

SYNTHESIS AND CHARACTERIZATION OF SOME NEW γ-LACTAM COMPOUNDS

S. Awadh Gatea^[a] and M. Shakir Magtoof ^{[a]*}

Keywords: γ-lactams, cycloaddition, imines, NMR.

This study is concerned with the synthesis and characterization of γ -lactams **3a-3h**. These compounds were prepared by reacting phenylsuccinic anhydride with the appropriate Schiff bases (imines) **2a-2h** by heating at 51-61 °C in chloroform with moderate yields (70-92 %). The structures of these γ -lactams were established on the basis of the spectral studies using IR, ¹H-NMR, ¹³C-NMR, HSQC ¹H-¹³C-NMR, and MS.

*Corresponding Authors

Tel: 009647813199256

E-Mail: Mahmood672000@yahoo.com

[a] Department of Chemistry, Science, College, Thiqar University, Thiqar, Nashyria, Iraq.

Introduction

Five-membered ring lactams, which are known as γ -lactams or 2-oxopyrrolidines (Figure 1), are important structural motifs in biologically active natural products and are used in medicines and approved drugs.¹

Figure 1. γ-Lactam ring

 γ -Lactams have attracted great attention in recent years because they are valuable building blocks in synthesis, and due to the presence of a γ -lactam core are present in the structure of several biologically active molecules. Substituted γ -lactams, in particular, have potential application in drug synthesis, but the development of stereoselective synthesis of chiral γ -lactams remains a challenge. 3,4

Developing effective and simple synthetic methods is important so that the drug candidates can be screened. A stereoselective addition to a γ -lactam skeleton provides a direct and efficient method for synthesizing various γ -lactam derivatives. However, the most commonly used methods for synthesizing chiral γ -lactams are based on the cyclization or cycloaddition of N-containing precursors, which are synthesized stereoselectively, and there are limited studies on the stereoselective additions to γ -lactam skeletons. $^{5-7}$

Experimental part

All solvents were distilled/dried prior to use, whenever this seemed necessary, by standard methods. All solvent extracts were dried over anhydrous sodium sulphate unless other wise specified.

The ¹H-NMR spectra were recorded using VARIAN spectrophotometer (300 MHz), the ¹³C-NMR spectra were recorded using VARIAN spectrophotometer (75 MHz), and the HSQC ¹H-¹³C-NMR spectra were recorded using VARIAN spectrophotometer (600 MHz, 150 MHz). The chemical shift values are expressed in δ (ppm), using tetramethylsilane (TMS) as internal standard and d₆-DMSO as solvent. The mass spectra were recorded at (3 kV) and (4 kV) using HPLC-LCQ Fleet/Thermo Scientific spectrophotometer. The IR spectra were recorded using Shimadzu FT-IR affinity spectrophotometers as KBr disks. Only principal absorption bands of interest are reported and expressed in cm⁻¹.

General Procedure for the preparation of imines 2a-2h ²⁷⁻²⁹

Preparation of mono-imines 2a-2d.

In general, the mono-imines **2a-2d** were prepared by reacting the mixture of 0.01 mol amine with 0.01 mol aldehyde in 20 ml of chloroform and 4-6 drops of glacial acetic acid under heating in water bath at 51-61 °C. The reaction mixture was refluxed for 2-20 h with stirring. The progress of the reaction was followed by TLC. After completion, the solvent was evaporated and the residue was recrystallized from a suitable solvent.

N-(2-Chlorobenzylidene)-4-chloro-aniline 2a

DOI: 10.17628/ECB.2015.4.207

The compound was prepared by reacting 1.27 g (0.01 mol) of 4-chloroaniline and 1.40 g (0.01 mol) of 2-chlorobenzaldehyde. Yield = 77 %, m.p. = 64-65 °C, IR (KBr disk) 1620 cm⁻¹ (C=N).

N-(2-Bromobenzylidene)-4-chloro-aniline, 2b

The compound was prepared by reacting 1.27 g (0.01 mol) of 4-chloroaniline with 1.85 g (0.01 mol) of 2-bromobenzaldehyde. Yield = 83 %, m.p. = 74-75 °C, IR (KBr disk): 1616 cm^{-1} (C=N).

N-(2-Bromobenzylidene)-4-methyl-aniline, 2c

The compound was prepared by reacting 1.07 g, (0.01 mol) of 4-methylaniline with 1.85 g (0.01 mol) of 2-bromobenzaldehyde. Yield = 80 %, m.p. = 43-44 $^{\circ}$ C, IR (KBr disk): 1616 cm⁻¹ (C=N).

N-(2-Fluorobenzylidene)-4-methyl-aniline, 2d

The compound was prepared by reacting 1.07 g (0.01 mol) of 4-methylaniline with 1.24 g (0.01 mol) of 2-fluorobenzaldehyde. Yield = 90 %, m.p = 44-45 $^{\circ}$ C, IR (KBr disk): 1624 cm⁻¹ (C=N).

Preparation of bis-imines, 2e-2h.

In general, the bis-imines **2e-2h** were prepared by reacting the mixture of 0.01 mol amine with 0.02 mol of aldehyde in 20 mL of chloroform and 4-6 drops of glacial acetic acid under heating in water bath at 51-61°C, The reaction mixture was refluxed for 2-20 h with stirring. The progress of the reaction was followed by TLC. After completion, the solvent was evaporated and the residue was recrystallized from a suitable solvent.

N¹,N⁴-Bis(2-chlorobenzylidene)benzene-1,4-diamine, 2e

The compound was prepared by reacting 1.08 g (0.01 mol) of p-phenylenediamine with 2.80 g (0.02 mol) of 2-chlorobenzaldehyde. Yield = 88 %, m.p = 150-151 °C, IR (KBr disk): 1612 cm⁻¹ (C=N).

N¹,N⁴-Bis(2-fluorobenzylidene)benzene-1,4-diamine, 2f

The compound was prepared by reacting 1.08 g (0.01 mol) of p-phenylenediamine with 2.48 g (0.02 mol) of 2-fluorobenzaldehyde. Yield = 60 %, m.p = 94-96 °C, IR (KBr): 1612 cm⁻¹ (C=N).

N¹,N⁵-Bis(2-chlorobenzylidene)naphthalene-1,5-diamine, 2g

The compound was prepared by reacting 1.58 g (0.01 mol) of 1,5-diaminonaphthalene with 2.80 g (0.02 mol) of 2-chlorobenzaldehyde. Yield = 89 %, m. p. =240-241 $^{\circ}$ C, IR (KBr disk): 1612 cm⁻¹ (C=N).

N¹,N⁵-Bis(4-methoxybenzylidene)naphthalene-1,5-diamine, 2h

The compound was prepared by reacting 1.58 g (0.01 mol) of 1,5-diaminonaphthalene with 2.72 g (0.02 mol) of 4-methoxybenzaldehyde. Yield = 85 %, m.p =180-182 $^{\circ}$ C, IR (KBr disk): 1620 cm⁻¹ (C=N).

General procedure for the preparation of γ-lactams 3a-3h ^{30,31}

Preparation of mono-y-lactams 3a-d

In general, the mono-γ- lactams **3a-3d** were prepared by reacting the mixture of 0.01 mol of mono-imine **2a-2d** with 0.01 mol of phenylsuccinic anhydride in 20 ml of chloroform and heating the mixture in water bath at 51-61 °C. The reaction mixture was refluxed for 12-16 h with stirring. The progress of the reaction was followed by TLC. After completion, the solvent was evaporated, and the residue was recrystallized from a suitable solvent.

(*E,Z*)-2-(2-Chlorophenyl)-1-(4-chlorophenyl)-5-oxo-3-phenyl-pyrrolidine-3-carboxylic acid, 3a

The compound was prepared by reacting 2.50 g (0.01 mol) of N-(2-chlorobenzylidene) 4-chloroaniline (2a) with 1.76 g (0.01 mol) of phenylsuccinic anhydride. Yield = 78 %, m.p = 153-154 °C, IR (KBr): 1658 cm⁻¹ (HO-C=O), 1705 cm⁻¹ (-N-C=O). For major isomer (**Z-isomer**): yield = 55 %, 1 H-NMR (300 MHz, DMSO) data: δ 2.64-2.72 ppm (dd, J = 6, 6 Hz, 1H), 3.04-3.13 ppm (dd, J = 9, 12 Hz, 2H), 4.00-4.05 ppm (dd, J = 6, 6 Hz, 1H), 7.61-7.24 ppm (m, 13H), 10.11 ppm (s, 1H), ¹³C-NMR (75 MHz, DMSO) data : δ. 39.60 ppm, 46.77 ppm, 120.42 ppm, 120.47 ppm, 126.51 ppm, 126.64 ppm, 127.10 ppm, 127.11 ppm, 127.53 ppm, 127.70 ppm, 128.56 ppm, 128.59 ppm, 138.05 ppm, 138.93 ppm, 139.32 ppm, 169.27 ppm, 174.12 ppm. **For minor** isomer (E-isomer): yield = 45 %; ${}^{1}H$ -NMR (300 MHz, DMSO) data, δ : 2.55-2.62 ppm (dd, J = 3, 6 Hz, 1H), 3.04-3.13 ppm (dd, J=9, 12Hz, 2H), 4.07-4.12 ppm (dd, J=3, 6 Hz, 1H), 7.24-7.61 ppm (m, 13H); 10.29 ppm (s, 1H), ¹³C-NMR (75 MHz, DMSO) data: δ: 37.33 ppm, 47.97 ppm, 120.42 ppm, 120.47 ppm, 126.51 ppm, 126.64 ppm, 127.10 ppm, 127.11 ppm, 127.53 ppm, 127.70 ppm, 128.56 ppm, 128.59 ppm, 138.05 ppm, 138.93 ppm, 139.32 ppm, 171.03 ppm, 172.74 ppm.

(*E,Z*)-2-(2-Bromophenyl)-1-(4-chlorophenyl)-5-oxo-3-phenyl-pyrrolidine-3-carboxylic acid, 3b

The compound was prepared by reacting 2.94 g (0.01 mol) of N-(2-bromobenzylidene)-4-chloroaniline (2b) with 1.76 g (0.01 mol) of phenylsuccinic anhydride. Yield = 70 %, m.p. = 160-161 °C, IR (KBr disk): 1658 cm⁻¹ (HO-C=O), 1705 cm^{-1} (-N-C=O). For **major isomer** (**Z-isomer**): Yield = 66 %, ¹H-NMR (300 MHz, DMSO) : δ 2.64-2.71 ppm (dd, J = 6, 6 Hz, 1H), 3.04-3.13 ppm (dd, J = 9, 12 Hz, 2H); 3.99-4.05 ppm (dd, J = 6, 6 Hz, 1H; 7.61-7.24 ppm (m, 13H), 10.12 ppm (s, 1H); 13 C-NMR (75 MHz, DMSO) data: δ: 39.60 ppm, 46.78 ppm, 120.41 ppm, 120.46 ppm, 126.50 ppm, 126.63 ppm, 127.11 ppm, 127.53 ppm, 127.70 ppm, 128.58 ppm, 138.05 ppm, 138.18 ppm, 138.94 ppm, 139.32 ppm, 169.27 ppm, 174.11 ppm. For minor isomer (Eisomer): yield = 34 %, 1 H-NMR (300 MHz, DMSO): δ : 2.55- 2.62 ppm (dd, J = 3, 6 Hz, 1H), 3.04-3.13 ppm (dd, J =9, 12 Hz, 2H), 4.06-4.11 ppm (dd, J=6, 3 Hz, 1H); 7.24-7.61 ppm (*m*, 13H); 10.29 ppm (*s*, 1H), ¹³C-NMR (75 MHz, DMSO): δ 37.33 ppm; 47.97 ppm; 120.41 ppm, 120.46 ppm, 126.50 ppm, 126.63 ppm, 127.11 ppm, 127.53 ppm, 127.70 ppm, 128.58 ppm, 138.05 ppm, 138.18 ppm, 138.94 ppm, 139.32 ppm, 172.74 ppm, 171.02 ppm.

(E)-2-(2-Bromophenyl)-5-oxo-3-phenyl-1-(p-tolyl)pyrrolidine-3-carboxylic acid, 3c

The compound was prepared by reacting 2.74 g (0.01 mol) N-(2-bromobenzylidene)-4-methylaniline (**2c**) with 1.76 g (0.01 mol) phenylsuccinic anhydride. Yield = 88 %, m.p = 159-160°C, IR (KBr disk): 1651 cm⁻¹ (HO–C=O), 1701 cm⁻¹ (–N–C=O). ¹H-NMR (300 MHz, DMSO) data: δ: 2.22 ppm (s, 3H), 2.54-2.61 ppm (dd, J = 6, 3 Hz, 1H); 3.04-3.13 ppm (dd, J= 9, 12 Hz, 2H), 4.07-4.12 ppm (dd, J = 3, 6 Hz, 1H), (7.05–7.46) ppm, (m, 13H), 10.05 ppm (s, 1H), ¹³C-NMR (75 MHz, DMSO) data: δ¹³C 20.20 ppm, 37.15 ppm, 47.67 ppm, 118.73 ppm, 126.80 ppm, 127.34 ppm, 128.30 ppm, 128.82 ppm, 131.77 ppm, 136.59 ppm, 139.48 ppm, 170.36 ppm, 172.57 ppm.

(E)-2-(2-Fluorophenyl)-5-oxo-3-phenyl-1-(p-tolyl)pyrrolidine-3-carboxylic acid, 3d

The compound was prepared by reacting 2.13 g (0.01 mol) N-(2-fluorobenzylidene)-4-methylaniline (**2d**) with 1.76 g (0.01 mol) of phenylsuccinic anhydride. Yield = 90 %, m.p = 204-205 °C, IR (KBr disk): 1651 cm⁻¹ (HO-C=O), 1701 cm⁻¹ (-N-C=O). ¹H-NMR (300 MHz, DMSO) data : δ 2.22 ppm (s, 3H), 2.54-2.61 ppm (dd, J=6, 3 Hz, 1H), 3.03-3.12 ppm (dd, J = 9, 12 Hz, 2H), 4.06-4.11 ppm (dd, J = 3, 6 Hz, 1H), 6.82-7.46 ppm (m, 13H), 10.04 ppm (s, 1H), ¹³C-NMR (75 MHz, DMSO) data : δ: 20.22 ppm, 37.15 ppm, 47.68 ppm, 118.74 ppm, 126.80 ppm, 127.35 ppm, 128.30 ppm, 128.82 ppm, 131.77 ppm, 136.59 ppm, 139.48 ppm, 170.36 ppm; 172.56 ppm.

Preparation of bis-γ-lactams 3e-3h

In general, the bis- γ -lactams **3e-3h** were prepared by reacting 0.01 mol bis-imines **2e-2h** with 0.02 mol of phenylsuccinic anhydride in 20 ml of chloroform under heating in water bath at 51-61 °C. The reaction mixture was refluxed for 12-16 h with stirring. The progress of the reaction was followed by TLC. After completion, the solvent was evaporated and the residue was recrystallized from a suitable solvent.

(E,Z)-1-(4-(3-Carboxy-2-(2-chlorophenyl)-5-oxo-3-phenylpyrrolidin-1-yl)phenyl)-2-<math>(2-chlorophenyl)-5-oxo-3-phenylpyrrolidine-3-carboxylic acid, 3e

The compound was prepared by reacting 3.53 g (0.01 mol) N¹,N⁴-bis(2-fluorobenzylidene)benzene-1,4-diamine (**2e**) with 3.52 g, (0.02 mol) of phenylsuccinic anhydride. Yield = 71 %, m.p = 180-181 °C, IR (KBr): 1658 cm⁻¹ (HO–C=O), 1701 cm⁻¹ (–N–C=O). **For major isomer (Z-isomer):** yield = 69 %, ¹H-NMR (300 MHz, DMSO) data: δ 2.61-2.69 ppm (dd, J = 6, 6 Hz, 2H); 3.02-3.10 ppm (dd, J = 9, 12 Hz, 4H); 3.99-4.04 ppm (dd, J = 6, 6 Hz, 2H), 7.23-7.49 ppm (m, 22H), 9.90 ppm (s, 2H), ¹³C-NMR (75 MHz, DMSO) data: δ 39.65 ppm; 46.86 ppm, 119.18 ppm, 119.24 ppm, 126.95 ppm, 127.03 ppm, 127.50 ppm, 127.69 ppm, 128.45 ppm, 134.40 ppm, 134.49 ppm, 134.52 ppm, 139.05 ppm, 139.64 ppm, 168.69 ppm, 174.15 ppm. **For minor isomer** (E-**isomer):** yield 31 %, ¹H-NMR (300 MHz, DMSO) data: δ 2.54-2.61 ppm (dd, J = 3, 6 Hz, 2H), 3.02-3.10 ppm (dd, J =

9, 12 Hz, 4H), 4.05-4.11 ppm (dd, J = 6, 3 Hz, 2H), 7.23-7.49 ppm (m, 22H), 10.08 ppm (s, 2H), ¹³C-NMR (75 MHz, DMSO) data : δ : 37.33 ppm, 47.81 ppm, 119.18 ppm, 119.24 ppm, 126.95 ppm, 127.03 ppm, 127.50 ppm, 127.69 ppm, 128.45 ppm, 134.40 ppm, 134.49 ppm, 134.52 ppm, 139.05 ppm, 170.43 ppm, 172.75 ppm.

$\label{eq:continuous} \begin{tabular}{ll} (E,Z)-1-(4-(3-Carboxy-2-(2-fluorophenyl)-5-oxo-3-phenylpyrrolidin-1-yl)phenyl)-2-(2-fluorophenyl)-5-oxo-3-phenylpyrrolidin-3-carboxylic acid, 3f \end{tabular}$

The compound was prepared by reacting 3.20 g (0.01 mol) N¹,N⁴-bis(2-fluorobenzylidene)benzene-1,4-diamine with 3.52 g (0.02 mol) phenylsuccinic anhydride. Yield = 90 %, m.p = $185-186^{\circ}$ C, IR (KBr disk): 1658 cm^{-1} (HO– C=O), 1701 cm⁻¹ (-N-C=O). For major isomer (Zisomer): yield = 76%, ¹H-NMR (300 MHz, DMSO) data : δ 2.61-2.68 ppm (dd, J = 6, 6 Hz, 2H); 3.01-3.10 ppm (dd, J=9, 12 Hz, 4H); 3.99-4.04 ppm (dd, J = 6, 6 Hz, 2H); 7.23-7.64 ppm (*m*, 22H), 9.90 ppm (*s*, 2H), ¹³C-NMR (75 MHz, DMSO) data : δ: 39.69 ppm, 46.90 ppm, 119.26 ppm, 126.97 ppm, 127.05 ppm, 127.53 ppm, 127.71 ppm, 128.48 ppm, 128.55 ppm, 134.43 ppm, 134.51 ppm, 139.08 ppm, 139.67 ppm, 168.72 ppm, 174.18 ppm. HSQC ¹H-¹³C NMR (600 MHz, 150 MHz, DMSO) data: (2.67, 39.40) ppm, (3.06, 39.40) ppm, (4.02, 46.61) ppm, {(7.26, 126.83), (7.27, 128.24), (7.32, 128.10), (7.34, 128.30), (7.38,127.33), (7.43, 118.94), (7.45, 119.00), (7.46, 119.01)} ppm. For minor isomer (*E*-isomer): yield 24 %, ¹H-NMR (300 MHz, DMSO) data δ : 2.53-2.61 ppm (*dd*, J = 3, 6 Hz, 2H), 3.01-3.10 ppm (dd, J = 9, 12 Hz, 4H), 4.05-4.10 ppm (dd, J= 6, 3 Hz, 2H), 7.23-7.64 ppm (m, 22H), 10.08 ppm (s, 2H),¹³C-NMR (75 MHz, DMSO) data: δ 37.37 ppm, 47.84 ppm, 119.26 ppm, 126.97 ppm, 127.05 ppm, 127.53 ppm, 127.71 ppm, 128.48 ppm, 128.55 ppm, 134.43 ppm, 134.51 ppm, 139.08 ppm, 139.67 ppm, 170.46 ppm, 172.77 ppm. HSQC ¹H-¹³C NMR (600 MHz, 150 MHz, DMSO) data: (2.56, 37.08) ppm, (3.07, 37.09) ppm, (4.08, 47.55) ppm, $\{(7.26, 126.83), (7.27, 128.24), (7.32, 128.10), (7.34,$ 128.30), (7.38, 127.33), (7.43, 118.94), (7.45, 119.00), (7.46, 119.01)} ppm.

$\label{eq:continuous} \begin{tabular}{ll} (E,Z)-1-(5-(-3-Carboxy-2-(2-chlorophenyl)-5-oxo-3-phenylpyr-rolidin-1-yl)naphthalene-1-yl)-2-(2-chlorophenyl)-5-oxo-3-phenylpyrrolidine-3-carboxylic acid, $3g$ \\ \end{tabular}$

The compound was prepared by reacting (4.03 g, 0.01 N¹,N⁵-bis(2-chlorobenzylidene)-1,5-diaminonaphthalene (2g) with (3.52 g, 0.02 mol) of phenylsuccinic anhydride. Yield = 84 %, m.p = 244-245 °C, IR (KBr disk) 1654 cm⁻¹ (HO–C=O), 1705 cm⁻¹ (–N–C=O). ¹H-NMR (300 MHz, DMSO) data: For major isomer (Z-isomer): yield=81 %; δ 2.84-2.92 ppm (dd, J = 6, 6 Hz, 2H); 3.18-3.27 ppm (dd, J = 12, 9 Hz, 4H), 4.05 -4.10 ppm (t, J = 6, 9 Hz, 2H), 7.08-8.38 ppm (m, 24H), 9.96 ppm (s, 2H), ¹³C-NMR (75 MHz, DMSO) data : δ: 39.36 ppm; 47.20 ppm; 120.27 ppm, 121.97 ppm, 125.11 ppm, 127.09 ppm, 127.58 ppm, 127.84 ppm, 128.53 ppm, 128.67 ppm, 128.91 ppm, 133.57 ppm, 138.93 ppm, 169.62 ppm, 174.17 ppm. For minor isomer (*E*-isomer): yield=19 %, δ: 2.62- 2.69 ppm (dd, J = 3, 6 Hz, 2H); 3.18-3.27 ppm (dd, J = 12, 9 Hz, 4H),4.34-4.39 ppm (dd, J = 3, 6 Hz, 2H), 7.08-8.38 ppm (m, 24H); 10.16 ppm (*s*, 2H), ¹³C-NMR (75 MHz, DMSO) data : δ: 37.33 ppm, 47.31 ppm, 119.18 ppm, 119.24 ppm, 126.95 ppm, 127.03 ppm, 127.50 ppm, 127.69 ppm, 128.45 ppm, 134.40 ppm, 134.49 ppm, 134.52 ppm, 139.05 ppm, 139.64 ppm, 171.62 ppm, 172.86 ppm.

(*E,Z*)-1-(5-(-3-Carboxy-2-(4-methoxyphenyl)-5-oxo-3-phenyl-pyrrolidin-1-yl)naphthalene-1-yl)-2-(4-methoxyphenyl)-5-oxo-3-phenyl-pyrrolidine-3-carboxylic acid, 3h

The compound was prepared by reacting 3.94 g (0.01 mol) N¹,N⁵-bis(4-methoxybenzylidene)-1,5-diamino-naphthalene (2h) with 3.52 g (0.02 mol) phenylsuccinic anhydride. Yield = 85 %, m.p = 214-216 °C, IR (KBr disk): 1654 cm⁻¹ (HO– C=O), 1708 cm⁻¹ (-N-C=O). For major isomer (Zisomer): yield = 70 %, ¹H-NMR (300 MHz, DMSO) data: δ : 2.85-2.94 ppm (q, J = 6, 6, 9, 6 Hz, 2H); 3.10-3.29 ppm (m, J = 9, 12, 9, 6 Hz, 4H); 3.86 ppm (s, 6H); 4.05-4.12 ppm(dd, J = 6, 6 Hz, 2H); 7.11-8.61 ppm (m, 24H); 9.95 ppm (s, 6)2H), ¹³C-NMR (75 MHz, DMSO) data: δ: 39.34 ppm, 47.18 ppm, 55.45 ppm, 114.42 ppm, 114.54 ppm, 120.20 ppm, 121.99 ppm, 122.24 ppm, 125.13 ppm, 127.11 ppm, 127.60 ppm, 127.85 ppm, 128.49 ppm, 128.55 ppm, 128.93 ppm, 129.04 ppm, 129.09 ppm, 130.69 ppm, 131.76 ppm, 133.36 ppm, 133.59 ppm, 138.91 ppm, 139.74 ppm, 144.38 ppm, 169.73 ppm, 174.17 ppm. For minor isomer (Eisomer): yield=30 %, 1H-NMR (300 MHz , DMSO) data: δ 2.62-2.69 ppm (dd, J = 3, 3 Hz, 2H), 3.10-3.29 ppm (m, J = 9, 12, 9, 6 Hz, 4H); 3.86 ppm (s, 6H), 4.34-4.39 ppm (dd, J = 6, 6 Hz, 2H, 7.11-8.61 ppm (m, 24H), 10.16 ppm (s, 2H);¹³C -NMR (75 MHz, DMSO) data: δ: 37.33 ppm; 47.32 ppm, 55.65 ppm, 114.42 ppm, 114.54 ppm, 120.20 ppm, 121.99 ppm, 122.24 ppm, 125.13 ppm, 127.11 ppm, 127.60 ppm, 127.85 ppm, 128.49 ppm, 128.55 ppm, 128.93 ppm, 129.04 ppm, 129.09 ppm, 130.69 ppm, 131.76 ppm, 133.36 ppm, 133.59 ppm, 138.91 ppm, 139.74 ppm, 144.38 ppm, 171.63 ppm, 172.85 ppm.

RESULTS AND DISCUSSION

 γ -Lactams represent important substructures for the synthesis of natural products, ⁸⁻¹² and biologically important compounds in drug discovery ¹³⁻¹⁶. The prevalence of these structures has resulted in the development of many efficient syntheses ^{17–22}, which have led to the production of diverse libraries of small molecules for biological evaluation ^{16,23,24}. γ -lactams **3a-3h** are obtained from reaction of imines with phenylsuccinic anhydride.

The general reaction of mono- γ -lactams **3a-3d** is outlined in Scheme 1. It is the reaction between phenylsuccinic anhydride with mono-imines **2a-2d** in chloroform solvent to yield the products mono- γ -lactams **3a-3d**, and these are shown in Table 1.

Scheme 1.

The general reaction of bis- γ -lactams **3e-3h** is outlined in Scheme 2. It is the reaction between phenylsuccinic anhydride with bis-imines **2e-2h** in chloroform solvent to yield the products bis- γ -lactams **3e-3h** as shown in Table 2.

Scheme 2.

Table 1. Mono-γ-lactam 3a-3d compounds and its imines 2a-2d

Imines	Mono-γ-lactams	\mathbb{R}^1	\mathbb{R}^2
2a	3a	ci —	CI
2b	3b	ci—	Br
2c	3c	H ₃ C —	Br
2d	3d	H ₃ C —	<u></u>

The general mechanism ^{25,26} of these reactions involve formation of a zwitterionic enolate intermediate **1,3** from a phenylsuccinic anhydride, and the formation of enolate **2,4** is favored by delocalization of negative charge into the electron deficient aromatic ring if one is suitably positioned. This is how the lactam ring is formed.

Table 2. bis-γ-lactam 3e-3h compounds and its imines 2e-2h

Imines	Bis-γ- lactams	R ¹	\mathbb{R}^2
2e	3e	—	CI
2f	3f		F-
2g	3 g		CI CI
2h	3h		————OCH ₃

Scheme 3.

Scheme 4

Infrared (IR) spectral analysis

The **IR** spectra of mono- γ -lactam **3a-3d**) and bis- γ -lactam **3e-3h**) are characterized by the six bands corresponding to the stretching vibration of the aromatic C-H, aliphatic C-H, carbonyl carboxylic group, carbonyl amide group, aromatic C=C and substituted ring which occurs within the ranges 3025-3082, 2735-2958, 1651-1658, 1701-1708, 1512-1612 and 817-983 cm⁻¹ respectively.

¹H-NMR spectral analysis

The $^1\text{H-NMR}$ spectra of 2-(2-chlorophenyl)-1-(4-chlorophenyl)-5-oxo-3-phenylpyrrolidine-3-carboxylic acid **3a**, shows the presence of **syn (Z) isomer (major isomer)**: in pyrrolidine-2-one ring double doublet signal at δ (2.64-2.72) ppm with J=6 Hz, 6 Hz for one proton (dd, 1H, C₄-H), and for **anti (E) isomer (minor isomer)**: in pyrrolidine-2-one ring double doublet signal at δ (2.55-2.62) ppm with J=6 Hz, δ Hz for one proton (dd, 1H, C₄-H), Fig. 2. and double doublet signal at δ (3.04-3.13) ppm with J=9 Hz, δ Hz for two protons (δ dd, δ 2H, C₄-H) of **syn isomer** and **anti isomer**, Fig. 3.

Figure 2. Selected ¹H NMR signals of the syn-3a 1somer

Figure 3. Selected ¹H NMR signals of the anti-3a isomer

A double doublet signal at δ 4.00-4.05 ppm with J=6 Hz, 6 Hz for one protons (dd, H, C₂-H) of **syn isomer**, and a double doublet signal at δ 4.07-4.12 ppm with J=3 Hz, 6 Hz for one proton (dd, 2H, C₂-H) of **anti isomer can be seen in** Fig 4.

Figure 4.Selected ¹H NMR signals of the anti-3a and the syn-3a isomers

The ¹H-NMR spectra of 3a shows multiplet signal at δ 7.4-7.61 ppm for thirteen aromatic protons (m, 13H, aromatic protons) of **syn isomer** and **anti isomer** can be seen in Fig. 5.

Figure 5. Aromatic ¹H NMR signals of the **syn-3a** and the **anti-3a** isomers

A singlet signal at δ 10.11 ppm for one proton of carboxylic group (s, 1H, COO-H) of **syn** isomer and the singlet signal at δ 10.29 ppm is for one proton of carboxylic group (s, H, COO-H) of **anti** isomer as is shown in Fig. 6.

Figure 6. Carboxylic ¹H NMR signals of **the syn-3a** and the **anti-3a** isomers

Syn isomer (Major)

Anti isomer (Minor)

¹³C-NMR spectral analysis

The 13 C-NMR spectra of the 2-(2-chlorophenyl)-1-(4-chlorophenyl)-5-oxo-3-phenylpyrrolidine-3-carboxylic acid **3a**, are shown in pyrrolidine-2-one ring: for syn (Z) isomer (major isomer) singlet signal at δ 39.60 ppm of one carbon (C₄-H₂), and for anti (E) isomer (minor isomer) singlet signal at δ 37.33 ppm of one carbon (C₄-H₂), Figure 7.

Figure 7. Pyrrolidine-2-one ring 13 C NMR signals of the **syn-3a** and **the anti-3a**

Figure 8. C₂-H type ¹³C NMR signals of the syn-3a and the anti-

A singlet signal at δ 46.77 ppm is for one carbon (C₂-H) for **syn isomer**, and singlet signal at δ 47.97 ppm of one carbon (C₂-H) is for the anti isomer. The spectrum can be seen in Figure 8.

The 13 C-NMR spectra of the **3a** shows signals of aromatic carbons at δ 120.42, 120.47, 127.10, 127.11, 127.53, 127.70, 128.56, 128.59, 138.05, 138.19, 138.93 and 139.32 ppm for the **syn isomer** and the **anti isomer**. The spectrum can be seen in Figure 9.

Figure 9. Aromatic ¹³C NMR signals of the syn-3a and the anti-3a

Table 3. $^{1}\text{H-NMR}$ spectral analysis of the mono- γ -lactams 3a-3d

Mono-γ-lactams	C ₄ -H,ring, J Hz	C ₂ -H, ring, J Hz	СООН	C4-H ring, J Hz	C ₂ -H,ring, J Hz	СООН	
C ₂₃ H ₁₇ Cl ₂ NO ₃	(syn isomer) Major(55 % yield)			(anti isomer) Minor (45 % yield)			
3a	2.64-2.72 (<i>dd</i>), <i>J</i> =6, 6, 1H	4.00-4.05, (<i>dd</i>), <i>J</i> =6, 6, 1H	10.11 (s), 1H	2.55-2.62, (<i>dd</i>), <i>J</i> =6, 3, 1H	4.07-4.12, (<i>dd</i>), <i>J</i> =3, 6, 1H	10.29 (s), 1H	
C ₂₃ H ₁₇ BrClNO ₃	(syn isomer) Major (66 % yield)			(anti isomer) Minor (34 % yield)			
3b	2.64-2.71, (<i>dd</i>), <i>J</i> =6, 6, 1H	3.99-4.05, (<i>dd</i>), <i>J</i> =6, 6, 1H	10.12 (s), 1H	2.55-2.62, (<i>dd</i>), <i>J</i> =3, 6, 1H	4.06-4.11, (<i>dd</i>), <i>J</i> =6, 3, 1H	10.29 (s), 1H	
Mono-γ-lactams	C4-H2 ring, J Hz		C ₂ -H ring, J	C2-H ring, J Hz			
C ₂₄ H ₂₀ BrNO ₃	2.54-2.61 (dd	I), $J = 6, 3, 1$ H	4.07-4.12 (<i>dd</i>), <i>J</i> =3, 6, 1H		10.05 (s)1H		
anti-3c							
C ₂₄ H ₂₀ FNO ₃	2.54-2.61 (dd	<i>l</i>), <i>J</i> =6, 3, 1H	4.06-4.11 (da	<i>l)</i> , <i>J</i> =3, 6, 1H	10.04 (s)1H		
anti-3d							

Table 4. $^1\text{H-NMR}$ spectral analysis of the bis- γ -lactams 3e-3h

Bis-γ-lactams	C ₄ -H ring, <i>J</i> Hz	C ₂ -H ring, J Hz	соон	C ₄ -H ring, J Hz	C ₂ -H ring, J Hz	СООН		
C ₄₀ H ₃₀ Cl ₂ N ₂ O ₆	(syn isomer) M	ajor (69% yield)		(anti isomer) Minor ((anti isomer) Minor (31% yield)			
3e	2.61-2.69 (<i>dd</i>), <i>J</i> =6, 6(2H)	3.99-4.05 (<i>dd</i>), <i>J</i> =6, 6 (2H)	9.90 (s) 2H	2.54-2.61 (<i>dd</i>), <i>J</i> =3, 6(2H)	4.05-4.10 (<i>dd</i>) <i>J</i> =6, 3 2H	10.08 (s), 2H		
$C_{40}H_{30}F_2N_2O_6$	(syn isomer) M	ajor(76% yield)		(anti isomer) Minor(24% yield)				
3f	2.61-2.68 (<i>dd</i>), <i>J</i> =6, 6 (2H)	3.99-4.04 (<i>dd</i>) <i>J</i> =6, 6 (2H)	9.90 (s), 2H	2.53-2.61 (<i>dd</i>), <i>J</i> =3, 6 (2H)	4.07-4.10 (<i>t</i>), <i>J</i> =6, 3 (2H)	10.08 (s), 2H		
C44H32Cl2N2O6	(syn isomer) M	ajor (81% yield)		(anti isomer) Minor(19% yield)				
3g	2.84-2.92 (<i>dd</i>), <i>J</i> =6, 6 (2H)	4.05-4.10 (<i>dd</i>), <i>J</i> =6, 9 (2H)	9.96(<i>s</i>), 2H	2.62-2.62 (<i>dd</i>), <i>J</i> = 3, 6 (2H)	4.07-4.12 (<i>dd</i>), <i>J</i> =3, 6 (2H)	10.16 (s), 2H		
C46H38N2O8	(syn isomer) Major (70% yield)			(anti isomer) Minor (30% yield)				
3h	2.85-2.94, <i>q</i> , <i>J</i> =6, 6, 9, 9 (2H)	4.05-4.12, (<i>dd</i>), <i>J</i> =6, 6 (2H)	9.95(<i>s</i>), 2H	2.62-2.69, (<i>dd</i>), <i>J</i> =3, 3 (2H)	4.34-4.39, (<i>dd</i>), <i>J</i> =6, 6 (2H)	10.16, (<i>s</i>), 2H		

Table 5. 13 C-NMR spectral analysis of the mono- γ -lactams **3a-3d**

Mono-γ-lactams	C4-ring, ppm	C ₂ -ring,	HOC=O, ppm	-N-C=O, ppm	C ₄ -ring,	C ₂ -ring,	HOC=O, ppm	-N-C=O, ppm
C ₂₃ H ₁₇ Cl ₂ NO ₃	(syn isomer) Major (69 %	6 yield)		(anti isomer) Minor (31 % yield)			
3a	39.60	46.77	169.27	171.03	37.33	47.97	172.74	174.12
C ₂₃ H ₁₇ BrClNO ₃	(syn isomer) Major (66 %	6 yield)		(anti isomer) Minor (34 % yield)			
3b	39.60	46.78	169.27	171.02	37.33	47.97	172.74	174.11
Mono-γ-lactams	C ₄ - ring, p	pm	C ₂ -ring, ppm	ı	но-с=о, ј	ppm	-N-C=O, ppn	n
Anti, 3c	37.15		47.67		170.36		172.57	
C ₂₄ H ₂₀ BrNO ₃								
Anti, 3d	37.15		47.68		170.36		172.56	
C ₂₄ H ₂₀ FNO ₃								

Table 6. ¹³C-NMR spectral analysis of the bis- γ-lactams **3e-3h**

Bis-γ-lactams	C4-ring, ppm	C ₂ -ring,	HOC=O,ppm	-N-C=O, ppm	C ₄ -ring, Ppm	C ₂ -ring,	HOC=O, ppm	-N-C=O, ppm	
C ₄₀ H ₃₀ Cl ₂ N ₂ O ₆	syn isomer	syn isomer (69 % yield)				anti isomer (31 % yield)			
3e	39.65	46.86	168.69	170.75	37.33	47.81	172.75	174.15	
$C_{40}H_{30}F_2N_2O_6$	syn isomer	(76 % yield)			anti isomer (24 % yield)				
3f	39.69	46.90	168.72	170.46	37.33	47.84	172.77	174.18	
C ₄₄ H ₃₂ Cl ₂ N ₂ O ₆	syn isomer	syn isomer (81 % yield)				anti isomer (19 % yield)			
3g	39.36	47.20	169.73	171.62	37.33	47.31	172.86	174.17	
C ₄₆ H ₃₈ N ₂ O ₈	syn isomer	syn isomer (70 % yield)				anti isomer (30 % yield)			
3h	39.34	47.18	169.73	171.63	37.33	47.32	172.85	174.17	

The spectrum shows a singlet signal of the carboxylic carbonyl group at δ 169.27 ppm, and an other singlet signal of the amide carbonyl group for the **syn isomer** at 171.03 ppm and a singlet signal of the carboxylic carbonyl group at δ 172.74 ppm, and an other singlet signal of the amidecarbonyl group carbon at 174.12 ppm (equivalent carbon).

Figure 10. Selected ¹³C NMR signals of syn-3a and anti-3a

HSQC ¹H-¹³C-NMR spectral analysis

Eur. Chem. Bull., 2015, 4(4), 207-217

The **HSQC** $^1\text{H-}^{13}\text{C-NMR}$ spectra of **3f**, showed pyrrolidine-2-one ring: for syn (Z) isomer (major isomer), the correlation of protons signals for $^-\text{CH}_2$ - group at δ 2.67 ppm and δ 3.06 ppm with carbon signal at δ 39.40 ppm of same group led to the assignment of this signal to methylene group, and proton signal 4.02 ppm for $^-\text{CH-}$ group with

carbon signal of same group at 46.61 ppm, which lead to the assignment of this signal to -CH- group, and in pyrrolidine-2-one ring for anti (E) isomer (minor isomer): correlation of protons signals for -CH₂- group, and showed in pyrrolidine-2-one ring for anti (E) isomer (minor isomer): the correlation of protons signals for -CH₂- group at δ 2.56 ppm and δ 3.07 ppm with carbon signal at δ 37.08 ppm of same group which lead to the assignment of this signal to methylene group, and proton signal 4.08 ppm for -CH- group with carbon signal of same group at 47.55 ppm, which led to the assignment of this signal to -CH- group, (Digure 11). The HSQC ¹H-¹³C-NMR spectra of the **3f** showed for syn isomer and anti isomer, the aromatic protons signals at δ 7.26, 7.27, 7.32, 7.34, 7.38, 7.43, 7.45 and 7.46 ppm correlation with carbon aromatic signals at 126.83, 128.24, 128.10, 128.30, 127.33, 118.94, 119.00 and 119.01 ppm respectively, (Figure 12).

Figure 11. Selected HSQC ¹H-¹³C-NMR spectra of the 3f

DOI: 10.17628/ECB.2015.4.207

Figure 12. Aromatic HSQC ¹H-¹³C-NMR spectra of the 3f

Mass spectral analysis

The Mass spectra of 3b, showed the molecular ion peak $[M+H]^+ = 470$, $[2M+H]^+ = 939$ and showed the important fragmentation peaks in m/z = 304 m/z = 386, m/z = 393, m/z = 326, m/z = 315, m/z = 474, m/z = 486, m/z = 607, m/z = 645, m/z = 629.

The Mass spectra of 3c, showed the molecular ion peak $[M+H]^+$ =685, $[M+Na]^+$ = 450, $[2M+H]^+$ = 899, and showed the important fragmentation peaks in m/z = 284, m/z = 266, m/z = 238, m/z = 567, m/z = 477, m/z = 589, m/z = 605.

The Mass spectra of 3d (fig. 9) and (fig. 10), showed the molecular ion peak $[M+H]^+=390$, $[2M+H]^+=779$, and showed the important fragmentation peaks in m/z=255, m/z=371, m/z=629, m/z=585, m/z=429, m/z=412.

The Mass spectra of 3e, showed the molecular ion peak $[M+H]^+ = 705$, and showed the important fragmentation peaks in m/z = 285, m/z = 300, m/z = 341, m/z = 383, m/z = 391, m/z = 443, m/z = 461, m/z = 579.

The Mass spectra of 3h, showed the molecular ion peak $[M+H]^+ = 747$, $[2M+H]^+ = 1493$, and showed the important fragmentation peaks in m/z = 453, m/z = 533, m/z = 689, m/z = 453, m/z = 905, m/z = 985, m/z = 963, m/z = 845, m/z = 809.

Acknowledgements

NMR and MS measurements were done at National Hellenic Research Foundation, Institute of Biology Medicinal Chemistry and Biotechnology, Molecular analysis Group, Athens, Greece.

References

- ¹Younai, A., Chin, G. F., Fettinger, J. C. and Shaw, J. T., *J. Org. Chem.*, **2010**, *75*, 8337.
- ²Nöth, J., Frankowski, K. J., Neuenswander, B., Aubé, J. and Reiser, O., *J. Comb. Chem.*, **2008**, *10*, 456.
- ³Zhao, X., DiRocco, D. A. and Rovis, T., *J. Am. Chem. Soc.*, **2011**, *133*, 12466-12469.
- ⁴Comesse, S., Sanselme, M. and Daïch, A., *J. Org. Chem.*, **2008**, 73, 5566-5569.
- ⁵Zhang, Y., Shao, Y.-L., Xu, H.-S. and Wang, W., *J. Org. Chem.*, **2011**, *76*, 1472-1474.
- ⁶Shao, C., Yu, H. -J., Wu, N. -Y., Tian, P., Wang, R., Feng, C. -G. and Lin, G. -Q., *Org. Lett.*, **2011**, *13*, 788-791.
- ⁷Lin, L., Zhang, J., Ma, X., Fu, X. and Wang, R., *Org .Lett.*, **2011**, *13*, 6410-6413.
- ⁸Mori, T., Takahashi, K., Kashiwabara, M., Uemura, D., Katayama, C., Iwadare, S., Shizuri, Y., Mitomo, R., Nakano, F. and Matsuzaki, A., *Tetrahedron. Lett.*, **1985**, *26*, 1073-1076.
- ⁹Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C.A., Jensen, P. R. and Fenical, W., *Angew. Chem. Int. Ed.*, **2003**, 42, 355-357.
- ¹⁰Guntern, A., Ioset, J. R., Queiroz, E. F., Sandor, P., Foggin, C. M. and Hostettmann, K., J. Nat. Prod., 2003, 66, 1550-1553.
- ¹¹Manam, R. R., Teisan, S., White, D. J., Nicholson, B., Grodberg, J., Neuteboom, S. T. C., Lam, K. S., Mosca, D. A., Lloyd, G. K. and Potts, B. C. M., *J. Nat. Prod.*, **2005**, *68*, 240-243.
- ¹²Okazaki, Y., Ishizuka, A., Ishihara, A., Nishioka, T. and Iwamura, H., J. Org. Chem., 2007, 72, 3830-3839.
- ¹³Stuk, T. L., Assink, B. K., Bates, R. C., Erdman, D. T., Fedij, V., Jennings, S. M., Lassig, J. A., Smith, R. J. and Smith, T. L., *Org. Proces. Res. Dev.*, **2003**, *7*, 851-855.
- ¹⁴Masse, C. E., Morgan ,A. J., Adams, J. and Panek, J. S., *Eur. J Org. Chem.*, **2000**, 2513-2528.
- ¹⁵Fenical, W., Jensen, P. R., Palladino, M. A., Lam, K. S., Lloyd, G. K. and Potts, B.C., *Bioorg. Med. Chem.*, **2009**, *17*, 2175-2180.
- ¹⁶Ng, P. Y., Tang, Y., Knosp, W. M., Stadler, H. S. and Shaw, J. T., Angew. Chem. Int. Ed., 2007, 46, 5352-5355.
- ¹⁷Ng, P. Y., Masse, C. E. and Shaw, J. T., *Org Lett.* **2006**, *8*, 3999-4002.
- ¹⁸Wei, J. Q. and Shaw, J. T., Org. Lett., **2007**, *9*, 4077-4080.
- ¹⁹Tan, D. Q., Martin, K. S., Fettinger, J. C. and Shaw, J. T., *Proc Natl. Acad. Sci. USA.*, **2011**, *108*, 6781-6786.
- ²⁰Lettan, R. B., Galliford, C.V., Woodward, C. C. and Scheidt, K. A., *J. Am. Chem. Soc.*, **2009**, *131*, 8805-8814.
- ²¹Raup, D. E. A., Cardinal-David, B., Holte, D. and Scheidt, K. A., *Nat. Chem.* **2010**, *2*, 766-771.
- ²²Zhao, X., DiRocco, D. A. and Rovis, T., *J. Am. Chem. Soc.*, **2011**, *133*, 12466-12469.
- ²³Galliford, C. V. and Scheidt, K. A., *Angew. Chem. Int. Ed.* **2007**, *46*, 8748-8758.
- ²⁴Marti, C. and Carreira, E. M., Eur. J. Org. Chem., 2003, 2209-2219.
- ²⁵Lopez, M. G. and Shaw, J. T., Chem. Rev., 2009, 109, 164-189.
- ²⁶Masse, C. E., Ng, P. Y., Fukase, Y., Sanachez-Rosello, M. and Shaw, J. T., *J. Comb. Chem.*, **2006**, *8*, 293-296.
- ²⁷Hello, K.M., Iraqi. J. Chem., 2000, 24, 266.

³¹Majeed, N. N., Esaa, A. H. and Turki, A. A., *Pharm. Chem.*, **2014**, *6*(2), 288-293.

Received: 30.12.2014. Accepted: 21.04.2015.

DOI: 10.17628/ECB.2015.4.207

²⁸Krishnaswamy, D., *Tetrahedron.*, **2002**, *34*, 4567.

²⁹Abdulrhman, Y. K., Mahmood, S. M., *Best Journal.*, **2014**, 2, (5), 37-48.

³⁰Burdzhiev, N. T. and Stanoeva, E. R., *Z. Naturforsch.*, **2008**, *63b*, 313-320.