

CORROSION RESISTANCE OF METALS AND ALLOYS IN ARTIFICIAL SALIVA – AN OVERVIEW

R. Saranya^[a], S. Rajendran^{[b,c]*}, A. Krishnaveni^[d], M. Pandiarajan^[b], and R. Nagalakshmi^[e]

Keywords: corrosion resistance, metals, alloys, artificial saliva, bio-materials.

One of the primary requisites of any metal or alloy that is to be used in the mouth is that it must not produce corrosion products that could be harmful to the body. Some metallic elements that are completely safe in the elemental state can form hazardous or even toxic ions or compounds. Besides, the degradation of the alloy should be limited in order to guarantee its service life. Several metals and alloy have been in dentistry as bracket, band, orthodontic wires it is essential to know the corrosion resistance of this materials in the presence of saliva. The corrosion resistances of these materials have been evaluated by electrochemical studies such as polarization study and AC impedance spectra. The film formed on the metal surface has been analysed by surface analysis techniques such as SEM, EDX, X-ray, and AFM.

* Corresponding Author

- [a] Department of Chemistry, Jayalakshmi Institute of Technology, Thoppur- 636 352, India. Email: senthilkumar944@ gmail.com.
- [b] Corrosion Research centre, PG and Research Department of Chemistry, GTN Arts College, Dindigul- 624005, India. E-mail: pandirajan777@gmail.com.
- [c] Department of Chemistry, Corrosion Research centre, RVS School of Engineering and Technology, Dindigul 624005, India. E-mail: srmjoany@sify.com.
- [d] Department of Chemistry, Yadava College, Madurai, India.[e] Department of Chemistry, Arupadaiveedu Institute of
- Technology, Chennai-603 110, India. E-mail: <u>nagalakshmirajan@gmail.com</u>.

Introduction

Over the past two decades, with the accelerated development of tissue engineering, the demand for a variety of synthetic and natural biomaterials has dramatically increased. Biomaterial sales have already exceeded \$240 million per year and due to the rapid development of biomaterials, the market will only increase in the years ahead for tissue engineering and artificial organ materials. Specifically, costs related to organ replacement account for 8% of all global healthcare spending and by 2040 as much as 25% of the US gross domestic product (GDP) is expected to be related to healthcare. Such demands require unique, better performing biomaterials for regenerative medicine. For example, it is necessary to develop better material mechanical properties and biocompatibility properties. Conventional biomaterials (or those materials with constituent dimensions greater than 1 µm) have not satisfactorily met clinical demands. Researchers, clinicians and other investigators are thus seeking better novel materials to serve as the next generation of tissue engineering and artificial organ materials. Artificial organs, when implanted in body undergo corrosion. Corrosion behaviour of metals and alloys in simulated body fluids has been investigated.¹⁻⁷⁵ Corrosion resistance of metals and an alloy in saliva has attracted the attention of several

researchers (Figure 1). This review article will be a boon to researchers who would like to do research on corrosion behaviour of biomaterials in synthetic body fluids especially in simulated saliva.

Figure 1. Orthodontic wires

Metals and Alloys

Corrosion behaviour of various metals and alloys have been investigated in various synthetic body fluids such as blood plasma, urine and saliva.¹⁻⁷⁵ Titanium metal, 12,28,46,52,72,73,75 Ni-Cr, 10,56,57 Ti-Mo, 4,37 Ni-Ti, 13,64 Co-Cr, 14,53,61,63 SS316, MS, MS-Zn, 23,24 Ti-Ag, 3,68 Ni-Ti orthodontic wires 18,27,33 have been used in dentistry.

Medium

Usually corrosion behaviour metals and alloys have been studied in artificial saliva (AS) whose composition is given in Table 1. 23

Table 1. Composition of artificial saliva

KCl	0.4 g/l
NaCl	0.4 g/l
CaCl ₂ ·2H ₂ O	0.906 g/l
NaH ₂ PO ₄ ·2H ₂ O	0.690 g/l
Na ₂ S·9H ₂ O	0.005 g/l
Urea	1 g/l

In some studies aerated and deaerated saliva has been used. ^{8,10,46,55} AS containing hydrogen peroxide, ⁶ fluoride, ^{2,4,6,22,38,43,45,60,73} spirulina, ²³ D-Glucose, ⁴² electoral, ²⁴ physiological solution (ps), ^{17,25,40} lactic acid, ^{17,51,71} spices extract, ²⁹ bacteria, ^{33,53} mouthwash, ^{34,37} NaF, ^{36,39,67,71} citric acid, ⁷⁵ Ringer brown solution, ^{39,50} have been used.

Temperature

Usually the study is carried out at $37 \pm 1^{\circ}$ C.

Methods

Weight loss method, polarization study, AC impedance spectra have been used to evaluate the corrosion resistance of various metals and alloys in AS.^{1,4,5,6,7,10,19,20,21,22,23,24,54} The protective film form in the metal surface has been analysed by various surface analysis techniques such as SEM, ^{2,6,7,9,21,26,35,36,41,49,59,68,73,75} XRD, ^{3,17,68,71} EDX, ^{9,14,34,41,59,75} F-test has also been used by some authors.¹¹ Cyclic voltammetry, ^{13, 25} AAS, ²⁶ and XPS^{3,16,17,25,58,68,71} have also been used.

A list of various materials used in dentistry, the methods used to evaluate the corrosion resistance of different metals and alloys, various methods employed and important findings are summarized in Table 1.

Influence of Fluoride ion on corrosion resistance of orthodontic wires

To strengthen the lifetime of teeth, fluoride is added in tooth pastes. This addition of fluoride may influence the strength of orthodontic wires. To know this influence several investigations have been undertaken. Corrosion resistance of metals and alloys in artificial saliva, in presence of fluoride has been investigated.^{31,38,43,45,51,71,73} It has been found that fluoride ion reduces the corrosion resistance of Titanium and Ti6AIV alloy. This has been proved by electrochemical studies.³¹ Similar observation is made with Ni-Cr-Ti alloy also.³⁸ Surprisingly the presence of fluoride ion increases the corrosion resistance of Ti-Cr alloy.⁴³ Robin and Meirelis observed that presence of fluoride in saliva enhanced porosity of the oxide film.⁴⁵ Mareci et al observed that fluoride increased the corrosion rate of Ti6AI7Nb and Ti30Ta alloys.⁵¹

Influence of extracts of natural of products on corrosion resistance of metals and alloys in artificial saliva

Extracts of natural products are added to the tooth paste. These extracts will definitely influence the corrosion resistance of orthodontic wires. Hence the corrosion resistance of extracts of plant materials on the corrosion resistance of orthodontic wires has to be studied thoroughly. But only a few studies have been made in this regard.^{29,73}

Presence of coriander in artificial saliva inhibited the pitting corrosion of AISI 304L orthodontic bands and stainless steel orthodontic bands.²⁹ Eugenol has protected Titanium from the attack of fluoride ions. Further, Eugenol has formed a protective film on titanium and prevented the dissolution of Titanium. This has been proved by electrochemical measurements and surface analysis techniques such as SEM.⁷³

Types of corrosion undergone by orthodontic wires.

There are several types of corrosion undergone by metals and alloys in the natural environment. Depending on the environment, they undergo general corrosion, galvanic corrosion, pitting corrosion etc. Similarly orthodontic wires also undergo several types of corrosion, depending on the natural of metals and alloys and the oral environment. Ti-6Al-4V undergoes fretting corrosion in presence of fluoride ion.² Ni-Cr and Co-Cr alloys undergo pitting corrosion in artificial saliva due to inhibition in artificial saliva for a long time.⁵ Hence the orthodontic wires have to be replaced every now and then. Vieira et al observed that Titanium undergoes fretting corrosion in artificial saliva.¹² This has been proved by electrochemical studies. Ludek Joska et al have noticed the non-uniform corrosion undergone by palladium-silvercopper alloy in model saliva.¹⁶ Orthodontic wires made of Ni-Ti alloy undergo pitting corrosion in artificial saliva. Similarly metals and alloys undergo non-uniform corrosion⁵⁸ and galvanic corrosion.⁶²

Influence of temperature on the corrosion resistance of orthodontic wires.

The average body temperature is 37 °C. Hence the experiments are carried out at 37 ± 0.1 °C. However, when hot liquids such as hot water, hot coffee or tea, orally taken, they will affect the corrosion resistance of orthodontic wires in the oral environment. Hence researchers have carried out experiments at various temperatures also.^{8,19,46} It is observed⁸ that the corrosion rate of non precious dental alloys increases when the temperature is increased (20, 37 and 50 °C). At low temperature, passive films are formed. At 25 °C a passive film is formed on pure Titanium.⁴⁶

Influence of pH on the corrosion resistance of orthodontic wires.

Influence of pH on corrosion and passivity is a well established concept. At lower pH, because of acidic environment, many metals and alloys undergo corrosion. Same thing happens to metals and alloys of orthodontic wires in the oral environment.^{11,26,36,38,45,52,60,72} At pH 4 and 6, in presence of sodium fluoride, and artificial saliva, stainless steel and nickel-titanium alloy undergo pitting corrosion.³⁶ This has been proved by SEM. At low pH value of saliva, the oxide film formed on Ti-23T alloy was found that to be porous, which may enhance corrosion than at low pH =2.5. The corrosion of Ti6AlNb and Ti30Ta alloys increased, in presence of fluoridated saliva.⁵¹ At low pH values, the bonding strength was reduced in Titanium-Porcelain.⁶⁰

ø	Metals	Medium	Methods	Findings	Ref.
	Aluminum-bronze dental alloy	Artificial saliva (AS)	Polarization test, Polarization resistance measurements & weight loss method	Beverages are in contact with dental alloy in the oral environment.	-
	Ti-6AI-4V	AS Containing 0, 190, 570, 1140 ppm of fluoride ions	Free corrosion potential measured as a function of time SEM & non - contact optical profile meter	Fretting corrosion behaviour dependence on the fluoride ion concentration.	5
	Ti-Ag	AS	X - ray photoelectron spectroscopy (XPS) & X- ray diffraction (XRD) methods.	The addition of Ag to Ti is found to be effective in reducing corrosion current density and increasing OCP of Ti in AS environment.	m
	Ti-15Mo alloy	0.15 M NaCl solution containing varying concentration fluoride ions (190, 570, 1140, 9500, ppm)	Potentiodynamic polarization, electrochemical impedance, spectroscopy (EIS) & Chronoamperometric current time transient (ctt)	Passivity at anodic potentials at all concentration of fluoride ions.	4
	Recasting Ni-Cr & Co-Cr Non precious dental alloy	AS	 (Chemical & Electro chemical technique) induced coupled plasma mass spectrometry (ICP/MS), potentiodynamic & impedance measurement 	Alloy surface forming definite patches which may be the nucleus of pitting corrosion due to immersion for long time. Non-precious alloy have high corrosion resistance.	\$
	Non-precious dental alloy	Artificial saliva containing different concentration of hydrogen peroxide, carbamide peroxide & fluoride ions.	Potentiodynamic studies were conducted by (ACM) auto tafel potentiostat	Alloys suffer less corrosion rates in presence of carbamide peroxide than hydrogen peroxide. Wiron99 > wirolloy > wironit	9
	Fe Pt – based alloy	AS at 37 °C	Electrochemical polarization measurements & SEM	Highly stable also during long-term exposure	5
	Non precious dent alloy	Aerated AS (20 °C, 37 °C, 50 °C)	Linear polarization method	Corrosion rate increased with increasing temperature.	∞
	Nickel-Based dental casting alloy	AS at different values of pH in the presence of crevice	Energy Dispersive X-ray analysis (EDX), SEM	Importance of the level of Cr in Nii-based alloy. Higher Cr (25wt%)led to a superior corrosion resistance	6
	Ni-Credential casting alloy	De-aerated & aerated artificial saliva	Polarization studies	Alloys with low Cr content and without Mo always corrode.	10
	 Composition of the high noble metal, ii) Composition of noble metals, iii) Composition of base metals alloy 	Acidified artificial saliva (pH=2.3)	ICP-AES, F-test	Corrosion resistance results obtained from the two methods were ranked and compared	11
	Titanium	AS	Electrochemical measurements	Higher corrosion rate during fretting corrosion.	12
	Nickel-Titanium	Fluoridated AS at 37 °C	TLA, Voltammetry	Corrosion behavior of Ni-Ti alloy is highly affected by the fluoride content.	13
	Cobalt-Chromium dental alloy doped with precious metals	AS	Coulometric analysis, metallography & EDX	Gold doping produces heterogeneous microstructures that are vulnerable to corrosive attack	14
	Palladium-Silver binary alloy	AS	Polarization resistance, potentiodynamic measurements, thermodynamic calculation	Commercial dental alloys containing Ag and Pd as major compounds.	15
	Palladium-Silver-Copper alloy in model saliva	Model saliva	XPS, thermodynamic analysis	The alloying of the palladium silver binary system with copper leads to change in the corrosion behavior of the alloy	16
	Au-Pd-In alloy	Physiological solutions i) 0.9N NaCl, ii) 0.1N NaCl, iii) +0.1N Lactic acid & AS	XPS, X-ray diffraction, Impedance spectroscopy and DC Voltammetry	In_2O_3 main corrosion product on the surface. Same corrosion rate assuming different oxides on the surface	17
	Ni-Ti Orthodontic wires	AS at 40 °C	ASTM F746, Potentiodynamic test	Ni-Ti wires have sufficient resistance against pitting corrosion in AS.	18
	TiNi shape memory alloy (SMA) & Stainless steel (SS)	AS at 37 °C	Potentiodynamic polarization test	Lower the corrosion potential & the higher the current density.	19
	TiO ₂ nanotubes	AS	Open circuit potential (OCP),Electrochemical impedance spectroscopy (EIS) & Potentioedynamic polarization test	Diameter that too large leads to decreased corrosion resistance.	20

Table 1. Corrosion resistance of different metals and alloys

- C	etals	Medium	Methods	Findings	Ref
	ental alloys containing Iladium	AS	Open-circuit potential (OCP) Potentiodynamic polarization,SEM	Optimal corrosion resistance values were obtained	21
	ustenitic & duplex stainless sels	AS with addition of fluoride	Open-circuit potential (OCP), Electrochemical impedance spectroscopy(EIS) and Potentiodynamic measurements	The passive films on both materials predominantly contained Cr oxides.	22
	SS316 ii) MS iii) MS-Zn	AS in the absence & presence of spirulina	Potentiodynamic polarization study, AC impedance spectra	Order of corrosion resistance SS316 $>$ MS $>$ MS-Zn	23
	SS316 ii) MS iii) MS-Zn	AS in presence of electoral	Potentiodynamic polarization study, AC impedance spectra	Order of corrosion resistance SS316 $>$ MSZn $>$ MS	24
1	astenitic316L duplex2205 ainless steel	AS and Hank's solution(PS)	Cyclic voltammetry, Electrochemical atomic force microscopy (EC-AFM) and XPS	Corrosion products formed during the oxidation process was observed.	25
	etal-ceramic dental casting oy	AS (pH=2.3, 6.5); 0.9% saline solution of pH=7.3 $$	Atomic absorption spectroscopy(AAS), SEM	Wirocer plus alloy presents a better electrochemical behavior & biocompatibility then Vera soft alloy	26
	ickel-titanium orthodontic arch ires	AS	Continuous bending stress throughout the 14 days experimental process	Bending stress, loading condition with respect to corrosion behavior	27
	tanium alloy	AS at 37 °C	Electron beam melting (EBM), Dynamic potentiostatic polarization	All the mechanical properties & corrosion character were tested	28
	ISI304L Orthodontic bands (or) ainless steel orthodontic bands	AS containing spice extract	Electrochemical experiments were using analysed corrosion parameters	Coriander was found to inhibit pitting.	29
	US304 stainless steel	AS	Polarization resistance measurements	Nano crystalline 304SS is more corrosion resistant than the microcrystalline 304SS	30
	&Ti6Al4V	AS	Electrochemical methods	Fluoride concentration increases corrosion resistance is decreased	31
	tanium Nitride (TiN) plating	AS with 1.23% acidulated phosphate fluoride (APF)	EZ test	TiN plating is a method to prevent metal corrosion and can increase the surface smoothness.	32
	ickel-titanium orthodontic wires	Solution containing streptococcus mutans oral bacteria & i) Ringer sterile AS ii) AS enriched with a sterile iii) addition of bacteria	Free corrosion potential, potentiodynamic curves $\&$ impedance spectroscopy	Ti coated metal a bracket with corrosion or without corrosion can't reduce the frictional force.	33
	tanium nitride plating metal ackets i) Blank control group DLC coated group iii) TiN- ated gp	AS and mouthwash	Energy Dispersive spectroscopy, EZ- test.	The DLC coated groups exhibited lower static and kinetic than TiN-coated bracket	34
	ental metal-ceramic	Acidic AS	SEM-EDS	Decrease of mechanical strength of conventional metal- ceramic interface after immersion.	35
1 1 1 2 2	stainless steel ii)nickel -titanium	Acidulated sodium fluoride (NaF) & AS $pH\!\!=\!\!4$ & 6	SEM	Pitting corrosion occurred on the surfaces of the brackets $\&\ wires$	36
	Mo alloy	AS and commercial mouth wash solution with 450 ppm at 25 $^{\circ}\mathrm{C}$	Open-circuit potential (OCP),Electrochemical impedance spectroscopy (ElS)and potentiodynamic measurements	Superior corrosion resistance	37
	& Ni-Cr-Ti	AS contains 0.2 % NAF	Electrochemical technique, electric potential of corrosion (Ecorr), current density of corrosion (Icorr), polarization resistance(Rp)	AS containing fluoride ions decreases of the corrosion resistance of pure titanium	38
	g20Pd5Au1.5Ti alloy	Carter-Brugirard AS un-doped & doped with 0.05M NaF different pH values Ringer brown solution	Potentiodynamic and linear polarization, EIS	High corrosion resistant.	39
	i50.2Ti49.8	Hank's solution & AS	High pressure torsion (HPT) technique.	Nano crystalline higher pitting corrosion potential & than that of microcrystalline	40

Table 1. (cont.)

corrosion 41		1> MS. 42	1 > MS. 42 containing 43	1 > MS. 42 ontaining 43 d alloy 44	t > MS. 42 containing 43 d alloy 44 enhance 45	 1>MS. 42 containing 43 d alloy 44 enhance 45 enhance 45 	 1 > MS. 42 containing 43 d alloy 44 enhance 45 enhance 45 an Ni-Cr 47 	 1 > MS. 2 42 containing 4 3 d alloy 4 4 enhance 45 46 46 an Ni-Cr 47 an Ni-Cr 48 	 1 > MS. 2 42 containing 43 d alloy 44 e alloy 45 46 46 an Ni-Cr 47 an Secondary 48 cases 49 	 1>MS. 1 2011aining 43 containing 43 dalloy 44 <l< th=""><th> 1>MS. 1 2011 42 containing 43 dalloy 44 <lidalloy 44<="" li=""> dalloy 44</lidalloy></th><th> 1>MS. 1>MS. 42 containing 43 dalloy 44 dalloy 44 enhance 45 enhance 45 an Ni-Cr 47 an Ni-Cr 47 an senhance 51 s enhance 51 </th><th> 1>MS. 1>MS. 42 containing 43 dalloy 44 dalloy 44 enhance 45 enhance 45 an Ni-Cr 47 an Ni-Cr 47 as enhance 51 s enhanced 51 s enhanced 51 s enhance 53 </th><th>1>MS. 42 containing 43 dalloy 43 dalloy 44 enhance 45 an Ni-Cr 47 an Ni-Cr 47 e behaviour 48 reases 49 r 50 senhanced 51 senhanced 51 senhanced 51 etheir 53 setheir 54</th><th>1>MS. 42 containing 43 dalloy 43 dalloy 44 enhance 45 an Ni-Cr 47 an Ni-Cr 47 ebehaviour 48 reases 49 r 50 senhanced 51 senhanced 51 setheir 53 setheir 53 ssion 55 passive film 55</th><th>1>MS. 42 containing 43 containing 43 dalloy 44 alloy 44 enhance 45 an Ni-Cr 47 an Ni-Cr 47 ebehaviour 48 ebehaviour 48 ebehaviour 48 ebehaviour 46 r 50 r 52 efficet on the 53 passion 55 passive film 55 passive film 56</th></l<>	 1>MS. 1 2011 42 containing 43 dalloy 44 <lidalloy 44<="" li=""> dalloy 44</lidalloy>	 1>MS. 1>MS. 42 containing 43 dalloy 44 dalloy 44 enhance 45 enhance 45 an Ni-Cr 47 an Ni-Cr 47 an senhance 51 s enhance 51 	 1>MS. 1>MS. 42 containing 43 dalloy 44 dalloy 44 enhance 45 enhance 45 an Ni-Cr 47 an Ni-Cr 47 as enhance 51 s enhanced 51 s enhanced 51 s enhance 53 	1>MS. 42 containing 43 dalloy 43 dalloy 44 enhance 45 an Ni-Cr 47 an Ni-Cr 47 e behaviour 48 reases 49 r 50 senhanced 51 senhanced 51 senhanced 51 etheir 53 setheir 54	1>MS. 42 containing 43 dalloy 43 dalloy 44 enhance 45 an Ni-Cr 47 an Ni-Cr 47 ebehaviour 48 reases 49 r 50 senhanced 51 senhanced 51 setheir 53 setheir 53 ssion 55 passive film 55	1>MS. 42 containing 43 containing 43 dalloy 44 alloy 44 enhance 45 an Ni-Cr 47 an Ni-Cr 47 ebehaviour 48 ebehaviour 48 ebehaviour 48 ebehaviour 46 r 50 r 52 efficet on the 53 passion 55 passive film 55 passive film 56
		sistant SS 316L > MS-Zn > MS	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain	astant SS 316L > MS-Zn > MS corrosion in the fluoride contain ssivity character AuAgPd alloy ent	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain sivity character AuAgPd alloy ant the and low pH of saliva enhanc film.	astant SS 316L > MS-Zn > MS corrosion in the fluoride contain seivity character AuAgPd alloy ant ide and low pH of saliva enhant film. n is formed.	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain sivity character AuAgPd alloy ant ide and low pH of saliva enhand film. n is formed. n is formed.	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain ssivity character AuAgPd alloy ant film. I is formed. I is formed. I is formed. I is formed.	astant SS 316L > MS-Zn > MS corrosion in the fluoride contain ssivity character AuAgPd alloy and tide and low pH of saliva enhand film. n is formed. n is formed. e alloys dissolved less than Ni- e alloys dissolved less than Ni- used implant system increases used implant system increases	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain corrosion in the fluoride contain asivity character AuAgPd alloy atterned and low pH of saliva enhant film. In is formed. In is formed. In is formed. In is formed. In is formed. In is formed. In used less than Ni- the fatigue beha portant role in the fatigue beha uportant role in the fatigue beha shigh	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain corrosion in the fluoride contain at a dow pH of saliva enhant film. In is formed. In is formed. In is formed. In is formed. In the fatigue beha portant role in the fatigue beha portant role in the fatigue beha used implant system increases a high s high s aliva d saliva	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain corrosion in the fluoride contain asivity character AuAgPd alloy enter and low pH of saliva enhant tide and low pH of saliva enhant film. In is formed. In is formed. In is formed. In is formed. In is formed. In is formed. In it forme	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain corrosion in the fluoride contain sisticity character AuAgPd alloy entitie and low pH of saliva enhant film. In the failor and the film is formed. In the failor stran Ni- dialloys dissolved less than Ni- le alloys dissolved less than Ni- v strant role in the failoue beha uportant role in the failoue beha uportant role in the failoue beha shigh shigh system increases solution has a negative effect on solution has a negative effect on	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain servity character AuAgPd alloy and low pH of saliva enhant tide and low pH of saliva enhant film. In is formed. In is formed. In the fatigue beha uportant role in the fatigue beha upotant role in the fatigue beha used implant system increases used implant system in s high shift shift alloy see filed of solution has a negative effect of solution has a negative effect of solution has a negative effect of	sistant SS 316L > MS-Zn > MS entrosion in the fluoride contain servicy character AuAgPd alloy and low pH of saliva enhant film. In is formed. In the fatigue beha aportant role in the fatigue beha aportant role in the fatigue beha used implant system used implant system is high shift alloys is enha ad saliva solution has a negative effect o solution has a negative effect o netal alloy does not change their netal alloy does not change their well as the formation of passive	sistant SS 316L > MS-Zn > MS corrosion in the fluoride contain corrosion in the fluoride contain sisvity character AuAgPd alloy and the and low pH of saliva enhant film. In is formed. In is formed. In is formed. In the faligue beha portant role in the fatigue beha by used implant system is high shigh shigh shigh shift alloy does not change their ntal alloy does not change their ntal alloy does not change their ntal alloy does not change their at fittle effect on the corrosion well as the formation of passive ardness & surface roughness we
	f corrosion resistant SS 316L		resistance to corrosion in the	resistance to corrosion in the <i>I</i> alloy are passivity character orrosion current	resistance to corrosion in the 7 alloy are passivity character orrosion current sence of fluoride and low pH of the oxide film.	resistance to corrosion in the 7 alloy are passivity character orrosion current sence of fluoride and low pH. of the oxide film. we passive film is formed.	resistance to corrosion in the 'r alloy are passivity character orrosion current ence of fluoride and low pH of the oxide film. ve passive film is formed. Pd based noble alloys dissolv Cr based alloy	resistance to corrosion in the r alloy are passivity character orrosion current sence of fluoride and low pH of the oxide film. ve passive film is formed. ve passive film is formed. Pd based noble alloys dissolv Cr based alloy or Plays an important role in d zirconia	resistance to corrosion in the r alloy are passivity character orrosion current sence of fluoride and low pH. of the oxide film. ve passive film is formed. ve passive film is formed. Pd based noble alloys dissolv Cr based alloy Cr based alloy dinically non-used implant sy ed with clinically used implai	resistance to corrosion in the r alloy are passivity character orrosion current sence of fluoride and low pH of the oxide film. We passive film is formed. We passive film is formed. We passed noble alloys dissolv Cr based alloy Cr based alloy Cr based alloy an Plays an important role in the dimically non-used implant sy ed with clinically used impla on resistance is high	resistance to corrosion in the r alloy are passivity character orrosion current sence of fluoride and low pH1 of the oxide film. we passive film is formed. We passive film is formed. Pd based noble alloys dissolw Cr based alloy Cr based alloy alloy an important role in 1 dinically non-used implant sy ed with clinically used impla on resistance is high an resistance is high	resistance to corrosion in the r alloy are passivity character orrosion current ence of fluoride and low pH of the oxide film. The oxide film is formed. We passive film is formed. Pd based noble alloys dissolw Cr based alloy Cr based alloy alloy alloys dissolw Cr based alloy an Plays an important role in 1 d zirconia on Plays an important role in 1 d zirconia on resistance is high on resistance is high arosion of TifAJTNb&Ti30T dated acidified saliva barte layer barte on corrosion resistant p	resistance to corrosion in the r alloy are passivity character orrosion current sence of fluoride and low pH. of the oxide film. We passive film is formed. We passive film is formed. Pd based noble alloys dissolw Cr based alloy Cr based alloy alloy alloys dissolw Cr based alloy film is formed. Pd based noble alloys dissolw of the oxide film is formed. Pd based noble alloys dissolw Cr based alloy cr based alloy for the salivary solution has a 1 of the salivary solution has a 1 or resistant p	resistance to corrosion in the r alloy are passivity character orrosion current sence of fluoride and low pH. of the oxide film. We passive film is formed. Pd based noble alloys dissolw Cr based alloy Cr based alloy alloy alloy dissolw Cr based alloy an Plays an important role in the int alloy for the alloy alloy dissolw dinically non-used implant sy dinically non-used implant on resistance is high on resistance is high. The salivary solution has a 1 -Cr & wear of dental alloy does in an resistance	resistance to corrosion in the ralloy are passivity character orrosion current sence of fluoride and low pH. of the oxide film. We passive film is formed. Pd based noble alloys dissolw Cr based alloy Cr based alloy alloy an important role in the plays an important role in the role in the alloy dissolw of with elinically non-used implant sy dirically non-used in the first in resistance inion of co had little effect on ur of NiTi as well as the form	r alloy are passivity character orrosion current encosion current encosion current rence of fluoride and low pH. of the oxide film is formed. Pd based noble alloys dissolw Cr based alloy Cr based alloy Cr based alloy Cr based alloy Cr based alloy dinically non-used implant sy dinically non-used implant sy dinically non-used implant sy dinically non-used implant sy dinically non-used implant or resistance is high nor resistance is high or resistance is high or resistance is high nor resistance is high nor resistance is high nor resistance is high nor resistance or or or resistant p of the salivary solution has a 1 of the
ctra Order of corros		Greater resistan AS		Ni Co-Cr alloy higher corrosio	Ni Co-Cr alloy higher corrosion The presence of porosity of the	Ni Co-Cr alloy higher corrosion The presence of porosity of the o Protective passi	Ni Co-Cr alloy higher corrosion The presence of porosity of the of Protective passi Au and Pd base and Co-Cr base	Ni Co-Cr alloy higher corrosion The presence of porosity of the of Protective passi and Co-Cr base and Co-Cr base of dental zircon	Ni Co-Cr alloy higher corrosion The presence of porosity of the o Protective passi Au and Pd base and Co-Cr base corrosion Plays of dental zircon	Ni Co-Cr alloy higher corrosion The presence of porosity of the e Protective passi and Co-Cr base and Co-Cr base and Co-Cr base of dental zircon Rp for clinically compared with Corrosion resisi	Ni Co-Cr alloy Ni Co-Cr alloy Inigher corrositor The presence of porosity of the c porosity of the card Protective passi and Co-Cr base in fluoridated a in fluoridated a	Ni Co-Cr alloy higher corrosion The presence of porosity of the o porosity of the o porosity of the o porosity of the o Au and Pd base and Co-Cr base and co	Ni Co-Cr alloy higher corrosion The presence of porosity of the o porosity of the o porosity of the o porosion Plays of dental zircon Rp for clinically compared with compared with corrosion resis Hydroxyapatite has influence o acidity of the ss alloy Co-Cr	Ni Co-Cr alloy Inigher corrosion The presence of porosity of the q and Co-Cr base and Co-Cr passin Protective passi and Co-Cr base and Co-Cr passe and Co-Cr passe and Co-Cr passe and Co-Cr passe and protective passion resist corrosion resist	Ni Co-Cr alloy Inigher corrosion The presence of porosity of the q porosity of the q Protective passi and Co-Cr base Rp for clinically compared with Corrosion resist Hydroxyapatite has influence of alloy Co-Cr Friction & weaa corrosion resist I The addition of behaviour of Nij	Ni Co-Cr alloy Ni Co-Cr alloy The presence of porosity of the c porosity of the c and Co-Cr base and Co-Cr base and Co-Cr base and co-Cr base of dental zircon Rp for clinically compared with. Corrosion Plays of dental zircon Rp for clinically compared with. Corrosion Plays of dental zircon Rp for clinically compared with. Corrosion resist Hydroxyapatic has influence of acidity of the sa alloy Co-Cr behaviour of Ni behaviour of Ni Variations in m clinically releva
AC impedance spectra		ESCA) Electron			opy (EIS)	opy (EIS) odynamic	opy (EIS) odynamic odynamic inctively coupled	opy (EIS) odynamic advinamic netively coupled	opy (EIS) odynamic nctively coupled	opy (EIS) odynamic nctively coupled . EIS, OCP	opy (EIS) dynamic uctively coupled , EIS, OCP	opy (EIS) dynamic uctively coupled . EIS, OCP s were used	opy (EIS) dynamic httively coupled . EIS, OCP s were used	opy (EIS) dynamic dynamic huctively coupled EIS, OCP s were used	opy (EIS) dynamic dynamic huctively coupled EIS, OCP s were used atic technique and	opy (E1S) odynamic uctively coupled E1S, OCP s were used atic technique and
larization study, AC in		larization study, (ESC emical analysis.	al (OCP).		pedance spectroscopy	pedance spectroscopy al (OCP), Potentiodyn	pedance spectroscopy al (OCP), Potentiodyn larization test, Inducti	pedance spectroscopy al (OCP), Potentiodyn larization test, Inducti metry clic loading	pedance spectroscopy al (OCP), Potentiodyn larization test, Inducti metry clic loading d &EDS	pedance spectroscopy al (OCP), Potentiodyn larization test, Inducti metry clic loading clic loading d &EDS A &EDS inear polarization, EIS	pedance spectroscopy al (OCP), Potentiodyn larization test, Inducti metry clic loading clic loading d &EDS inear polarization, EIS inear polarization, EIS	pedance spectroscopy al (OCP), Potentiodyn larization test, Inducti metry clic loading dic loading dic BDS inear polarization, EIS inear polarization, EIS inear polarization test	pedance spectroscopy al (OCP), Potentiodyn metry clic loading d &EDS d &EDS inear polarization, EIS inear polarization, EIS inear polarization, EIS inear polarization, EIS inear polarization, EIS	pedance spectroscopy al (OCP), Potentiodyn metry clic loading d &EDS inear polarization, EIS inear polarization, EIS inear polarization, EIS inear polarization, EIS inear polarization, EIS inear polarization, EIS inear polarization, EIS	pedance spectroscopy al (OCP), Potentiodyn metry clic loading d &EDS f &EDS inear polarization, EIS inear polarization, EIS	pedance spectroscopy al (OCP), Potentiodyn metry metry clic loading clic loading clic loading clic analysis we inear polarization, EIS inear polarization, EIS inear polarization, EIS inear polarization, EIS inear polarization, EIS incer
والمستريد والمستريد والمسارد	stenuodynamic pota	stentiodynamic pola ectroscopy for chen	pen-circuit potential		ectrochemical Impe	ectrochemical Impe pen-circuit potential larization.	ectrochemical Impe pen-circuit potential alarization.	ectrochemical Impe pen-circuit potential larization. stentiodynamic pola asma mass spectron atic loading & Cycl	ectrochemical Impe pen-circuit potential larization. stentiodynamic pola asma mass spectron atic loading & Cycl atic loading & Cycl	ectrochemical Impe pen-circuit potential liarization. atentiodynamic pola astna mass spectron atic loading & Cycl atic loading & Cycl atic loading & Cycl otentiostat FE-SEM otentiostat FE-SEM	ectrochemical Impe pen-circuit potential larization. astin mass spectron atic loading & Cycl atic loading & Cycl atic loading & Cycl betritostat FE-SEM otentiostat FE-SEM otentiodynamic & lin otentiodynamic & lin	ectrochemical Impe pen-circuit potential larization. tentiodynamic pola asma mass spectron atic loading & Cycl atic loading & Cycl atic loading & Cycl atic loading & Cycl atic loading & cycl spectronamic & lin otentiodynamic & lin otentiodynamic pola	ectrochemical Impe pen-circuit potential larization. atentiodynamic pola asma mass spectron atic loading & Cycl atic loading & Cycl atentiodynamic & lim otentiodynamic & lim cP linear sweep vol cP linear sweep vol otamperometri stud	ectrochemical Impe pen-circuit potential larization. Jentiodynamic pola asma mass spectron atic loading & Cycl atic loading &	ectrochemical Impe pen-circuit potential larization. atin Inass spectron asma mass spectron atic loading & Cycl atic loading &	ectrochemical Impe pen-circuit potential latrization. astina mass spectron atic loading & Cycl atic loadin
	ose Pot	Pot		extract Ope	tion Elec	ition Elec pole	ition Elec bolk Polk	itract Ope dion Electroche Ope pols	ition Election Ope pols	ition Election Operation Coperation Election Election Election Pola Pola Pola Pola Pola Pola Pola Pola	ition Electronomia Cope pola pola pola pola pola plas plas plas plas plas control plas plas plas control plas plas plas plas plas plas plas pla	ition Electrono Ope pola pola pola plas plas plas plas plas plas plas pl	ion Election Cpe ion Election Cope pola plass I with Poe brown Pott Pott Pott Pott Pott Pott Pott Pot	ion Election Coperation Coperation Election Election Election Poly polas and the second state of the secon	ition Electronic Operation Electronic Operation Electronic Operation Electronic Operation of the polarity of the polarity of the polarity of the polarity of the phase of thep	ion Election Cope ion Election Cope Pote plass Pote plass 1 with Poe - brown Pote Coc - brown Pote Coc
	sence of D-Glucc			dition of Yeast ex	dition of Yeast ex oride concentrati	dition of Yeast ex oride concentrati ution at 25°C	dition of Yeast ex oride concentrati ution at 25°C	dition of Yeast ex oride concentrati ution at 25°C	dition of Yeast ex oride concentrati ution at 25°C	dition of Yeast ex oride concentrati ution at 25°C doped and doped values &Ringer-	dition of Yeast ex oride concentration ution at 25°C ution at 25°C doped and doped values & Ringer- actic acid pH=2. 0g/IF pH=8 iv) Fictio acid 1.0 g/I E	dition of Yeast ex oride concentration ution at 25°C ution at 25°C ution at 25°C ution at 25°C action at 25°C doped and doped values & Ringer- values & Ringer- actic acid pH=2 0g/IF pH=8 iv) Fl ctic acid 1.0 g/I F dot SBF) solutior	dition of Yeast ex oride concentration ution at 25°C ution at 25°C doped and doped values & Ringer- values & Ringer- values & Ringer- values & Ninger- doy IF pH=2 0g/IF pH=2 0g/IF pH=2 id (SBF) solutior	dition of Yeast ex oride concentration ution at 25°C ution at 25°C loped and doped values & Ringer- og/IF pH=2 0g/IF pH=2 0g/IF pH=2 id (SBF) solution id (SBF) solution	dition of Yeast ex oride concentration at 25°C ution at 25°C loped and doped values & Ringer- values & Ringer- og/IF pH=2 0g/IF pH=2 og/IF pH=2 id (SBF) solution	dition of Yeast ex oride concentration at 25°C ution at 25°C loped and doped values &Ringer- actic acid pH=2 0g/IF pH=8 iv) F1 ctic acid pH=2 did (SBF) solution vith one of four to ve dentine abrasiv
	e absence & pres	aining fluoride		la-Meyer AS add	a-Meyer AS add different pH fluc	ia-Meyer AS add different pH fluo y aerated AS solv	ia-Meyer AS add different pH fluo y aerated AS solu	ia-Meyer AS add different pH fluo y aerated AS solu	ia-Meyer AS add different pH fluo y aerated AS solu	ia-Meyer AS add different pH fluo y aerated AS solu °C °C ^ ruperard AS und aF different pH v	ia-Meyer AS add different pH fluo y aerated AS solu °C °C °	ia-Meyer AS add different pH fluo y aerated AS solu °C ''C ''' ''°C '''''''''''''''''''''''	ia-Meyer AS add different pH fluo y aerated AS solu °C ' °C ' °C ' °C ' °C ' °C ' °C ' °C '	ia-Meyer AS add different pH fluo y aerated AS solu °C °C "°C "°C "°C "°C "°C "°C "°C "°C "	ia-Meyer AS add different pH fluo v aerated AS solu °C °C °C °C °C °C °C °C °C °C °C °C °C	ia-Meyer AS add different pH fluo y aerated AS solu °C °C °
	AS in the	AS conta		Fusayam	Fusayama AS with a	Fusayame AS with c Naturally	Fusayami AS with (Naturally AS at 37	Fusayami AS with c Naturally AS at 37 AS	Fusayamt AS with c Naturally AS at 37 AS at 37 AS at 37	Fusayamt AS with c AS with c AS at 37 AS AS AT A	Fusayami AS with c AS with c AS at 37 AS AS AT A	Fusayamt AS with c AS with c AS at 37 AS AS at 37 AS AS AT AS	Fusayamt AS with c AS with c AS at 37 AS at 37 AS AS	Fusayamt AS with c AS with c AS at 37 AS AS AT A	Fusayamt AS with c AS with c AS at 37 AS AT 37 A	Fusayamt AS with c AS with c AS with c AS with c AS at 37 AS at 37 AS S0, S2, 80
%wt once I (100%				Cr alloy	Or alloy	2r alloy	2r alloy II); Co- sed (M3)	2r alloy 11); Co- sed (M3)	2r alloy II); Co- sed (M3)	2r alloy sed (M3) sed (M3) liny	2r alloy sed (M3) sed (M3) lloy	2r alloy sed (M3) a (in vivo &	2r alloy sed (M3) 1 (in vivo &	2r alloy sed (M3) i (in vivo &	2r alloy sed (M3) i (in vivo &	2r alloy sed (M3) sed (M3)
etal) Group III ast metal)	Z			l alloy ii) Co-Cı gPd	alloy ij) Co-Cr gPd alloy	alloy ii) Co-C1 gPd alloy nium	alloy ii) Co-Cr gPd alloy nium alloy Ni-Cr(MI Palladium bas: sed (M4)	alloy ii) Co-Cr gPd alloy nium alloy Ni-Cr(MI Palladium basi sed (M4) fental ceramic	alloy ii) Co-Cr gPd alloy nium alloy Ni-Cr(MI Palladium bas sed (M4) lental ceramic lental ceramic	alloy ii) Co-Ct gPd alloy nium alloy Ni-Ct(MI Palladium base sed (M4) lental ceramic lental ceramic aplant system i -5Au-1.5Ti all	alloy ii) Co-Cr gPd alloy nium nium Palladium bask ed (M4) fental ceramic fental ceramic mplant system 1-5Au-1.5Ti all 1-5Au-1.5Ti all	alloy ii) Co-Cr gPd alloy Ni-Cr(MI Palladium bask sed (M4) fental ceramic inplant system (ib&Ti30Ta i alloy	alloy ii) Co-Ct gPd alloy Ni-Cr(MI Palladium bass sed (M4) lental ceramic inplant system (1-5Au-1.5Ti all 1-5Au-1.5Ti all ib&Ti30Ta n alloy	alloy ii) Co-Ct gPd alloy Ni-Cr(MI Palladium base sed (M4) lental ceramic iplant system (ib&Ti30Ta hromium chromium	alloy ii) Co-Ct gPd alloy Ni-Cr(MI Palladium base sed (M4) lental ceramic iplant system (i-5Au-1.5Ti all, i-5Au-1.5Ti all, ib&Ti30Ta n alloy o dental alloy lo dental alloy	alloy ii) Co-Cr gPd alloy Ni-Cr(MI Palladium base sed (M4) bental ceramic iental ceramic inplant system (ib&Ti30Ta ib&Ti30Ta ibornium in alloy in alloy ii) Co-Cr iii) c. ii) Co-Cr iii) c. iii) Co-Cr iii) c.
(50%wt n recast me	i)SS316 ii)MS iii)MS-Zh	Ti-Cr	A Minhal A	I) NICKEL &	IJ NICKELA III) AUA <u>g</u> TI-23Ta a	IJ MICKELA III) AUAG TI-23Ta a Pure titan	 I) NUASKI A III) AUAGE TI-23Ta a Pure titan Pure titan Casting a Cr(M2); I Gold basis 	U NUASALA iii) AUAG Ti-23Ta a Pure titan Pure titan Casting a Cr(M2); 1 Gold bas; Y-TZP da	 D. NUASKATA III) AUAGE TI-23Ta a Pure titan Pure titan Pure titan Casting a Casting a Casting a Gold basis Y-TZP da Puental in invitro) 	y vuesset a iii) AurAg Ti-23Ta a Pure titan Pure titan Casting a Casting a Castin	I) Nusket Ti-23Ta a Ti-23Ta a Pure titan Pure titan Casting a Gold base Y-TZP de Age 20Pd- Age 20Pd- Ti(AI7N) Ti(AI7N)	Invested In-23Ta a Ti-23Ta a Pure titan Titanium Titanium	Invesses In-23Ta a Ti-23Ta a Pure titan Tifanium Titanium Titanium	J) Iveskut at Ti-23Ta a Ti-23Ta a Pure titan Pure titan Pure titan Cr(M22); I Cr(M22); I Cold base Y-T2P ds Y-T2P ds Ag-20Pd- Ag-20Pd- Ti(ALTMI Tifanium Tifanium Ni-Cr-M(I) Iveskut av II:-23Ta a Pure titan Pure titan Pure titan Casting al Casting al <t< td=""><td> ¹⁾ Nuescu 4 ¹¹:-23Ta a ¹¹</td></t<>	 ¹⁾ Nuescu 4 ¹¹:-23Ta a ¹¹
!	42	43	:	4	45 45	45 45 46	44 46 47	45 45 45 47 48 48	45 45 45 45 46 46 49 46 49 46 49 40 49 40 40 40 40 40 40 40 40 40 40 40 40 40	44 45 46 46 48 49 50 50	44 45 46 45 46 46 45 47 46 46 46 45 50 50 50 50 50 50 51 51	44 46 48 48 49 49 49 50 53 51	44 45 45 46 46 49 48 48 51 50 50 53 53 53 53 53	44 45 45 46 49 49 48 48 48 51 50 50 50 50 53 53 53 53 54	44 45 45 46 45 51 50 49 48 51 51 51 51 51 53 53 53 53 53	44 45 45 46<

Table 1. (cont.)

S.	Metals	Medium	Methods	Findings	Ref.
58	Palladium-Silver-copper alloy	Model saliva	XPS,thermodynamic analysis	Non-uniform corrosion	58
59	Cast high noble alloy (72.7%- 75.7% Au; 4.5 to 7 Pd; 10.7 to 11.1 Ag; 7.8-8.4% Cu & 1.0-1.4% Zn	Fusayama As(n=3) at 37°c	Potentiodynamic polarization, SEM, X-ray Energy dispersive.	Retained passivity under electrochemical conditions similar to the oral environment	59
60	i) Titanium – Porcelain ii) Interface between porcelain & Titanium	AS with addition of fluoride pH $(2.7, 5.4, 7.0)$ F-(pH=7.0, 100 ppm) AS pH = $(2.7, 5.4, 7.0)$ AS pH = $(2.7, 5.4, 7.0)$ AS pH = $(2.7, 5.4, 7.0)$	Three - point flexure test.	i)Reduction of bonding strength ii) No decreasing of the bonding strength of Ti- Porcelain occurred	60
61	Dental cobalt – chromium alloy dental amalgam	AS	Potentiodynamics & potentiostatic polarization	Alloys could be reused by adding 50 % of new alloy pellets	61
62	Non – precious dental alloy & pure titanium (Co-Cr –Mo & Ni – Cr-Mo) & dental amalgam	AS	Cyclic polarization in each medium.	Galvanic corrosion does not pose a greater threat to the alloys than ordinary corrosion	62
63	Cobalt-Chromium dental alloy joints	AS	Potentiodynamic polarization & EIS	Corrosion resistance of the laser-welded joints was better than that of the brazed	63
64	Nickel-titanium orthodontic brackets	AS	EIS	Greater free corrosion potential, much lower passive current density and no breakdown uptol.5v	64
65	Chromium based alloy(galvanic coupling between amalgam)	AS	Potentiodynamics and potentio- static polarization	Correct design and use of dental alloy are important when determining the appropriate treatment for a specific patient	65
66	Ti-6Al-7Nb alloy brazed with bulk metallic glasses	AS	X-ray tomography	Pd40cu30Ni10P20 promising brazing filler for dental (or) biomaterial devices	66
67	Titanium containing orthodontic wires	Acidic As and different NaF concentration. (0%, 0.2%, 0.5%)	Potentiodynamic polarization, photoelectron spectrometry	Decreasing the corrosion rate& anodic current density.	67
68	Ti-5Ag	With and without thermal oxidation in AS solution	XRD, X-ray photoelectron spectroscopy, SEM	Thermal oxidation was an effective way to improve the corrosion resistance	68
69	Metallic orthodontic wires(Cr Ni, NiTi & CuNiTi)	AS	Potentiodynamic method	NiTi material is most resistant	69
20	Ag-Pd &Co-Cr	AS	Polarization resistance, EIS, coulometric analysis	Co-Cr alloy excellent corrosion resistance	70
11	Ti-Nb &TMA	AS with and without the addition of lactic acid sodium fluoride	X-ray diffraction, EIS, Potentiodynamic polarization, SEM& X-ray photoelectron	Ti-Nb β alloy when fluoride is necessarily needed during dental procedures	71
72	Three CP Titanium(A,B,C)	AS(saliva with pH=5.5)	Open-circuit potential measurements, EIS & potentiodynamic polarization	Corrosion resistance & stability of their passive oxide films are quite different	72
73	Titanium	AS containing Fluoride enriched with eugenol at different concentration	Electrochemical measurements &SEM	The effects of eugenol are not only the protection of titamium from fluoride attack but also the suppression of dissolution of titamium ions via formation of eugenol films	73
74	Dental Silver amalgam	AS	Physical and Chemical properties	Practical problems are discussed	74
75	Ц	AS with citric acid, sodium nitrite, calcium carbonate(or) benzotriazole	Electrochemical Noise technique (TEN), SEM, EDX & Electrochemical Emission Spectroscopy	Fretting corrosion behavior of the material, resulting in a surface that is electrochemical more active with respect to the non-worn surface	75

Conclusion

One of the primary requisites of any metal or alloy that is to be used in the mouth is that it must not produce corrosion products that could be harmful to the body. Some metallic elements that are completely safe in the elemental state can form hazardous or even toxic ions or compounds. Besides, the degradation of the alloy should be limited in order to guarantee its service life. Several metals and alloy have been in dentistry as bracket, band, orthodontic wires it is essential to know the corrosion resistance of this materials in the presence of saliva. The corrosion resistances of these materials have been evaluated by electrochemical studies such as polarization study and AC impedance spectra. The film formed on the metal surface has been analysed by surface analysis techniques such as SEM, EDX, X-ray and AFM.

Acknowledgement

The authors are thankful to their Managements and St. Joseph's Research and Community Development Trust, Dindigul, India for their help and encouragement.

References

- ¹Gustavo, S., Duffo, Silvia B. Farina, *Mater. Chem. Phys.*, **2009**, **115**, 235.
- ²Sivakumar, B., Satendra Kumar, Sankara Narayanan, T. S. N., *Wear*, **2011**, *270*, 317.
- ³Zhang, B. B., Zheng Y. E., Liu, Y., *Dental Mater.*, **2009**, *25*, 672.
- ⁴Satendra, K., Sankara Narayanan, T. S. N., *J. Dentistry*, **2008**, *36*, 500.
- ⁵Ameer, M. A., Khamis, E., Ai-Motlaq, M., *Corros. Sci.*, **2004**, *46*, 2825.
- ⁶Ameer, M. A., Hamis, E., Ai-Motlaq, M., *Electrochim. Acta*, **2004**, *50*, 141.
- ⁷Gebert, A., Roth, S., Gopalan, R., Kundig, A, A., Schultz, L., J. Alloys Compds., **2007**, 436, 309.
- ⁸Weigman, H. O., Land Ketelaar, J. A. A., *J. Dent.*, **1987**, *15*, 166.
- ⁹Wilye, C. M., Shelton, R. M., Fleming, G. J. P., Davenport, A. J., *Dental Materials*, 2007, 23, 714.
- ¹⁰Meyer, J.-M., Corros. Sci., **1977**, 17, 971.
- ¹¹Al-Hity, R. R., Kappert, H. F., Viennot, S., Dalard, F., Grosgogeat, B., *Dental Materials*, 2007, 23, 679.
- ¹²Vieira, A. C., Ribeiro, A. R., Rocha, L. A., Celis, J. P., Wear, 2006, 261, 994.
- ¹³Cioffi, M., Gilliland, D., Ceccone, G., Chiesa, R., Cigada, A., Acta Biomater., 2005, 1, 717.
- ¹⁴Reclaru, L., Luthy, H., Eschler, P. Y., Blatter, A., Susz, C., *Biomaterials*, **2005**, 26, 4358.
- ¹⁵Joska, L., Marek, M., Leitner, J., *Biomaterials*, 2005, 26, 1605.
- ¹⁶Joska, L., Poddana, M., Leitner, J., Dental Mater., 2008, 24, 1009.
- ¹⁷Juzeliunas, E., Leinartas, K., Samulevicience, M., Miecinskas, P., Juskenas, R., Sudavicius, A., *Corros. Sci.*, **2002**, *44*, 1541.
- ¹⁸Rondelli, G., Vicentini, B., *Biomater.*; **1999**, *20*, 785.

- ¹⁹Li, M. G., Sun, D. Q., Qiu, X. M., Yin, S. Q., *Mater. Sci. Eng.*, 2006, 441, 271.
- ²⁰Chenglong Liu, Yueji Wang, Meng Wang, Weijiu Huang, Paulchu K., Surf. Coatings Technol., 2011, 206, 63.
- ²¹Viennot, S., Lissac, M., Malquarti, G., Dalard, F., Grosgogeat, B., Acta Biomater., 2006, 2, 321.
- ²²Kocijan, A., Kek Merl, D., Jenko, M., Corros. Sci., 2011, 53, 776.
- ²³Rajendran, S., Paulraj, J., Rengan, P., Jeyasundari, J., Manivannan, M., J. Dentistry Oral Hyg., 2009, 1, 1.
- ²⁴ Rajendran, S., Chitra Devi, P., John, M. S., Krishnaveni, A., Kanchana, S., Lydia Christy, J., Nagalakshmi R., Narayanasamy, B., *Zastita Mater.*, **2010**, *51*, 149.
- ²⁵Conradi, M, Schon, P. M., Kocijan, A., Jenko, M., Vancso, G. J., *Mater. Chem. Phys.*, **2011**, *130*, 708.
- ²⁶Mutlu–Sagesen L., Ergun, G., Karabulut, E., *Dental Mater.*, 2011, 30, 598.
- ²⁷Liu, J. K., Lee, T. M., Liu, I. H., Am. J. Orthodont. Dent. Facial Orthoped., **2011**, 140, 166.
- ²⁸Koike, M., Martinez, K., Guok, L., Chahine, G., Kovacevic, R., Okabe, T., *Mater. Process. Technol.*, **2011**, *211*, 1400.
- ²⁹Mahoto, N., Sharma, M. R., Chaturvedi, T. P., Singh, M. M., *Mater. Lett.*, **2011**, *65*, 2241.
- ³⁰Nie, F. L., Wang, S. G., Wang, Y. B., Wei, S. C., Zheng, Y. F., Dental Mater., **2011**, 27, 677.
- ³¹Anwar, E. M., Kheiralla, L. S., Tammam, R. H., Oral Implant., 2011, 37, 309.
- ³²Kao, C. T., Guo, J. U., Huang, T. H., Orthodontics Dentofac. Orthoped., 2011, 139, 594.
- ³³Bahije, L., Benyahia, H., El Hamzaoui, S., Ebn Touhami, M., Bengueddour, R., Rerhrhaye Abdallaoui, F., Zaoui, F., *Int. Orthodont.*, **2011**, 9, 110.
- ³⁴Huang, T. H., Guo, J. U., Kao, C. T., Surf. Coat. Technol., 2010, 205, 1917.
- ³⁵Souza, J. C. M., Nasciment, R. M., Martinelli, A. E., Surf. Coat. Technol., 2010, 205, 787.
- ³⁶Kao, C. T., Huang, T. H., J. Orthodont., 2010, 32, 555.
- ³⁷Mareci D, Chelariu R, GordinD M, Romas M, Sutiman D, Gloriant T, *Marterials and Corrosion.*, **2010**, 61, 829.
- ³⁸Liang, B. G., Shen, X. T., Liu, L., Lu, Y. X., Yu, Z. D., Yang, C. X., Zhang, Y. Z., *Med. Sci.*, **2010**, *39*, 399.
- ³⁹Vasilescu, E., Drob, P., Vasilescu, C., Mareci, D., Mirza-Rosca, T. C., *Revista chim.*, **2010**, *61*, 660.
- ⁴⁰Nie, F. L., Zheng, Y. F., Cheng, Y., Wei, S. C., Valier, R. Z., *Mater. Lett.*, **2010**, *64*, 983.
- ⁴¹Ayad, M. F., Ayad, G. M., Prosthodontics, **2010**, 19, 194.
- ⁴²Rajendran, S., Uma, V., Krishnaveni, A., Jeyasundari, J., Shyamaladevi, B., Manivannan, M., *Sci. Eng.*, **2009**, *34*, 147.
- ⁴³Hsu, H. C., Wu, S. C., Wang, C. F., Ho, W. F., J. Alloys Compds., **2009**, 487, 439
- ⁴⁴Gatin, E., Berlic, C., Iordache, B., Prioteasa, P., *Optoelectr. Adv. Mater.*, **2009**, *11*, 1870.
- ⁴⁵Robin, A., Meirelis, J. P., Corros. Eng. Sci. Technol., 2009, 44, 352.
- ⁴⁶Mariano, N. A., Oliveira, R. G., *Revista Mater.*, **2009**, *14*, 878.
- ⁴⁷Tune, S. H., Pekmez, N. O., Keyf, F., Canli, F., *Dental Mater.*, **2009**, 25, 1029.
- ⁴⁸Kosmac, T., Obla, K. C., *Key Eng. Mater.*, **2009**, 409, 161.

- ⁴⁹Chung, C. H., Kim, H. J., Jeong, Y. T., Son, M. K., Jeong, Y. H., Choe, H. C., *Trans. Nonferrous Metals Soc. China.*, **2009**, *19*, 846.
- ⁵⁰Zhang, Y. M., Chai, F., Hornez, J. C., *Biomed. Mater.*, 2009, 4, 126.
- ⁵¹Mareci, D., Chelariu, R., Gordin, D. M., Gloriant, T., Carcea, I., *Metalurgia Int.*, 2009, 14, 10.
- ⁵²Mariano, N. A., Oliveiva, R. G., Braga, E. I., Rigo, E. C. S., *Key Eng. Mater.*, **2009**, *315*, 396
- ⁵³Zeroual, R., Adioui, S., Kaoun, K., Bellem Khannate, S., Dakar Med., **2008**, *530*, 183.
- ⁵⁴Banu, A., Marcu, M., Radovici, O., *Rev. Roum. Chim.*, 2008, 53, 1007.
- ⁵⁵Wang, Q. Y., Zheng, Y. F., Dental Mater., 2008, 24, 1207.
- ⁵⁶Nogues, L. I., Martinez Gomis, J., Molina, C., Peraire, M., Salsench, J., Sevilla, P., Gil, F. J., *Mater. Sci. Mater. Med.*, **2008**, 19, 3041.
- ⁵⁷Molina C., Nogues, L. I., Martinez Gomis, J., Peraire, M., Salsench, J., Sevilla, P., Gil, F. J., *Mater. Sci. Mater. Med.*, **2008**, *19*, 3015.
- ⁵⁸Joska, L., Poddana, M., Leitner, J., *Dental Mater.*, **2008**, *24*, 1009.
- ⁵⁹Ayad, M. F., Vermilyea, S. G., Rosenstiel, S. F., *Prosthetic Dent.*, **2008**, 100, 34.
- ⁶⁰Guo, L., Liu, X., He, Z., Gao, J., Yangm J., Guo, T., *Mater. Lett.*, **2008**, *62*, 2204.
- ⁶¹Van Vuuren, L. J.. Odendaal, J. S., Pistorios, P. C., Dental Assoc. Tydskrif Suid – Afr. Tandheel Kundige Vereing., 2008, 63, 34.
- ⁶²Bilhan, H., Bilgin, T., Cakir, A. F., Yuksel, B., Von Fraunhofer, J. A., Biomater. Appl., 2007, 22, 197.

- ⁶³Zupancic, R., Legat, A., Funduk, N., *Mater. Technol.*, 2007, 41, 295.
- ⁶⁴Liu, C., Chu, P. K., Lin, G., Yangm D., Corros. Sci., 2007, 49, 3783.
- ⁶⁵Ciszewski, A., Baraniak, M., Urbanek Brychczynska, M., Dental Mater., 2007, 23, 1256.
- ⁶⁶Miura, E., Kato, H., Ogata, T., Nishiyama, N., Specht, E. D., *Mater. Trans.*, **2007**, 48, 2235.
- ⁶⁷Her Hsiung Huang, Chia Ching Wang, Son Mou Chiu, Jen Feng Wang, Yu Cheng Liaw, Jen Feng Wang, Yu Cheng Liaw, Tzu Hsin Lee, Fang Lung Chen, *Chin Dent J.*, 2005, 24, 134.
- ⁶⁸Zhang, B. B., Wang, B. L., Li, L., Zheng, Y. F., *Dental Mater.*, 2011, 27, 214.
- ⁶⁹Ziebwicz, A., Walk, W., Barucha Kepka, A., Kiel, M., Achiev. Mater. Manuf. Eng. **2008**, 27, 151.
- ⁷⁰Mareci, D., Sutiman, D., Cailean, A., Bolat, G., *Mater. Sci.*, 212, 33, 491.
- ⁷¹Bai, Y. J., Wang, Y. B., Cheng, Y., Deng, F., Zheng, Y. F., Wei, S. C., *Mater. Sci. Eng.*, **2011**, *31*, 702.
- ⁷²Kadowaki, N. T., Martinez, G. S. S., Robin, A., *Mater. Res.*, 2009, 12, 363.
- ⁷³Kinani, L., Najih, L., Chtaini, A., *Leanardo J. Sci.*, **2008**, 19, 243.

⁷⁴Darvell, B. W., J. Oral Rehabil., **1978**, 5, 41.

⁷⁵Vieira, A. C., Ribeiro, A. R., Rocha, L. A., Celis, J. P., *Mater. Sci.*, **2004**, *42*, 112.

Received: 22.11.2012. Accepted: 04.01.2013.