NOVEL HETEROCYCLIC COMPOUNDS DERIVED FROM ACETOACETANILIDE TOGETHER WITH THEIR ANTITUMOR EVALUATIONS

Karam A. El-Sharkawy ${ }^{[\mathrm{[a]} *}$ and Eman M. Samir ${ }^{[b]}$

Keywords: pyrazol, pyridazine, thiophene, 1, 2, 4 triazine, cytotoxic activity.
The reaction of acetoacetanilide (1) with cyclohexanone (2) gave compound $\mathbf{3}$ which it was reacted with the active methylene reagents $\mathbf{4 a}$, \mathbf{b} afforded cyclohexylidene derivatives $\mathbf{5 a}, \mathbf{b}$. The latter products were reacted with elemental sulfur in presence of basic catalyst to produce thiophene derivatives $\mathbf{6 a}, \mathbf{b}$. Also compound $\mathbf{1}$ reacted with diazonium salts $7 \mathbf{a}, \mathbf{b}$ then compounds $\mathbf{8 a}$, \mathbf{b} were produced respectively, compounds $\mathbf{8 a}, \mathbf{b}$ were directed toward the reaction with malononitrile (4a), ethyl cyanoacetate (4b) in either ammonium acetate or piperdine to form compounds $\mathbf{9 a - d}$ and 10a-d respectively, also compounds $\mathbf{8 a}, \mathbf{b}$ reacted with either phenylisothiocanate (11) afforded compounds $\mathbf{1 3 a} \mathbf{a} \mathbf{b}$ or hydrazine derivatives $\mathbf{1 4 a} \mathbf{b} \mathbf{b}$ to produce compounds $\mathbf{1 5 a} \mathbf{- d}$. The newly synthesized compounds were evaluated for antitumor activity.

Corresponding Authors
Tel: 00201004712543
Fax: 00238371543
E-mail: karamsyn@yahoo.com
[a] Chemistry Department, Faculty of Biotechnology, October University for Modern Sciences and Arts(MSA), El-Wahat Road, 6 October City, Egypt.
[b] National Organization for Drug Control \& Research P.O. 29, Cairo, Egypt

Introduction

A large number of medicinal compounds which have been discovered belong to a major class of heterocycles containing sulphur and (or) nitrogen. Thiophene and its derivatives constitute one of the major classes in heterocyclic chemistry, thus some of these compounds has interesting biological properties such as cytotoxic, antitumor activity, ${ }^{1,2}$ anti-inflammatory and analgesic agents, ${ }^{3,4,6}$ antimicrobial ${ }^{5,6}$ and antiprotozoal activity, ${ }^{7,8}$ pyridazine derivatives has antimicrobial activity, ${ }^{9}$ on the other hand the fused $1,2,4$ triazine derivatives has Antiproliferative activity, ${ }^{10}$ moreover pyrazole derivatives has many biological significant such as Antiproliferative activity. ${ }^{11}$

In this article from our view as continuation of such efforts directed towards the synthesis of new heterocyclic compounds based on the presence of acetoacetanilide derivatives, and the screening of their antitumor activity against three different cell lines. The structures of the newly synthesized compounds were established using IR, NMR \& Mass spectrometry techniques.

Results and discussion

In the present work we report the uses of acetoacetanilide through some heterocyclic synthesis followed by cytotoxic evaluations of the newly obtained compounds. Thus, acetoacetanilide (1) reacted with cyclohexanone (2) in
benzene $/ \mathrm{AcOH}$ containing ammonium acetate gave the Knoevenagel condensation product 3 . The structure of compound 3 was confirmed based on the analytical and spectral data. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 showed two multiplets at $\delta 1.77-1.79$ \& 2.11-2.16 ppm indicating the five CH_{2} groups, a singlet at $\delta 2.27 \mathrm{ppm}$ corresponding to CH_{3} group, a multiplet at $\delta 7.25-7.36 \mathrm{ppm}$ for the $\mathrm{C}_{6} \mathrm{H}_{5}$ group and a singlet, $\mathrm{D}_{2} \mathrm{O}$-exchangeable at δ 9.63 ppm for the NH group. Compound 3 reacted with either malononitrile (4a) or ethyl cyanoacetate (4b) afforded compounds $5 \mathbf{a}$ and $\mathbf{5 b}$ respectively. The existence of the methyl group in conjugation with the cyano group enhances the reactivity of the first.

Thus, the reaction of compounds $\mathbf{5 a}$ and $\mathbf{5 b}$ with elemental sulfur in 1,4-dioxan containing a catalytic amount of triethylamine to give the thiophene derivatives $\mathbf{6 a}$ and $\mathbf{6 b}$ respectively. The analytical and spectral data of compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ were consistence with their respective structures. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}$ showed two multiplets at $\delta 1.73-1.76 \& 1.91-1.98 \mathrm{ppm}$ indicating the five CH_{2} groups, a singlet at $\delta 4.54 \mathrm{ppm}$ indicating two H of NH_{2} group, a singlet at $\delta 6.73 \mathrm{ppm}$ corresponding to 1 H (thiophene ring), a multiplet at $\delta 7.27-7.38 \mathrm{ppm}$ for the $\mathrm{C}_{6} \mathrm{H}_{5}$ group and a singlet, $\mathrm{D}_{2} \mathrm{O}$-exchangeable at $\delta 9.32 \mathrm{ppm}$ for the NH group.

The reaction of compound $\mathbf{1}$ with either 3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-2-diazonium chloride (7a) or 3-ethoxycarbonyl-4,5,6,7-tetrahydrobenzo[b]thiophene-2diazonium chloride (7b) gave the hydrazo derivatives 8a and $\mathbf{8 b}$ respectively (cf. Scheme 1). The reaction of the synthesized compounds $\mathbf{8 a}$ or $\mathbf{8 b}$ with either malononitrile (4a) or ethyl cyanoacetate (4b) in the presence of ammonium acetate at $120{ }^{\circ} \mathrm{C}$ gave the Knoevenagel condensation products 9a-d respectively. On the other hand carrying the same reaction but in refluxing ethanol containing piperidine gave the pyridazine derivatives 10a-d respectively (cf. Scheme 2).

Scheme 1. Synthesis of compounds 3-8a,b

$$
\begin{aligned}
\mathbf{8 a}, \mathrm{Y} & =\mathrm{CN} \\
\mathbf{b}, \mathrm{Y} & =\mathrm{COOEt}
\end{aligned}
$$

$$
\downarrow \begin{aligned}
& \mathrm{NH}_{4} \mathrm{OAc} \\
& 120^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{4 a}, \mathrm{X} & =\mathrm{CN} \\
\mathbf{b}, \mathrm{X} & =\mathrm{COOEt}
\end{aligned}
$$

$\mathbf{9}$	Y	X
\mathbf{a}	CN	CN
\mathbf{b}	CN	COOEt
\mathbf{c}	COOEt	CN
\mathbf{d}	COOEt	COOEt

Scheme 2. Synthesis of compound 9a-d, 10a-d

Formation of the latter products might be explained in terms of first formation of the acyclic intermediates 9a-d followed by their cyclization.

The structures of compounds 10a-d were established on their respective analytical and spectral data. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of 10a as specific example showed two multiplets at $\delta 1.64-1.68 \& 2.05-2.12 \mathrm{ppm}$ indicating to the four CH_{2} groups, a singlet at $\delta 2.34 \mathrm{ppm}$ corresponding to the CH_{3} group, a multiplet at $\delta 7.27-7.42 \mathrm{ppm}$ for the $\mathrm{C}_{6} \mathrm{H}_{5}$ group and two singlets, $\mathrm{D}_{2} \mathrm{O}$-exchangeable at $\delta 8.25$ and 9.30 ppm for the two NH groups.

The reaction of either compound $\mathbf{8 a}$ or $\mathbf{8 b}$ with phenylisothiocyanate (11) in presence of 1,4-dioxan containing triethylamine afforded 1,2,4-triazine derivatives 13a and 13b respectively. The analytical and spectral data of compound 13a were in agreement with the assigned structures.

Finally the reaction of either compound $\mathbf{8 a}$ or $\mathbf{8 b}$ with either hydrazine hydrate (14a) or phenylhydrazine (14b) gave the pyrazole derivatives 15a-d respectively (cf. Scheme 3).

$$
\begin{aligned}
\mathbf{8 a}, \mathrm{Y} & =\mathrm{CN} \\
\mathbf{b}, \mathrm{Y} & =\mathrm{COOEt}
\end{aligned}
$$

$\mathbf{1 5}$	Y	R
\mathbf{a}	CN	H
\mathbf{b}	CN	Ph
\mathbf{c}	COOEt	H
\mathbf{d}	COOEt	Ph

Scheme 3. Synthesis of compounds 13a, b-15a-d

Antitumor activity tests

Reagents: L-glutamine and Fetal bovine serum (FBS) were from Gibco Invitrogen Co. (Scotland, UK). RPMI1640 medium was from Cambrex (New Jersey, USA). Doxorubicin, dimethyl sulfoxide (DMSO), penicillin, streptomycin and sulforhodamine B (SRB) were from Sigma Chemical Co. (Saint Louis, USA).

Cell cultures. Three human tumor cell lines, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), and SF-268 (CNS cancer) were used. MCF-7 was obtained from the European Collection of Cell Cultures (ECACC, Salisbury, UK) and NCI-H460 and SF-268 were kindly provided by the National Cancer Institute (NCI, Cairo, Egypt). They grow as monolayer and routinely maintained in RPMI-1640 medium supplemented with 5% heat inactivated FBS, 2 mM glutamine and antibiotics (penicillin $100 \mathrm{U} \mathrm{mL}^{-1}$, streptomycin $100 \mu \mathrm{~g} \mathrm{~mL}^{-1}$) at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \quad \mathrm{CO}_{2}$. Exponentially growing cells were produced by plating 1.5 x 10^{5} cells mL-1 for MCF-7 and SF-268 and 0.75×10^{4} cells ml^{-1} for NCI-H460, followed by 24 h of incubation. The effect of the vehicle solvent (DMSO) on the growth of cell lines which it was evaluated in all tests by exposing untreated control cells to the maximum concentration (0.5%) of DMSO used in each assay.

Tumor cell growth assay: The effects of the newly synthesized compounds 3-15a-d on the in vitro growth of human tumor cell lines were evaluated according to the procedure adopted by the National Cancer Institute (NCI, USA) in the 'In vitro Anticancer Drug Discovery Screen' that uses the protein-binding dye sulforhodamine B to assess cell growth ${ }^{12}$. Briefly, exponentially cells growing in 96well plates were then exposed for 48 h to five serial concentrations of each compound starting from a maximum concentration of $150 \mu \mathrm{M}$. Following this exposure period adherent cells were fixed, washed and stained. The bound stain was solubilized and the absorbance was measured at 492 nm in a plate reader (Bio-Tek Instruments Inc., Powerwave XS, Wincoski, USA). For each test compound and cell line, a dose response curve was obtained and the growth inhibition of $50 \%\left(G I_{50}\right)$ corresponding to the concentration of the compounds that inhibited 50% of the net cell growth was calculated as described elsewhere ${ }^{13}$. Doxorubicin was used as a positive control and tested in the same manner.

Results are given in concentrations that were able to cause 50% of cell growth inhibition ($G I_{50}$) after a continuous exposure of 48 h and show means \pm SEM of threeindependent experiments performed in duplicate.

Effect on the Growth of Human Tumor Cell Lines

The effect of the newly synthesized compounds 3-15a-d was evaluated on the in vitro growth of three human tumor cell lines representing different tumor types namely, breast adenocarcinoma (MCF-7), non-small cell lung cancer (NCIH460) and CNS cancer (SF-268) after a continuous exposure for 48 h . The results were introduced in Table 1.

Table 1. Effect of compounds 3-15a-d on the growth of three human tumor cell lines

Compound	$\mathrm{GI}_{50}, \mu \mathrm{~mol} \mathrm{~L}^{-1}$		
	NCI-H460	MCF-7	SF-268
3	27.6 ± 2.4	16.9 ± 4.8	16.8 ± 2.6
5 a	0.02 ± 0.002	0.01 ± 0.002	0.02 ± 0.001
5b	12.1 ± 0.8	10.3 ± 2.6	6.3 ± 0.8
6a	0.4 ± 0.2	0.2 ± 0.01	0.2 ± 0.06
6b	4.2 ± 1.4	6.1 ± 2.4	4.0 ± 1.2
8a	12.6 ± 0.6	14.5 ± 0.8	8.7 ± 2.4
8b	22.4 ± 8.1	24.2 ± 2.8	28.3 ± 4.2
9a	0.01 ± 0.002	$0.01 {f76d3d749-ac2c-458d-ab8f-347eb9dd27de} \pm 0.006$	0.01 ± 0.002
15c	2.6 ± 0.6	4.2 ± 0.2	8.0 ± 1.4
15d	0.01 ± 2.4	0.1 ± 0.01	0.2 ± 0.03
Doxorubicin	0.04 ± 0.008	0.09 ± 0.008	0.09 ± 0.007

The all compounds were able to inhibit the growth of the tested human tumor cell lines in a dose-dependent manner. The results indicated through Table 1 revealed that compounds 5a, 9a, 10d and 15b showed the highest inhibitory effect against all three tumor cell lines, such activity is higher than the reference doxorubicin. While compounds 6a and 13a showed high inhibitory effects against three different cell lines, which are less than the corresponding reference doxorubicin. Compounds $\mathbf{3 , 5 b}, \mathbf{8 a}$, $\mathbf{8 b}, \mathbf{9 c}, 10 a, 10$ c, 13b and 15a showed the lowest inhibitory effect. The remaining compounds showed a moderate growth inhibitory effect. Comparing compound $\mathbf{5 a}$ and $\mathbf{5 b}$ it is obvious that the presence of the CN group in compound $5 \mathbf{a}$ is responsible for their reactivity over $5 \mathbf{b}$. Similarly comparing of $\mathbf{6 a}$ with $\mathbf{6 b}, 8 \mathbf{a}$ with $\mathbf{8 b}$ and 13a with $\mathbf{1 3 b}$ it is obvious that the introduction of the CN group in $\mathbf{6 a}, 8 \mathrm{a}$ and 13a showed higher inhibitory effect towards the three cell lines than that of $\mathbf{6 b}, \mathbf{8 b}$ and $\mathbf{1 3 b}$. On the other hand comparison of inhibitory effect of compounds 9a-d, one can say that compound 9a with the $\mathrm{X}=\mathrm{Y}=\mathrm{CN}$ showed the highest inhibitory effect among the four compounds such reactivity is higher than that of the reference doxorubicin. Comparison of compounds 10a-d showed that the effect of $\mathrm{X}^{-}=\mathrm{O}$ and $\mathrm{Y}=$ COOEt like in 10d the maximum inhibitory result among the four compounds was obtained. However, when $\mathrm{X}^{-}=\mathrm{O}$ and $\mathrm{Y}=\mathrm{CN}$ as in case of 10b the inhibitory effect was lowered but it hasn't large amount as the compound is still of the most active compounds among the all test compounds. On the other hand the introduction of NH group like in 10a decreases the reactivity and such observation was shifted towards lower reactivity in case of 10c where $\mathrm{X}=\mathrm{NH}$ and $\mathrm{Y}=$ COOEt. Similarly, comparison of compounds 15a-d showed that when $\mathrm{R}=\mathrm{Ph}$ and $\mathrm{Y}=\mathrm{CN}$ like in 15b the maximum inhibitory effect among the four compounds was obtained.

However, when $\mathrm{R}=\mathrm{Ph}$ and $\mathrm{Y}=\mathrm{COOEt}$ as in case of 15d the inhibitory effect was lowered but it hasn't large amount as the compound is still of the most active compounds among all test compounds. On the other hand introduction of un-substituted compound like in 15a decreases the reactivity and such observation was shifted towards lower reactivity in case of $\mathbf{1 5 c}$ where $\mathrm{R}=\mathrm{H}$ and $\mathrm{Y}=$ COOEt.

Experimental

All melting points were determined in open capillaries and are uncorrected. Elemental analyses were performed on a Yanaco CHNS Corder elemental analyzer (Japan). IR spectra were measured using KBr discs on a Pye Unicam SP-1000 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian EM $390-200 \mathrm{MHz}$ instrument in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ as solvent using TMS as internal standard and chemical shifts were expressed as $\delta \mathrm{ppm}$. Mass spectra were recorded on Kratos (75 eV) MS equipment (Germany).

2-Cyclohexylidene-3-oxo-N-phenylbutanamide (3)

To a dray solid of acetoacetanilide (1) $(5.31 \mathrm{~g}, 0.03 \mathrm{~mol})$ containing ammonium acetate (0.50 g) cyclohexanone (2) $(2.94 \mathrm{~g}, 0.03 \mathrm{~mol})$ was added. The reaction mixture was heated in an oil bath at $120^{\circ} \mathrm{C}$ for 1 h then left to cool then triturated with ethanol and the formed solid product was collected by filtration.

Compound 3: Pale brown crystals from ethanol, yield: 96 \% (7.406 g); mp: $120^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3448-3320$ (NH), 3050 (CH-aromatic), 2991(CH_{3}), 2885(CH_{2}) 1695, 1687 (2CO). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.77-1.79$ (m, 6H, $3 \mathrm{CH}_{2}$), 2.11-2.16 (m, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.25-$ $7.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 9.63$ (s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$-exchangeable). MS (relative intensity) m/z: 257 ($\mathrm{M}^{+}, 21 \%$). Analysis for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ Calcd: C, $74.68 ; \mathrm{H}, 7.44 ; \mathrm{N}, 5.44$. Found: C, 74.93; H, 7.29; N, 5.83 \%.

4,4-Dicyano-2-cyclohexylidene-3-methyl-N-phenylbut-3-enamide (5a) and ethyl-4-(phenylcarbamoyl)-2-cyano-4-cyclohexy-lidene-3-methylbut-2-enoate (5b)

General procedure: To a solution of compound $3(2.57 \mathrm{~g}$, $0.01 \mathrm{~mol})$ in ethanol (50 ml) containing piperidine $(0.5 \mathrm{ml})$, either malononitrile (4a) $(0.66 \mathrm{~g}, \quad 0.01 \mathrm{~mol})$ or ethylcyanoacetate (4b) ($1.13 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added. The reaction mixture was heated under reflux for 3 h then left to cool and the solid product was formed in each case upon pouring onto ice/water containing few drops of hydrochloric acid, the solid product was collected by filtration.

Compound 5a: Yellow crystals from ethanol, yield: 86 \% $(2.624 \mathrm{~g}) ; \mathrm{mp}: 134{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3466-3323(\mathrm{NH})$, 3054 (CH-aromatic), $2980\left(\mathrm{CH}_{3}\right), 2918\left(\mathrm{CH}_{2}\right), 2223-2220(2$ CN), 1687 (CO), 1633 (C=C). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=$ 1.75-1.79 (m, 6H, $3 \mathrm{CH}_{2}$), 1.87-1.91 (m, 4H, $2 \mathrm{CH}_{2}$), $2.28(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.29-7.41 (m, $\left.5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 9.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exchangeable). MS (relative intensity) $\mathrm{m} / \mathrm{z}: 305\left(\mathrm{M}^{+}, 17.5 \%\right)$. Analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ Calcd: C, 74.73; H, 6.27; N, 13.76. Found: C, 74.85; H, 6.11; N, 13.93 \%.

Compound 5b: Yellow crystals from ethanol, yield: 84 \% (2.958 g) ; mp: $104{ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): \mathrm{v} / \mathrm{cm}^{-1}=3484-3312(\mathrm{NH})$, $3058\left(\mathrm{CH}\right.$-aromatic), $2985\left(\mathrm{CH}_{3}\right), 2916\left(\mathrm{CH}_{2}\right), 2222(\mathrm{CN})$, 1690, 1687 (2CO), 1636 (C=C). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=$ $1.13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.44 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.72-1.77\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, 2.12-2.18 (m, 4H, 2CH $), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.22(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=$ $\left.7.44 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.28-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 9.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exchangeable). MS (relative intensity) $\mathrm{m} / \mathrm{z}: 352\left(\mathrm{M}^{+}\right.$, 30.6%). Analysis for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ Calcd: C, 71.57; H, 6.86; N, 7.95. Found: C, 71.73; H, 6.68; N, 8.21 \%.

2-(5-Amino-4-cyanothiophen-3-yl)-2-cyclohexylidene-Nphenylacetamide (6a) and 2-amino-4-(cyclohexylidene-phenyl-carbamoyl-methyl) thiophene-3-carboxylic acid ethyl ester (6b)

General procedure: To a solution of each compound $\mathbf{5 a}$ $(0.915 \mathrm{~g}, 0.003 \mathrm{~mol})$ or compound $5 \mathbf{b}(1.06 \mathrm{~g}, 0.003 \mathrm{~mol})$ in 1,4-dioxan (40 ml) containing triethylamine (0.5 ml), elemental sulfur ($0.1 \mathrm{~g}, 0.003 \mathrm{~mol}$) was added. The reaction mixture was heated under reflux for 1.5 h then poured onto ice/water containing few drops of hydrochloric acid and the formed solid product was collected by filtration.

Compound 6a: Buff crystals from acetic acid, yield: 72 \% (0.728 g); mp: $180-182^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3473-3318$ $\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 3058\left(\mathrm{CH}\right.$-aromatic), $2882\left(\mathrm{CH}_{2}\right), 2224(\mathrm{CN})$, $1686(\mathrm{CO}), 1633(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO_{6}) d_{6} : $\delta=1.73-$ $1.76\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.91-1.98\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.54(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 6.73 (s, 1 H , thiophene ring), 7.27$7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 9.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exchangeable). MS (relative intensity) m/z: 337 ($\mathrm{M}^{+}, 21.2 \%$). Analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}$ Calcd: C, 67.63 ; H, 5.68; N, 12.45; S, 9.50. Found: C, 67.85; H, 5.82; N, 12.62; S, 9.29 \%.

Compound 6b: Pale yellow crystals from acetic acid, yield: $81 \%(0.933 \mathrm{~g}) ; \mathrm{mp}: 215-217^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): \mathrm{v} / \mathrm{cm}^{-1}=$ 3469-3322 ($\left.\mathrm{NH}_{2}, \mathrm{NH}\right), 3058\left(\mathrm{CH}\right.$-aromatic), $2970\left(\mathrm{CH}_{3}\right)$, $2892\left(\mathrm{CH}_{2}\right), 1693,1685(2 \mathrm{CO}), 1634(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.09 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), 1.65-1.73 $\left(\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.62-2.67\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.26(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=$ $7.09 \mathrm{~Hz}, \mathrm{CH}_{2}$), 4.71 (s, 2H, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 6.65 ($\mathrm{s}, 1 \mathrm{H}$, thiophene ring), 7.27-7.38 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$), $9.39(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exchangeable). MS (relative intensity) $\mathrm{m} / \mathrm{z}: 384$ $\left(\mathrm{M}^{+}, 12.4 \%\right)$. Analysis for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ Calcd: C, $65.60 ; \mathrm{H}$, 6.29 ; N, 7.29; S, 8.34. Found: C, 65.88; H, 5.98; N, 7.52; S, 8.02 \%.

2-(2-Hydrazinyl-4,5,6,7-tetrahydrobenzo[b]thiophene-3-cyano)-3-oxo-N-phenyl-butanamide (8a) and 2-(2-hydrazinyl -4,5,6,7tetrahydrobezo [b] thiophene-3-ethoxy-carbonyl)-3-oxo-N-phenylbutanamide (8b)

General procedure: A cold solution of either of 3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-2-diazonium chloride (7a) or 3-ethoxy carbonyl -4,5,6,7-tetrahydrobenzo [b] thiophene-2-diazonium chloride (7b) [obtained by adding sodium nitrite $(1.49 \mathrm{~g}, 0.02 \mathrm{~mol})$ solution to a cold solution of either 2-amino-3-cyano-4,5,6,7-tetrahydrobenzo $[b]$ thiophene ($3.56 \mathrm{~g}, 0.02 \mathrm{~mol}$) or ethyl 2-amino-4,5,6,7tetrahydrobenzo $[b]$ thiophene-3-carboxylate $(4.51 \mathrm{~g}, 0.02$ mol) in acetic/hydrochloric acid (10:3) with continuous stirring] was added to a cold solution $\left(0-5{ }^{\circ} \mathrm{C}\right)$ of acetoacetanilide (1) ($3.56 \mathrm{~g}, 0.02 \mathrm{~mol}$) in ethanol (50 ml) containing sodium hydroxide ($10 \mathrm{ml}, 10 \%$). The reaction mixture was stirred at room temperature for 1 h and the solid product was formed, collected by filtration.

Compound 8a: Orange crystals from DMF, yield: 63 \% $(4.617 \mathrm{~g}) ; \mathrm{mp}=108-110^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): \mathrm{v} / \mathrm{cm}^{-1}=3482-3341(2$ $\mathrm{NH}), 3053$ (CH -aromatic), $2981\left(\mathrm{CH}_{3}\right), 2887\left(\mathrm{CH}_{2}\right), 2220$ (CN), 1688, 1684 (2CO), 1636 (C=C). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}\right): \delta=1.71-1.75\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.16-2.22\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.32-7.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.72,9.15(2 \mathrm{~s}$, $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$-exchangeable, 2 NH). MS (relative intensity) m / z : $366\left(\mathrm{M}^{+}, 11.8 \%\right)$. Analysis for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ Calcd: C, 62.28; H, 4.95; N, 15.29; S, 8.75. Found: C, 62.44; H, 5.22; N, 15.39; S, 8.82 \%.

Compound 8b: Orange crystals from DMF, yield: 75 \% $(6.197 \mathrm{~g}) ; \mathrm{mp}: 169-171{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3472-3363(2$ $\mathrm{NH}), 3056$ (CH -aromatic), $2974\left(\mathrm{CH}_{3}\right), 2894\left(\mathrm{CH}_{2}\right), 1692$, 1684 and 1681 (3CO), $1636(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta$ $=1.16\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.62 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62-1.73\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, 2.27-2.34 (m, 4H, 2 CH_{2}), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=$ $7.62 \mathrm{~Hz}, \mathrm{CH}_{2}$), 7.28-7.42 (m, 5H, C ${ }_{6} \mathrm{H}_{5}$), 8.32, $9.36(2 \mathrm{~s}, 2 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$-exchangeable 2NH). MS (relative intensity) m/z: 413 $\left(\mathrm{M}^{+}, 27.4 \%\right)$. Analysis for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ S Calcd: C, 61.00 ; H, $5.61 ;$ N, 10.16; S, 7.75. Found: C, 61.28 ; H, 5.42; N, 10.31; S, 7.93 \%.

Abstract

2-(2-Hydrazinyl-4,5,6,7-tetrahydrobenzo[b]thiophene-3-cyano)-4,4-dicyano-3-methyl-N-phenyl-but-3-enamide (9a), ethyl 4-(phenylcarbamoyl)-4-(2-hydrazinyl-4,5,6,7-tetrahydrobenzo[b]-thiophene-3-cyano)-2-cyano-3-methyl-but-2-enoate (9b), 2-(2-hydrazinyl-4,5,6,7-tetrahydrobenzo[b]thiophene-3-ethoxycar- bonyl)-4,4-dicyano-3-methyl-N-phenyl-but-3-enami-de (9c) and ethyl 4-(phenylcarbamoyl)-4-(2-hydrazinyl-4,5,6,7-tetrahydro-benzo[b]thiophene-3-ethoxycarbonyl)-2-cyano-3-methylbut-2enoate (9d)

To a dray solid of either compound $\mathbf{8 a}(1.01 \mathrm{~g}, 0.003 \mathrm{~mol})$ or $\mathbf{8 b}(1.24 \mathrm{~g}, 0.003 \mathrm{~mol})$ containing ammonium acetate $(0.50 \mathrm{~g})$, either malononitrile (4a) $(0.2 \mathrm{~g}, 0.003 \mathrm{~mol})$ or ethylcyanoacetate ($\mathbf{4 b}$) $(0.34 \mathrm{~g}, 0.003 \mathrm{~mol})$ was added. The reaction mixture was heated in an oil bath at $120^{\circ} \mathrm{C}$ for 1 h then left to cool, triturated with ethanol and the solid product was formed and collected by filtration.

Compound 9a: Pale yellow crystals, yield: $68 \%(0.845 \mathrm{~g})$; $\mathrm{mp}:>290^{\circ} \mathrm{C}$ IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3449-3323(2 \mathrm{NH}), 3055$ (CH-aromatic), $2955\left(\mathrm{CH}_{3}\right), 2890\left(\mathrm{CH}_{2}\right), 2227-2220(3 \mathrm{CN})$, 1693 (CO), $1633(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.66-$ $1.69\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.25-2.31\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 7.29-7.40 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$), 8.42, $9.29\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}-\right.$ exchangeable, 2 NH). MS (relative intensity) m/z: $414\left(\mathrm{M}^{+}\right.$, 15.7\%). Analysis for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6}$ OS Calcd: C, 63.75; H, 4.38; N, 20.28; S, 7.74. Found: C, 63.92; H, 4.66; N, 20.32; S, 7.49 \%.

Compound 9b: Pale yellow crystals from ethanol, yield: $78 \%(1.08 \mathrm{~g}) ; \mathrm{mp}: 238-240{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3480-$ $3323(2 \mathrm{NH}), 3053\left(\mathrm{CH}\right.$-aromatic), $2968\left(\mathrm{CH}_{3}\right), 2883\left(\mathrm{CH}_{2}\right)$, 2223, 2220 (2 CN), 1690, $1687(2 \mathrm{CO}), 1621(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.31 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.64-$ $1.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.14-2.18\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.31 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.24-7.40(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$), 8.29, 9.33 ($2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$-exchangeable 2 NH). MS (relative intensity) $\mathrm{m} / \mathrm{z}: 461\left(\mathrm{M}^{+}, 22.5 \%\right)$. Analysis for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}$ S Calcd: C, 62.46; H, 5.02; N, 15.17; S, 6.95. Found: C, 62.39 ; H, 4.91 ; N, 14.92; S, 7.04%.

Compound 9c: Yellow crystals from ethanol, yield: 84 \% $(1.162 \mathrm{~g}) ; \mathrm{mp}: 266-268^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3478-3320(2$ NH), 3058 (CH -aromatic), $2972\left(\mathrm{CH}_{3}\right), 2888\left(\mathrm{CH}_{2}\right), 2226$, 2221 (2CN), 1692, 1689 (2CO), 1636 (C=C). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta=1.16\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.48 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62-1.73$ (m, 4H, $2 \mathrm{CH}_{2}$), 2.17-2.21 (m, 4H, $2 \mathrm{CH}_{2}$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.48 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.30-7.43\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 8.27, $9.39\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$-exchangeable 2 NH). MS (relative intensity) m/z: $461\left(\mathrm{M}^{+}, 34.5 \%\right)$. Analysis for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ Calcd: C, 62.46; H, 5.02; N, 15.17; S, 6.95. Found: C, 62.62 ; H, 5.29 ; N, 15.33 ; S, 7.22%.

Compound 9d: Yellow crystals from 1,4 dioxane, yield: $66 \%(1.006 \mathrm{~g}) ; \mathrm{mp}: 188-190{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3489-$ $3322(2 \mathrm{NH}), 3056\left(\mathrm{CH}\right.$-aromatic), $2964\left(\mathrm{CH}_{3}\right), 2883\left(\mathrm{CH}_{2}\right)$, $2220(\mathrm{CN}), 1690,1687$ and 1681 (3CO), $1638(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6} : $\delta=1.13,1.16\left(2 \mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.75$ $\left(\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.97-2.05\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 4.20, $4.25\left(2 \mathrm{q}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.24-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.30$, $9.37\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$-exchangeable 2 NH). MS (relative intensity) m/z: $508\left(\mathrm{M}^{+}, 26.5 \%\right)$. Analysis for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ Calcd: C, 61.40 ; H, 5.55 ; N, 11.02; S, 6.30. Found: C, 61.39 ; H, 5.69 ; N, 11.29; S, 6.49 \%.

5-Cyano-1-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-1,6-dihydro-6-imino-4-methylpyridazine-3-(N-phenyl-carboxamide) (10a), 5-cyano-1-(3-cyano-4,5,6,7-tetrahydrobenzo[b]-thiophen-2-yl)-1,6-dihydro-4-methyl-6-oxo-pyridazine-3-(N phenylcarboxamide) (10b), ethyl 2-(3-phenylcarbamoyl) -5-cyano-6-imino-4-methyl-pyridazin-1(6H)-yl)-4,5,6,7-tetrahyd-robenzo[b]thiophene-3-carboxylate (10c) and ethyl 2-(3-phenyl-carbamoyl)-5-cyano-4-methyl-6-oxo-pyridazin-1(6H)-yl)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (10d)

General procedure: To a solution of either compound 8a $(1.01 \mathrm{~g}, 0.003 \mathrm{~mol})$ or $\mathbf{8 b}(1.24 \mathrm{~g}, 0.003 \mathrm{~mol})$ in ethanol (50 $\mathrm{ml})$ containing piperidine (0.5 ml) either malononitrile (4a) $(0.2 \mathrm{~g}, 0.003 \mathrm{~mol})$ or ethyl cyanoacetate ($\mathbf{4 b}$) $(0.34 \mathrm{~g}, 0.003$ $\mathrm{mol})$ was added. The reaction mixture was heated under reflux for 6 h then left to cool and the formed solid product in each case, upon pouring onto ice/water containing few drops of hydrochloric acid was collected by filtration.

Compound 10a: Pale brown crystals from ethanol, yield: $76 \%(0.944 \mathrm{~g}) ; \mathrm{mp}: 150-152{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3458-$ $3321(2 \mathrm{NH}), 3056\left(\mathrm{CH}\right.$-aromatic), $2946\left(\mathrm{CH}_{3}\right), 2862\left(\mathrm{CH}_{2}\right)$, 2229, $2220(2 \mathrm{CN}), 1690(\mathrm{CO}), 1660(\mathrm{C}=\mathrm{N}), 1636(\mathrm{C}=\mathrm{C}) .{ }^{\mathrm{I}} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta=1.64-1.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.05-2.12$ (m, 4H, 2CH2), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.27-7.42\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 8.25, $9.30\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$-exchangeable, 2 NH). MS (relative intensity) m/z: $414\left(\mathrm{M}^{+}, 23.3 \%\right)$. Analysis for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{OS}$ Calcd: C, 63.75; H, 4.38; N, 20.28; S, 7.74. Found: C, 63.56; H, 4.39; N, 20.19; S, 7.93 \%.

Compound 10b: Yellow crystals from ethanol, yield: 83 \% $(1.034 \mathrm{~g}) ; \mathrm{mp}: 140-141{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3469-3340$ (NH), 3052 (CH-aromatic), $2978\left(\mathrm{CH}_{3}\right), 2874\left(\mathrm{CH}_{2}\right), 2226$, 2220 (2CN), 1693, 1688 (2CO), 1638 (C=C). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.62-1.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.17-2.22(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.28-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 9.30(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$-exchangeable, NH). MS (relative intensity) m / z : $415\left(\mathrm{M}^{+}, 37.2 \%\right)$. Analysis for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ Calcd: C, 63.60; H, 4.12; N, 16.86; S, 7.72. Found: C, 63.89; H, 4.32; N, 16.95; S, 7.51%.

Compound 10c: Yellow crystals from ethanol, yield: 76 \% $(1.051 \mathrm{~g}) ; \mathrm{mp}: 164-166^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3534-3349(2$ $\mathrm{NH}), 3056\left(\mathrm{CH}\right.$-aromatic), $2956\left(\mathrm{CH}_{3}\right), 2906\left(\mathrm{CH}_{2}\right), 2222$ (CN), 1689, 1686 (2CO), 1665 (C=N), $1636(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta=1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.89 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.64-$ $1.72\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.13-2.17\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.23(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.89 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$), 8.29, 9.37 ($2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$-exchangeable, 2NH). MS (relative intensity) $\mathrm{m} / \mathrm{z}: 461\left(\mathrm{M}^{+}, 17.6 \%\right)$. Analysis for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ Calcd: C, 62.46 ; H, 5.02; N, 15.17; S, 6.95. Found: C, 62.72 ; H, 5.32; N, 15.49; S, 7.21%.

Compound 10d: Yellow crystals from ethanol, yield: 73 \% (1.012 g); mp:152-154 ${ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3476-3336$ (NH), 3056 (CH -aromatic), $2980\left(\mathrm{CH}_{3}\right), 2892\left(\mathrm{CH}_{2}\right), 2221$ (CN), 1693, 1689 and 1684 (3CO), 1638 (C=C). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.11\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62-1.73\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, 2.12-2.15 (m, 4H, $2 \mathrm{CH}_{2}$), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), \quad 7.28-7.43\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), \quad 9.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}-\right.$ exchangeable, NH). MS (relative intensity) $\mathrm{m} / \mathrm{z}: 462\left(\mathrm{M}^{+}\right.$, 21.8\%). Analysis for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ S Calcd: C, 62.32 ; H , 4.79; N, 12.11; S, 6.93. Found: C, 62.46 ; H, 5.09; N, 12.39; S, 6.69 \%.

2-(6-Acetyl-4,5-dihydro-4-phenyl-5-(phenylimino)-3-thio-1,2,4-triazin-2-(3H)-yl)-4,5,6,7-tetrahydrobenzo[b]-thiophene-3-carbonitrile (13a) and ethyl 2-(6-acetyl-4,5-dihydro-4-phenyl-5-(phenylimino)-3-thio-1,2,4-triazin-2(3H)-yl)-4,5,6,7-tetrahyd-robenzo[b]thiophene-3-carboxylate (13b)

General procedure: To a solution of either compound 8a $(1.01 \mathrm{~g}, 0.003 \mathrm{~mol})$ or $\mathbf{8 b}(1.24 \mathrm{~g}, 0.003 \mathrm{~mol})$ in 1,4-dioxan $(40 \mathrm{ml})$ containing catalytic base "triethylamine" $(0.5 \mathrm{ml})$, phenylisothiocyanate (11) $(0.41 \mathrm{~g}, 0.003 \mathrm{~mol})$ was added. The reaction mixture was heated under reflux for 3 h then left to cool and the formed solid product in each case, upon pouring onto ice/water containing few drops of hydrochloric acid was collected by filtration.

Compound 13a: Orange crystals from DMF, yield: 77 \% $(1.116 \mathrm{~g}) ; \mathrm{mp}: 185-187{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3053(\mathrm{CH}-$ aromatic), $2973\left(\mathrm{CH}_{3}\right), 2888\left(\mathrm{CH}_{2}\right), 2220(\mathrm{CN}), 1689(\mathrm{CO})$, $1634(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.73-1.75(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$), 1.98-2.06 (m, 4H, $2 \mathrm{CH}_{2}$), $3.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.34-$ $7.46\left(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right)$. MS (relative intensity) $\mathrm{m} / \mathrm{z}: 483\left(\mathrm{M}^{+}\right.$, 14.5%). Analysis for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}_{2}$ Calcd: C, 64.57; H, 4.38; N, 14.48; S, 13.26. Found: C, 64.41; H, 4.08; N, 14.32; S, 13.44%.

Compound 13b: Orange crystals from DMF, yield: 75 \% $(1.193 \mathrm{~g})$; mp: 233-235 ${ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3056(\mathrm{CH}-$ aromatic), $2958\left(\mathrm{CH}_{3}\right), 2893\left(\mathrm{CH}_{2}\right), 1692,1687(2 \mathrm{CO})$, $1636(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.14(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.42$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.61-1.74\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.19-2.24(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$), $3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.21\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.42 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 7.28-7.41 (m, 10H, $2 \mathrm{C}_{6} \mathrm{H}_{5}$). MS (relative intensity) m/z: 530 $\left(\mathrm{M}^{+}, 26.2 \%\right)$. Analysis for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}$ Calcd: C, 63.37 ; H , 4.94; N, 10.56; S, 12.08. Found: 63.42; H, 5.19; N, 10.36; S, 11.84%.

4-((3-Cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)diaze-nyl)-3-methyl-5-phenylamino-1H-pyrazol (15a), 4-((3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)diazenyl)-3-methyl-1-phenyl-5-phenylamino-1H-pyrazol (15b), 4-((3-ethoxycarbonyl-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)diazenyl)-3-methyl-5-phenylamino- 1 H -pyrazol (15c) and 4-(3-ethoxycarbonyl-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)di-azenyl)-3-methyl-1-phenyl-5-phenylamino-1H-pyrazol (15d)

General procedure: To a solution of either compound 8a $(1.01 \mathrm{~g}, 0.003 \mathrm{~mol})$ or $\mathbf{8 b}(1.24 \mathrm{~g}, 0.003 \mathrm{~mol})$ in ethanol (50 $\mathrm{ml})$ either hydrazine hydrate (14a) $(0.15 \mathrm{ml}, 0.003 \mathrm{~mol})$ or phenyl hydrazine (14b) ($0.33 \mathrm{~g}, 0.003 \mathrm{~mol})$ was added. The reaction mixture in each case was heated under reflux for 3 h then poured onto ice/water containing few drops of hydrochloric acid and the formed solid product was collected by filtration.

Compound 15a: Pale brown crystals from ethanol, yield: 76 \% (0.826 g); mp: 205-207 ${ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3458-$ $3321(2 \mathrm{NH}), 3056\left(\mathrm{CH}\right.$-aromatic), $2966\left(\mathrm{CH}_{3}\right), 2884\left(\mathrm{CH}_{2}\right)$, 2229 (CN), $1660(\mathrm{C}=\mathrm{N}), 1636(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right)$: $\delta=1.62-1.67\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.88-1.93\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.13$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.26-7.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.78,9.61(2 \mathrm{~s}, 2 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$-exchangeable, 2 NH ,). MS (relative intensity) m/z: 362 $\left(\mathrm{M}^{+}, 16.8 \%\right)$. Analysis for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{~S}$ Calcd: C, $62.96 ; \mathrm{H}$, 5.01; N, 23.19; S, 8.85. Found: C, 63.14; H, 4.99; N, 22.94; S, 8.61 \%.

Compound 15b: Yellow crystals from ethanol, yield: 75% (0.986 g); mp: 245-247 ${ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3439-3321$ (NH), 3056 (CH -aromatic), $2952\left(\mathrm{CH}_{3}\right), 2858\left(\mathrm{CH}_{2}\right), 2223$ (CN), $1633(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.61-1.66(\mathrm{~m}$, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.03-2.07\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.24-7.47 ($\mathrm{m}, 10 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}$), $9.22\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$-exchangeable, NH). MS (relative intensity) $\mathrm{m} / \mathrm{z}: 438\left(\mathrm{M}^{+}, 19.2 \%\right)$. Analysis for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{~S}$ Calcd: C, 68.47; H, 5.06; N, 19.16; S, 7.31. Found: C, 68.73; H, 4.83; N, 19.12; S, 7.22\%.

Compound 15 c : Yellow crystals from ethanol, yield: $76 \%(0.934 \mathrm{~g}) ; \mathrm{mp}: 169-171^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3573-$ $3329(2 \mathrm{NH}), 3052\left(\mathrm{CH}\right.$-aromatic), $2947\left(\mathrm{CH}_{3}\right), 2868\left(\mathrm{CH}_{2}\right)$, $1690(\mathrm{CO}), 1649(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.14\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.48 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62-1.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, 2.17-2.24 (m, 4H, 2CH2 $), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.21(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=$ $\left.7.48 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.29-7.39\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.30,9.33(2 \mathrm{~s}, 2 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$-exchangeable, 2 NH). MS (relative intensity) $\mathrm{m} / \mathrm{z}: 409$ $\left(\mathrm{M}^{+}, 33.4 \%\right)$. Analysis for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ Calcd: C, $61.59 ; \mathrm{H}$, 5.66; N, 17.10; S, 7.83. Found: C, 61.48; H, 5.42; N, 17.22; S, 7.89 \%.

Compound 15d: Yellow crystals from ethanol, yield: 68 \% (0.99 g); mp: 175-177 ${ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=3482-3329$ (NH), 3053 (CH -aromatic), $2971\left(\mathrm{CH}_{3}\right), 2880\left(\mathrm{CH}_{2}\right), 1688$ (CO), 1632 (C=C). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=1.12(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.60-1.67\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.18-2.25\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.26-7.38(\mathrm{~m}, 10 \mathrm{H}$, $2 \mathrm{C}_{6} \mathrm{H}_{5}$), 9.46 (s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$-exchangeable, NH). MS (relative intensity) m/z: $485\left(\mathrm{M}^{+}, 27.1 \%\right)$. Analysis for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ Calcd: C, 66.78; H, 5.60; N, 14.42; S, 6.60. Found: C, 66.52 ; H, 5.32; N, 14.15; S, 6.78 \%.

Acknowledgment

The authors would like to thank the research group working at the Medicinal Department at the National Research Center, Dokki, Egypt, for recording the pharmacological data of the synthesized products. Moreover, the effort of Dr. Mohammed Othman, MSA UniversityBiochemistry Department, is greatly appreciated for his kind revisions for the pharmacological data.

References

${ }^{1}$ Shchekotikhin, A. E., Glazunova, V. A., Dezhenkova, L. G., Luzikov, Y. N., Sinkevich, Y. B., Kovalenko, L. V., Buyanov, V. N., Balzarini, J., Chun Huang F., Jer Lin J., Shan Huang, H., Shtil, A. A. and Preobrazhenskaya, M. N., Bioorg.Med. Chem.,2009, 17, 1861.
${ }^{2}$ Dallemagne, P., Khanh, L., ellah Alsadi, A., Varlet, I., Collot, V., Paillet, M., Bureau, R. and Rault, S., Bioorg. Med. Chem., 2003, 11, 1161.
${ }^{3}$ Fakhr, I. M .I., Radwan, M. A. A., El-Batran, S., Abd El-Salam, O. M. E. and El-Shenawy, S. M., Eur. J. Med. Chem., 2009, 44, 1718.
${ }^{4}$ Molvi, K. I., Vasu, K. K., Yerande, S. G., Sud -arsanam, V. and Haque, N., Eur. J. Med. Chem., 2007, 42, 1049.
${ }^{5}$ Abreu, A., Paula, M. T. F., Luis, S. M. and Maria-Joao, P. O., Tetrahedron, 2004, 60, 11821.
${ }^{6}$ Alagarsamy, S. M., Ramsechu, K. V. and Solomon, K., Eur. J. Med. Chem., 2006, 41, 1293.
${ }^{7}$ Bharti, N., Husain, K., Garza, M. T .G., Cruz-Vega, D. E., CastroGarza, J., Mata-Cardenas, B. D., Naqvia, F. and Azama, A., Bioorg. Med. Chem. Lett., 2002, 12, 3475.
${ }^{8}$ Valderrama, J., Fournet, A., Valderrama, C., Bastias, S., Astudillo, C., Rojas de Arias, A., Inchausti, A. and Yaluff, G., Chem. Pharm. Bull. (Tokyo), 1999, 47(9), 1221.
${ }^{9}$ Elkholy, M. Y., Heterocyclic Comm. 2011, 11, 89.
${ }^{10}$ Barrja, P., Diana, P., Lauria, A., Montalbano, A., Almerico, A. A., Dattolo, G. and Cirrincione, G., Anticancer Res., 2004, 24, 3775.
${ }^{11}$ Poreba, K., Opolski, A., Wietrzyk, J. and Kowalska, M., Arch. Pharm. (Weinheim), 2001, 334, 219.
${ }^{12}$ Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R. J., Natl. Cancer Inst., 1990, 82, 1107.
${ }^{13}$ Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo J. and Boyd, M. J., Natl. Cancer Inst., 1991, 83, 757.

Received: 12.04.2014.
Accepted: 05.04.2014.

