   

Change in the light velocity (Δv) when moving from the 
vacuum into the given medium is calculated by the principle 
of algebraic deduction of reverse values of the corresponding 
velocities:   
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where с is the velocity  light in vacuum.  

Lagrangian equation for relative motion of the system of 
two interacting material points with masses m1 and m2 in 
coordinate х is as follows: 
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          (1a) 

 

here U is the mutual potential energy of material points, mr is 
the reduced mass and х" = а (characteristic of system 
acceleration). 

For elementary interaction areas ∆х,  
𝜕𝑈
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≈

∆𝑈

∆𝑥
  then 
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Since in its physical sense the product miaΔx equals the 

potential energy of each material point (-∆Ui), then
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Thus the resultant energy characteristic of the interaction 
system of two material points is found by the principle of 
adding the reverse values of initial energies of interacting 
subsystems.   

Therefore assuming that the energy of atom valence 
orbitals (responsible for interatomic interactions) can be 
calculated by the principle of adding the reverse values of 
some initial energy components, the introduction of P-
parameter as the averaged energy characteristic of valence 
orbitals is postulated based on the following equations.   
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𝑃E = 𝑃0/𝑟i 
          (5) 

here  

Wi  is the orbital energy of electrons,2  

ri  is orbital radius of i–orbital,3  

q=Z*/n*,4,5  

ni is the number of electrons of the given orbital,  

Z* and n* are the effective charge of the nucleus and 
effective main quantum number, and  

r is the bond dimensional characteristics.  

The term Р0 will be called spatial-energy parameter (SEP), 
and e РE as effective Р–parameter (effective SEP). Effective 
SEP has a physical sense of some averaged energy of valence 
electrons in the atom and is measured in the energy units e.g., 
in electron-volts (eV).  

Values of Р0-parameter are tabulated constant values for 
the electrons of the atom given orbital.  

For the dimensionality, SEP can be written as follows: 
 

[𝑃0] = [𝑞2] = [𝐸] × [𝑟] = [ℎ] × [] =
𝑘𝑔 𝑚3

𝑠2
= 𝐽𝑚 

  

where [E], [h] and [] are the dimensionalities of energy, 
Plank’s constant and velocity respectively. 

The introduction of P-parameter should be considered as 
further development of quasi-classic notions using quantum-
mechanical data on the atom structure to obtain the energy 
conditions criteria of phase-formation. At the same time, for 
similarly charged systems (e.g. orbitals in the given atom) and 
homogeneous systems the principle of algebraic addition of 
these parameters will be preserved.   

 

        ∑ 𝑃E = ∑(𝑃0/𝑟i)    (6)  

   ∑ 𝑃E =
∑ 𝑃0

𝑟
     (7) 

    ∑ 𝑃0 = 𝑃0
′ + 𝑃0

′′ + 𝑃0
′′′ + ⋯, (8) 

 
     𝑟 ∑ 𝑃E = ∑ 𝑃0   (9) 

Here P-parameters are summed for the valence orbitals of all 
atoms.   

To calculate the values of РE-parameter at the given 
distance from the nucleus either atomic radius (R) or ionic 
radius (ri) can be used instead of r depending on the bond type.  

Applying the equation (8) to hydrogen atom we can write 
down the following 
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          (10) 

 
where е is the elementary charge, n1 and n2 are the main 
quantum numbers, m is the electron mass, с is the velocity of 
electromagnetic wave,  is the wave length, K  is a constant. 

Using the known correlations  = c/ 𝜆 and 𝜆 = h/mc (where 
h is Plank’s constant,  is the wave frequency) from the 
formula (10), the equation of spectral regularities in hydrogen 
atom can be obtained, in which 2π2е2/hc = K. 

EFFECTIVE ENERGY OF VALENCE 
ELECTRONS IN AN ATOM AND ITS 
COMPARISON WITH THE STATISTIC MODEL 

The modified Thomas-Fermi equation, converted to a 
simple form by introducing dimensionless variables,6 can be 
written as eqn. (11).  

    𝑈 = 𝑒(𝑉i − 𝑉0 + 𝜏0
2)  (11) 

where  

V0 is the countdown potential,  

е is the elementary charge,  

0 is the exchange and correlation corrections,  

Vi is the interatomic potential at the distance  

ri from the nucleus and  

U is the total energy of valence electrons. 

For some elements, the comparisons of the given value U 
with the values of РE-parameter are given in Table 1.  

As it is seen form the Table 1 the parameter values of U and 
РE are practically the same (in most cases with the deviation 
not exceeding 1-2 %) without any transition coefficients. 
Multiple corrections introduced into the statistic model are 
compensated with the application of simple rules of adding 
reverse values of energy parameters, and SEP quite precisely 
conveys the known solutions of Thomas-Fermi equation for 
interatomic potential of atoms at the distance ri from the 
nucleus. Namely the following equality takes place: 

   𝑈 = 𝑃E = 𝑒(𝑉i − 𝑉0 + 𝜏0
2)  (12) 

Using the known correlation6 between the electron density 
(i) and interatomic potential (Vi) we have Eqn. (13). 
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Table 1. Comparison of total energy of valence electrons in atom calculated in Thomas-Fermi statistic atom model (U) and with the help of 
approximation. 

Atom 

 

Valence electrons ri  (Å) X φ(X) U (eV) Wi(eV) n q2(eV Å) PE (eV) 

Ar 3P4 0.639 3.548 0.09- 

0.084 

35.36-

33.02 

12+ 4 73.196 33.45 

3S2 0.607 3.268 0.122- 

0.105 

47.81 

44.81 

34.8 (t) 

29.0 

2 

2 

96.107 

96.107 

48.44 

42.45 

2P4 0.146 0.785 0.47 834.25 246 4 706.3 817.12 

V 4S2 1.401 8.508 

8.23 

0.0325 

0.0345 

7.680 

8.151 

7.5 2 22.33 7.730 

Cr 4S2 1.453 8.95 

8.70 

0.0295 

0.0313 

7.013 

7.440 

7 2 23.712 7.754 

Mn 4S2 1.278 7.76 0.0256 10.89 6.6 (t) 

7.5 

2 

2 

25.12 

25.12 

7.895 

10.87 

Fe 4S2 1.227 7.562 0.0282 8.598 8.00 

7.20 (t) 

2 

2 

26.57 

26.57 

9.201 

8.647 

Co 4S2 1.181 7.565 

7.378 

0.02813 

0.03075 

9.255 

10.127 

8 

7.5 (t) 

2 

2 

27.98 

27.98 

10.062 

9.187 

Ni 4S2 1.139 7.2102 0.02596 9.183 9 

7.7 (t) 

2 

2 

29.348 

29.348 

10.60 

9.640 

Cu 4S2 1.191 7.633 0.0272 9.530 7.7 2 30.717 9.639 

In  5S2 1.093 

 

8.424 

8.309 

0.033 

0.03415 

21.30 

22.03* 

11.7 2 238.3 21.8 

4d10 0.4805 3.704 0.106 155.6 20 10 258.23 145.8 

Te 5p4 1.063 

 

8.654 

8.256 

0.0335 

0.0346 

23.59 

24.37* 

9.8 4 67.28 24.54 

5S2 0.920 7.239 

7.146 

0.0326 

0.0341 

26.54 

27.72* 

19 

17 

2 

2 

90.577 

90.537 

27.41 

25.24 

Note: (1) Bond energies of electrons Wi are obtained: “t” – theoretically (by Hartry-Fock method), “+” – by XPS method, all the rest – by he 
results of optic measurements; (2) “*” – energy of valence electrons (U) calculated without Fermi-Amaldi amendment. 

 
2/3i(3е/5) × (Vi – V0);  
 
2/3i  Aе × (Vi – V0 + 20)=[Aе ×ri × (Vi – V0 + 20)]/ri 

     
(13) 

 

where А is a constant.  

According to the Eqns. (12) and (13) we have the following 
correlation (Eqn. 14), setting the connection between Р0-
parameter and electron density in the atom at the distance ri 
from the nucleus. 

 

β
i

2
3 =

𝐴𝑃0

𝑟i

 

          (14) 

 

Since in the value 𝑒(𝑉i − 𝑉0 + 𝜏0
2) in Thomas-Fermi model 

there is a function of charge density, Р0-parameter is a direct 
characteristic of electron charge density in atom.   

This is confirmed by an additional check of equality 
correctness (14) using Clementi function.7 A good 
correspondence between the values of βi calculated via the 
value of Р0 and obtained from atomic functions  is observed.  

Wave equation of P-parameter 

For the characteristic of atom spatial-energy properties two 
types of P-parameters with simple correlation between them 
are introduced, PE=P0/R, where R is the dimension 
characteristic of the atom. Taking into account additional 
quantum characteristics of the sublevels in the atom, this 
equation in coordinate х can be written down as follows: 

 

∆𝑃E ≈
∆𝑃0

∆𝑥
 

  or   

𝜕𝑃E ≈
𝜕𝑃0

𝜕𝑥
 

 

where  

the value ΔР equals the difference between Р0-
parameter of i-orbital and  

РCD–countdown parameter (parameter of basic state at 
the given set of quantum numbers). 

 

According to the established rule8 of adding P-parameters of 
similarly charged or homogeneous systems for two orbitals in 
the given atom with different quantum characteristics and in 
accordance with the law of energy conservation we have 
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∆𝑃"E − ∆𝑃′E = 𝑃E,λ 

where РE,λ is the spatial-energy parameter of quantum 
transition.  

Taking as the dimension characteristic of the interaction 
Δλ=Δх, we have 

 
Δ𝑃"0

Δ𝜆
−

Δ𝑃′
0

Δ𝜆
=

𝑃0

Δ𝜆
  or  

Δ𝑃′
0

Δ𝜆
−

Δ𝑃"0

Δ𝜆
= −

𝑃0𝜆

Δ𝜆
 

If we divide termwise by , we get 

(
Δ𝑃′

0

Δ𝜆
−

Δ𝑃"0

Δ𝜆
)

∆𝜆
~

𝑑2𝑃0

Δ𝜆2
 

 i.e.,   
𝑑2𝑃0

𝑑𝜆2
+

𝑃0

∆𝜆2
≈ 0 

 

Taking into account the interactions where 2πΔх = Δλ (closed 
oscillator), we have the following equation 

 

𝑑2𝑃0

𝑑𝑥2
+ 4𝜋2 ×

𝑃0

∆𝜆2
≈ 0  

 

then:  

,  ∆𝜆 = ℎ/𝑚    

 

    
𝑑2𝑃0

𝑑𝑥2
+ 4𝜋2 𝑃0

ℎ2 𝑚2𝜈2 ≈ 0 or   

   

    
𝑑2𝑃0

𝑑𝑥2
+

8𝜋2𝑚

ℎ2 𝑃0𝐸k = 0    (15) 

 

where Ek=mv2/2 electron kinetic energy. 

Schrödinger equation for stationary state in coordinate х is 

 

   
𝑑2𝜓

𝑑𝑥2 +
8𝜋2𝑚

ℎ2 𝜓𝐸k = 0   (16) 

 

Comparing the Eqns. (15) and (16) we can see that Р0-
parameter correlates numerically with the value of  function 
i.e., P0 and in general it is proportional to it, P0. Taking 
into account wide practical application of P-parameter 
methodology, we can consider this criterion as the 
materialized analog of  -function. 

Since Р0-parameters, like -function possess wave 
properties, the principles of superposition should be executed 
for them, thus determining the linear character of equations 
of adding and changing P-parameters.  

Wave properties of P-parameters and principles of 
their addition  

Since P-parameter possesses wave properties (by analogy 
with -function) the regularities of the interference of 
corresponding waves should be executed mainly with 
structural interactions.  

Minimum interference, oscillation attenuation (in anti-
phase), takes place if the difference in wave motion (∆) equals 
the odd number of semi-waves: 

∆= (2𝑛 + 1)
𝜆

2
= 𝜆 (𝑛 +

1

2
),  

 

where n = 0, 1, 2, 3, … (17) 

As applied to P-parameters this rules means that minimum 
interaction occurs if P-parameters of interacting structures are 
also “in anti-phase” i.e, there is an interaction either between 
oppositely charged systems or heterogeneous atoms (for 
example, during the formation of valence-active radicals CH, 
CH2, CH3, NO2 …, etc). 

In this case the summation of P-parameters takes place by 
the principle of adding the reverse values of P-parameters  as 
in Eqns. (3) and (4). 

The difference in wave motion (∆) for P-parameters can be 
evaluated via their relative value ( = P2 /P1) or via the relative 
difference in P-parameters (coefficient ), which with the 
minimum of interactions produce an odd number:  

 

  𝛾 =
𝑃2

𝑃1
= (𝑛 +

1

2
) =

3

2
,

5

2
…  (18) 

 

when n = 0 (main state), P2/P1 = ½ 

Let us mention that for stationary levels of one-dimensional 
harmonic oscillator the energy of these levels  = h(n+½), 
therefore in quantum oscillator, in contrast to a classical one, 
the minimum possible energy value does not equal zero.   

In this model the minimum interaction does not produce the 
zero energy, corresponding to the principle of adding the 
reverse values of P-parameters (Eqns. 3 and 4). Maximum 
interference, oscillation amplification (in the phase), takes 
place if the difference in wave motion equals the even number 
of semi-waves: 

 

∆= 2𝑛
𝜆

2
= 𝜆𝑛    or    ∆=(n+1)             
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As applied to P-parameters the maximum amplification of 
interactions in the phase corresponds to the interactions of 
similarly charged systems or systems homogeneous in their 
properties and functions (for example, between the fragments 
and blocks of complex organic structures, such as CH2 and 
NNO2 in octogen). Then  

 

 𝛾 =
𝑃2

𝑃1
= (𝑛 + 1)     (19) 

 

By the analogy, for “degenerated” systems (with similar 
values of functions) of two-dimensional harmonic oscillator 
the energy of stationary states: =h(n+1). 

In this model, the maximum interaction corresponds to the 
principle of algebraic addition of P-parameters (Eqns. 6-8). 
When n = 0 (basic state) we have Р2 = Р1, or maximum 
interaction of structures takes place when their P-parameters 
equal. This postulate can be used as the main condition of 
isomorphic replacements.8 

STRUCTURAL EXCHANGE SPATIAL-ENERGY 
INTERACTIONS   

In the process of solution formation and other structural 
interactions the single electron density should be set in the 
points of atom-component contact. This process is 
accompanied by the redistribution of electron density 
between the valence areas of both particles and transition of 
the part of electrons from some external spheres into the 
neighbouring ones. Apparently, frame atom electrons do not 
take part in such exchange.  

Obviously, when electron densities in free atom-
components are similar, the transfer processes between 
boundary atoms of particles are minimal, this is favourable 
for the formation of a new structure. Thus the evaluation of 
the degree of structural interactions in many cases means the 
comparative assessment of the electron density of valence 
electrons in free atoms (on averaged orbitals) participating in 
the process.  

The less is the difference (Р'0/r'i – P"0/r"i), the more 
favourable is the formation of a new structure or solid 
solution from the energy point.  

In this regard, the maximum total solubility, evaluated via 
the coefficient of structural interaction, , is determined by 
the condition of minimum value , which represents the 
relative difference of effective energies of external orbitals of 
interacting subsystems: 

 

𝛼 =
𝑃′0 𝑟i

′⁄ −𝑃"0 𝑟i
"⁄

(𝑃′0 𝑟i
′⁄ +𝑃"0 𝑟i

"⁄ )/2
100 %     (20) 

 

𝛼 =
𝑃′S−𝑃"S

𝑃′S+𝑃"S
200 %      (20a) 

where РS, the structural parameter, is found by Eqn. (20).  

 

1

𝑃S
=

1

𝑁1𝑃E
′ +

1

𝑁1𝑃E
" + ⋯    (20b) 

 

here N1 and N2 are the number of homogeneous atoms in 
subsystems.   

The nomogram of the dependence of structural interaction 
degree (ρ) on the coefficient α, unified for the wide range of 
structures was prepared based on all the data obtained. Figure 
1 presents such a nomogram obtained using РE-parameters 
calculated via the bond energy of electrons (wi) for structural 
interactions of isomorphic type.  

The mutual solubility of atom-components in many (over a 
thousand) simple and complex systems have been evaluated 
earlier using this technique. The calculation results are in 
compliance with theoretical and experimental data.8 

Isomorphism as a phenomenon is used to be considered as 
applicable to crystalline structures. But similar processes can 
obviously take place between molecular compounds, where 
their role and importance are not less than those of purely 
coulomb interactions.  

In complex organic structures during the interactions the 
main role can be played by separate “blocks” or fragments. 
Therefore, it is necessary to identify these fragments and 
evaluate their spatial-energy parameters. Based on the wave 
properties of P-parameter, the overall P-parameter of each 
fragment can be found by the principle of adding the reverse 
values of initial P-parameters of all atoms. The resultant P-
parameter of the fragment block or all the structure is 
calculated by the rule of algebraic addition of P-parameters 
of the fragments constituting them.  

The role of the fragments can be played by valence-active 
radicals, e.g. СН, СН2, ОН-, NO, NO2, SO4

2-, etc. In complex 
structures the given carbon atom usually has two or three side 
bonds. During the calculations by the principle of adding the 
reverse values of P-parameters, the priority belongs to those 
bonds, for which the condition of minimum interference is 
better performed. Therefore the fragments of the bond С-Н 
(for СН, СН2, СН3 …) are calculated first, then separately the 
fragments N-R, where R is the binding radical (for example – 
for the bond C-N). 

Apparently spatial-energy exchange interactions (SEI) 
based on equalizing electron densities of valence orbitals of 
atom-components have in nature the same universal value as 
purely electrostatic coulomb interactions, but they 
supplement each other. Isomorphism, known from the time 
of E. Mitscherlich (1820) and D.I. Mendeleev (1856), is only 
a particular manifestation of this general natural phenomenon. 
The numerical side of the evaluation of isomorphic 
replacements of components both in complex and simple 
systems rationally fit in the frameworks of P-parameter 
methodology. More complicated is to evaluate the degree of 
structural SEI for molecular, including organic structures. 
The technique for calculating P-parameters of molecules, 
structures and their fragments has been successfully 
implemented.  
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But such structures and their fragments are frequently not 
completely isomorphic with respect to each other. 
Nevertheless there is SEI between them, the degree of which 
in this case can be evaluated only semi-quantitatively or 
qualitatively. By the degree of isomorphic similarity all the 
systems can be divided into the following three types.  

(1) Systems mainly isomorphic to each other i.e., systems 
with approximately identical number of dissimilar atoms and 
nearly similar geometrical shapes of interacting orbitals.  

(2) Systems with the limited isomorphic similarity i.e, 
systems which either (a) differ by the number of dissimilar 
atoms but have nearly similar geometrical shapes of 
interacting orbitals, or (b) have definite differences in 
geometrical shapes of orbitals but have identical number of 
interacting dissimilar atoms.  

(3) Systems not having isomorphic similarity i.e., systems, 
which differ considerably both by the number of dissimilar 
atoms and geometric shapes of their orbitals.  

Then taking into account the experimental data, all types of 
SEI can be approximately classified as follows.  

Systems (1): (i) α  0-6 %, ρ = 100 %. Complete 
isomorphism, there is complete isomorphic replacement of 
atom-components, (ii) 6 %  α < 25-30 %, ρ = 98 – (0-3) %. 
There is either a wide or limited isomorphism according to 
nomogram 1. (iii) α  25-30 %, no SEI. 

Systems (2): (i) α  0-6 %, (а) there is the reconstruction of 
chemical bonds, can be accompanied by the formation of a 
new compound, (b) breakage of chemical bonds can be 
accompanied by separating a fragment from the initial 
structure, but without attachments or replacements. (ii) 6 %  
α < 25-30 %, limited internal reconstruction of chemical 
bonds without the formation of a new compound or 
replacements is possible and (iii) α  20-30 %, no SEI. 

Systems (3): (i) α  0-6 %, (а) limited change in the type of 
chemical bonds of the given fragment, internal regrouping of 
atoms without the breakage from the main part of the 
molecule and without replacements, (b) change in some 
dimensional characteristics of the bond is possible. (ii) 6 %  
α < 25-30 %, very limited internal regrouping of atoms is 
possible and (iii)  α  25-30 %, no SEI. 

 Nomogram (Figure 1) is obtained for isomorphic 
interactions  for systems of types (1) and (2). 

 

 

 

 

 

 

Figure 1. Dependence of the structural interaction degree (ρ) on the 
coefficient α 

In all other cases the calculated values α and ρ refer only to 
the given interaction type, the nomogram of which can be 
clarified by reference points of etalon systems. If we take into 
account the universality of spatial-energy interactions in 
nature, this evaluation can be significant for the analysis of 
structural rearrangements in complex biophysical-chemical 
processes.  

Fermentative systems contribute a lot to the correlation of 
structural interaction degree. In this system the ferment 
structure active parts (fragments, atoms, ions) have the value 
of РE-parameter that is equal to РE-parameter of the reaction 
final product. This means the ferment is structurally “tuned” 
via SEI to obtain the reaction final product, but it will not 
induced into it due to the imperfect isomorphism of its 
structure in accordance with (3).    

The most important characteristics of atomic-structural 
interactions (mutual solubility of components, energy of 
chemical bond, energetics of free radicals, etc) were 
evaluated in many systems using this technique.8-15  

TYPES OF FUNDAMENTAL INTERACTIONS 

According to modern theories, the main types of 
interactions of elementary particles, their properties and 
specifics are mainly explained by the availability of special 
complex currents e.g., electromagnetic, proton, lepton, etc. 
Based on the foregoing model of spatial-energy parameter the 
exchange structural interactions finally come to flowing and 
equalizing the electron densities of corresponding atomic-
molecular components. The similar process is obviously 
appropriate for elementary particles as well. It can be 
assumed that in general case interparticle exchange 
interactions come to the redistribution of their energy masses, 
М.  

The elementary electrostatic charge associated with the 
electron as a carrier is the constant of electromagnetic 
interaction.  Therefore for electromagnetic interaction we will 
calculate the system proton-electron.  

For strong internucleon interaction that comes to the 
exchange of π-mesons, let us consider the systems nuclides-
π-mesons. Since the interactions can take place with all three 
mesons (π-, π0 and π+), we take the averaged mass in the 
calculations (<М> = 136,497 МeV s-1).  

Rated systems for strong interaction are  

Р - (π-, π0, π+), (Р-n) - (π-, π0, π+)  

and  

(n-P-n) - (π-, π0, π). 

Neutrino (electron, muonic) and its antiparticles were 
considered as the main representatives of weak interaction.  

Dimensional characteristics of elementary particles (r) 
were evaluated in femtometer units (1 fm = 10-15 m)  by the 
data presented earlier.16  
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At the same time, the classic radius, re=e2/mes2,   was used 
for electron, where e is the elementary charge, me is the 
electron mass and s is the speed of light in vacuum. The 
fundamental Heisenberg length (6.690  10-4 fm) was used as 
the dimensional characteristic of weak interaction for 
neutrino.16  

The gravitational interaction was evaluated via the proton 
P-parameter at the distance of gravitational radius (1.242  
10-39 fm). 

In the initial eqn. (3) for free atom, Р0-parameter is found 
by the principle of adding the reverse values q2 and wr, where 
q is the nucleus electric charge, w is the bond energy of the 
valence electron.  Modifying the Eqn. (3), as applied to the 
interaction of free particles, we receive the addition of reverse 
values of parameters Р = Мr for each particle by Eqn. (21).  

1/ Р0=1/(Мr)1 + 1/(Мr)2+              (21) 

where М is the energy mass of the particle (MeV s-2). 

By using Eqn. (21) and the earlier data,16 P0-parameters of 
coupled strong and electromagnetic interactions were 
calculated in nuclides-π-mesons (Рn-parameters and proton-
electron , Рe-parameter). 

For weak and gravitational interactions only the parameters 
Рυ = Мr and Рr = Мr were calculated, as in accordance with 
the Eqn. (21), the similar nuclide parameter with greater value 
does not influence the calculation results.  

The relative intensity of interactions (Table 2) was found 
by the equations for the following interactions.  

Strong  αB =< 𝑃n >/𝑃n >= 𝑃n 𝑃n⁄ = 1   (22а) 

Electromagnetic 𝛼B = 𝑃e < 𝑃n⁄ >= 1 136.983⁄   (22b) 

Weak     𝛼B = 𝑃e < 𝑃n >⁄ ,   

αB = 2.04  10-10, 4.2  10-6           (22c) 

Gravitational 𝛼B = 𝑃e < 𝑃n >⁄ = 5.9 × 10−39      (22d) 

In the calculations for αв, the value of Рn-parameter was 
multiplied by the value equaled 2π/3, i.e. <P>=(2π/3)Pn. 
Number 3 for nuclides consisting of three different quarks is 
“a magic” number (see the next section for details). As it is 
known, number 2π has a special value in quantum mechanics 
and physics of elementary particles. In particular, only the 
value of 2π correlates theoretical and experimental data when 
evaluating the sections of nuclide interaction with each 
other.17 

As it has been reported,18 nuclear interactions are 
distinguished as very strong, strong and moderately strong. 
For all particles in the large group with relatively similar mass 
values of mass, unitary multiplets or supermultiplets, very 
strong interactions are similar.18 In the frames of the given 
model a very strong interaction between the particles 
corresponds to the maximum value of P-parameter, Р = Мr 
(coupled interaction of nuclides). Taking into consideration 
the equality of dimensional characteristics of proton and 

neutron, by eqn. (21), we obtain the values of Рn-parameter 
as 401.61; 401.88 and 402.16 (МeVfm s-2) for coupled 
interactions p-p, p-n and n-n, respectively, thus obtaining the 
average value αB = 4.25. It is a very strong interaction. For 
eight interacting nuclides αB ≈ 1.06 i.e., a strong interaction.  

When the number of interacting nuclides increases, αB 

decreases – moderately strong interaction. Since the nuclear 
forces act only between neighbouring nucleons, the value αB 

cannot be very small.  

The expression of the most intensive coupled interaction of 
nuclides is indirectly confirmed by the fact that the life period 
of double nuclear system appears to be much longer than the 
characteristic nuclear time.19 

Thus it is established that the intensity of fundamental 
interactions is evaluated via Рn-parameter calculated by the 
principle of adding the reverse values in the system nuclides-
π-mesons. Therefore, it has the direct connection with Plank’s 
constants. 

 

(2π/3)Pn ≈ Er = 197.3 МeVfms-2                     (23) 

(2π/3)Pт ≈ Mnλk = 197.3 МeVfms-2                  (23а) 

 

where  

Е and r, Plank’s energy and Plank’s radius are 
calculated via the gravitational constant,  

Мn, λk, energy mass and nuclide Compton wave-length. 

In Eqn. (21), the exchange interactions are evaluated via the 
initial P-parameters of particles equaled to the product of 
mass by the dimensional characteristic i.e., P = Мr. 

Since these Р-parameters can refer to the particles 
characterizing fundamental interactions, their direct 
correlation defines the process intensity degree (αB): 

 

𝛼𝐵 =
𝑃𝑖

𝑃𝑛
=

(𝑀𝑟)𝑖

(𝑀𝑟)𝑛
        (24) 

 
The calculations by the Eqn. (24), using the known Plank’s 

values and techniques are given in table 3. As before, the 
energy and dimensional characteristics are taken from the 
literature.16 

The results obtained are in accordance with theoretical and 
experimental data.20,21 

ON QUARK SCREW MODEL 

Let us proceed from the following theses and assumptions:  

(i) By their structural composition macro- and micro world 
resemble. One part has some similarity with the other: solar 
system – atom – atom nucleus – quarks.  

(ii) All parts of this “matroshka” are structural formations.   
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Table 2. Types of fundamental interactions 

 

Table 3. Evaluation of the intensity of fundamental interactions using Plank’s constants and parameter P = Mr. 

Interaction type Particles, 

constants  

М 

МeVs-2 

r 

fm 

Мr 

МeVs-2 

αB=Mr/(Mr)p 

(calculated) 

αB 

(experimental) 

       Strong Proton 938.28 λ=0.2103 197.3 1 1 

Plank’s values  1.221  1022 1.616  10-20 197.3 

Electromagnetic electron 0.5110 2.8179 1.43995 1/137.02 1/137.036 

Weak 𝑈e𝜐e̅  <6  10-5 6.69  10-4 <4.014  10-8 <2.03  10-10 10-10- 10-14 

𝑈μ𝜐e̅  <1.2 6.69∙10-4 <8.028∙10-4 <4.07∙10-6 10-5 - 10-6 

Gravitational Proton  938.28 1.242  10-39 

Gravitational radius 

1.165  10-36 5.91 10-39 10-38 - 10-39 

 

(iii) Main property of all systems is motion, translatory, 
rotary and oscillatory. 

(iv) Description of these motions can be done in Euclid 
three-dimensional space with coordinates x, y and z. 

(v) Exchange energy interactions of elementary particles 
are carried out by the redistribution of their energy mass M 
(МeVs-2). 

Based on these theses we suggest discussing the following 
screw model of the quark.  

(i) Quark structure is represented in certain case as a 
spherical one, but in general quark is a flattened (or 
elongated) ellipsoid of revolution. The revolution takes place 
around the axis (х) coinciding with the direction of angular 
speed vector, perpendicular to the direction of ellipsoid 
deformation.  

(ii) Quark electric charge (q) is not fractional but is an 
integer, but redistributed in three-dimensional space with its 
virtual concentration in the directions of three coordinate axes. 
Each axis having an electric charge = q/3. 

(iii) Quark spherical or deformed structure has all three 
types of motion. Two of them, rotary and translator, are in 
accordance with the screw model, which beside these two 
motions, also performs an oscillatory motion in one of three 
mutually perpendicular planes, xoy, xoz, yoz (Figure 2).  

(iv) Each of these oscillation planes corresponds to the 
symbol of quark color, e.g. red for xoy, blue for xoz and green 
for yoz.  

(v) Screw can be “right” or “left”. This directedness of 
screw rotation defines the sign of quark electric charge. Let 
us assume that the left screw corresponds to positive and right 
to negative quark electric charge.   

(vi) Total number of quarks is determined by the following 
scheme: for each axis (x, y and z) of translator motion two 
screws (right and left) with three possible oscillation planes.  

(vii) We have 3  2  3 = 18 quarks. Besides, there are 18 
antiquarks with opposite characteristics of screw motions. In 
all there are thus 36 types of quarks.  

These quark numbers can be considered as realized degrees 
of freedom of all three motions (3 translatory + 2 rotary + 3 
oscillatory).  

Translatory motion is preferable by its direction, coinciding 
with the direction of angular speed vector. Such elementary 
particles constitute our World. The reverse direction is less 
preferable, this is “Antiworld”.  

Motion along axis х in the direction of the angular speed 
vector, perpendicular to the direction of ellipsoid deformation, 
is apparently less energy consumable and corresponds to the 
quarks U and d, forming nuclides.  

Interac-

tion type 

 М, <М> 

МeVs-2 

r 

fm 

Elementary 

particles   

М, <М> 

МeVs-2 

r 

fm 

Pn, Pe, Pν, Pg 

МeVfms-2
 

2/3Pn=

<Pn> 

αB , <αB> 

(Eqn. 22) 

αB (experi-

mental) 

Electro-

magnetic 

Р 938.28 0.856 e- 0.5110 2.8179 Pe=1.4374 - 1/136.983 1/137.04 

Strong Р 938.28 0.856 π-, π0, π+ 136.497 0.78 Pn=94.0071 196.89 1 1 

P-n 938.92 0.856 π-, π0, π+ 136.497 0.78 Pn=94.015 196.90 1 1 

n-P-n 939.14 0.856 π-, π0, π+ 136.497 0.78 Pn=94.018 196.91 1 1 

Weak    υe, 𝜐𝑒̅ <6   

10-5 

6.69  

10-4 

Pν=4.014∙10-8  <2.04  

10-10 

10-10 - 10-14 

   υμ, 𝜐𝑒̅ <1.2 6.69  

10-4 

Pν=8.028 10-

4 

 <4.2  10-6 10-5 - 10-6 

Gravitati-

onal  

P 938.28 1.242 

 10-39 

   Pг=1.17  10-

36 

 5.9   

10-39 

10-38 - 10-39 
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Such assumption is in accordance with the values of energy 
masses of quarks in the composition of andirons, 0.33. 0.33, 
0.51, 1.8, 5 in GeVs-2 for d, u, s, c, b, t types of quarks, 
respectively.   

The quark screw model can be proved by other calculations 
and comparisons also.  

 

 

 

 

 

 

Figure 2. Structural scheme of quark in section yoz. 

CALCULATION OF ENERGY MASS OF FREE 
NUCLIDE (TAKING NEUTRON AS AN 
EXAMPLE)  

Neutron has 3 quarks d1-u-d2 with electric charges -1, +2, -
1, distributed in three spatial directions, respectively. Quark 
u cements the system electrostatically. Translatory motions of 
the screws d1-u-d2 proceed along axis х, but oscillatory ones 
proceed in three different mutually perpendicular planes 
(Pauli principle is realized). 

Apparently, in the first half of oscillation period u-quark 
oscillates in the phase with d1-quark, but in the opposite phase 
with d2-quark. In the second half of the period everything is 
vice versa. In general such interactions define the geometrical 
equality of directed spatial-energy vectors, thus providing the 
so-called quark discoloration.  

The previously formulated rules of adding P-parameters 
spread to both types of P-parameters (Р0 and РE). In this case, 
there is an additional energy РE-parameters, since the 
subsystems of interactions possess similar dimensional 
characteristics. As both interactions are realized inside the 
overall system, РE-parameters are added algebraically, and 
more accurately, in this case,  geometrically by the following 
formula 

 

𝑀

2
= √𝑚1

2 + 𝑚2
2         

 

where, M is the energy mass of free neutron, m1 = m2 = 330 
МeVs-2 masses of quarks u and d (in the composition of 
androns). 

The calculation gives M = 933.38 МeVs-2. This is for strong 
interactions. Taking into account the role of quarks in 
electromagnetic interactions,21 we get the total energy mass 
of a free neutron as M=933.38+933.38/137=940.19 МeVs-2. 
With the experimental value M = 939.57 МeVs-2 the relative 
error in calculations is 0.06 %. 

CALCULATION OF BOND ENERGY OF 
DEUTERON VIA THE MASSES OF FREE 
QUARKS 

The particle deuteron is formed during the interaction of a 
free proton and neutron. The bond energy is usually 
calculated as the difference of mass of free nucleons and mass 
of a free deuteron. Let us demonstrate the dependence of 
deuteron bond energy on the masses of free quarks. The quark 
masses are added algebraically in the system already formed, 
in proton m1 = 5 + 5 + 7 = 17 МeVs-2, in neutron m2 = 7 + 7 
+ 5 =19 МeVs-2. As a dimensional characteristic of deuteron 
bond we take the distance corresponding to the maximum 
value of nonrectangular potential pit of nucleon interaction. 
By the graphs experimentally obtained we know that such 
distance approximately equals 1.65 fm. Exchange energy 
interactions of proton and neutron heterogeneous systems are 
evaluated based on the Eqn. (21). Then we have: 

 
1/ (MC 1.65 K) = 1/(17∙0.856) + 1/(19∙0.856), 

 

where K = 2π/3. Based on the calculations we have MC = 
2.228 МeVs-2, this practically coincides with reference data20 
(MC = 2.225 МeVs-2). 

After modification, the basic theses of quark screw model 
can be applied to other elementary particles (proton, electron, 
neutron, etc) also. For instance, an electrically neutral particle 
neutron can be considered as a mini-atom, the analog of 
hydrogen atom.   

CONCLUSIONS 

(1) The notion of spatial-energy parameter (P-parameter) is 
introduced based on the simultaneous accounting of 
important atomic characteristics and modified Lagrangian 
equation.  

(2) Wave properties of P-parameter are found, its wave 
equation formally similar to the equation of ψ-function is 
obtained.  

(3) Applying the methodology of P-parameter  

(а) most important characteristics of exchange energy 
interactions in different systems have been calculated  

(b) intensities of fundamental interactions have been 
calculated and  

(c) initial theses of quark screw model have been given.  
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