

A CRITICAL REVIEW OF CORROSION INHIBITION BY PHOSPHONIC ACIDS

K. Kavipriya^{[a]*}, S. Rajendran^[a,b], J. Sathiyabama^[a], and A. Suriya Prabha^[c]

Keywords: Corrosion inhibition, metals, surface analysis, AFM, SEM, adsorption isotherm

Phosphonic acids are effective chelating agents. They bind strongly to metal ions. Phosphonic acids have also been widely used as corrosion inhibitors along with various metal ions as Zn^{2+} . The corrosion of various metals such as mild steel, copper, and aluminium have been prevented by phosphonic acids. Phosphonic acids exhibit good corrosion inhibition efficiency in acid medium, alkaline medium, and neutral medium. They can be used along with other inhibitors such as calcium gluconate, sodium molybdate, and trisodium citrate. Phosphonic acids show synergistic effects with these inhibitors. Various surface analysis techniques such as FTIR spectra, SEM, AFM, and EDAX have been used to analyze the nature of protective film formed on metal surface. Usually, the protective film consists of Fe²⁺- phosphonic acids are used to prevent corrosion of iron, the adsorption process obeys Langmuir adsorption isotherm.

* Corresponding Author Tel: 001-6475026323 E-Mail: sennikavi@yahoo.co.in

- [a] Corrosion Research Centre, PG and Research Department of Chemistry GTN Arts College, Dindigul, Tamil Nadu, India 624005
- [b] Department of Chemistry, RVS School of Engineering and Technology Dindigul, Tamil Nadu, India 624005; Email: srmjoany@sify.com
- [c] Department of Chemistry, Shanmuganathan Engineering College, Arasampatti, Pudukkottai, Tamil Nadu, India 622507

Introduction

Phosphonic acids have been widely used as corrosion inhibitors¹⁻⁷⁷. Phosphonates or phosphonic acids are organic compounds containing R-PO(OH)₂ or R-PO(OR)₂ groups. Phosphonates are effective chelating agents that bind tightly to di- and trivalent metal ions, preventing them from forming insoluble precipitates (scale) and suppressing their catalytic properties. They are stable under harsh conditions. Phosphonates have a very strong interaction with surfaces, which results in a significant removal in technical and natural systems. Due to this strong adsorption, little or no remobilization of metals is expected. The hydrophobicity increased as the length of the alkyl group attached to the phosphonate head increases. Phosphonic acids tended to make tiles stain resistant, even after cleaning. On copper and steel, the phosphonic acids only slightly increased hydrophobicity. On the glass, the phosphonates bonded fairly poorly to the surface and slightly increased hydrophobicity.

Overall, all substances coated with the phosphonate SAM showed increased hydrophobicity⁷⁶. The adsorptive and inhibitive properties of some phosphonic acids have been studied in neutral aqueous solutions and to some extent in acidic solutions.

Structure of Phosphonic Acid

Commonly Used Organic Phosphonic Acids in Corrosion Inhibition

<u>ATMP</u>: amino trimethylene phosphonic acid.

<u>EDTMP</u>: ethylene diamine tetra methylene phosphonic acid.

<u>HEDP</u>: 1-hydroxy ethylidene-1, 1-diphosphonic acid.

<u>DTPMP</u>: diethylene triamine penta methylene phosphonic acid.

Occurrence in Nature

The first naturally-occurring phosphonate, 2-aminoethylphosphonic acid was identified in 1959 in plants and many animals, where it is localized in membranes. Phosphonates are quite common among different organisms from prokaryotes to eubacteria and fungi, mollusks, insects, and others. They were first reported in natural soils by Newman and Tate (1980).

Properties and Uses

Phosphonic acids have been used in metabolic regulation and in the development of potential drugs against several metabolic disorders. The great potential of these compounds in biological applications resulted in an intense effort

Ref	1	2	،	4	s	00 é	7	∞	0	10	11	1 12	13
Findings	Mixed inhibitor, thermodynamic parameters, Langmuir adsorption isotherm.	Anodic inhibitor, protective film consists of Fe^{2+} -EPA complex.	The inhibition efficiency decreased slightly with temperature as well as hold time immersion under open circuit potential conditions. The adsorp- tion of PHOS on ordinary steel surface obeyed Langrunir's isotherm.	Presence of PPA and PPPA increases the inhibition efficiency by decreasing the corrosion rate, adsorption of compounds tested on the Armeo iron surface obeys to Langmuir adsorption isotherm.	The results of the experimental surface analyses were compared to molecular modeling studies of the proposed HEDP-Fe(III)/Zn(OH) ₂ / HEDP-Zn(II) protective film. The increase in Zn(II) concentration leads to more compact and adherent film formation with decreased corrosion rates of earbon steel.	At higher concentrations (>50 ppm), HEDP was found to be aggressive towards mild steel, but a formulation consisting of 25 ppm HEDP and 200 ppm calcium glueonate was found to protect mild steel effectively.	Anodie reaction.	Mixed inhibitor, protective film consists of Fe $^{2*}\mbox{-}ATMP$ complex and $Zn(OH)_2.$	Mixed inhibitor, Langmuir adsorption isotherm, and physisorption process. This inhibitor can be also used as biocide; it has antibacterial effect against both gram-positive and gram-negative bacteria. The antibacterial activity of ATMP is a result of a combined effect of the pH solution and the chemical nature of the used phosphonate molecule.	Anodic inhibitor. Surface film has been analysed.	Mixed inhibitor. Surface film is composed of iron oxides/hydroxides, zinc hydroxide, heteropolynuclear complex [Fe(III), Zn(II)-BPMG] and WO_3	Mixed inhibitor, presence of oxides/hydroxides of iron(III), Zn(OH) ₂ and [Zn(II)-PBTC-ascorbate] complex in the surface film.	Ternary inhibitor. Surface films have been analysed.
Method	Gravimetry, electrochemical measurements and surface morphological studies.	Weight loss method, polarization study, AC impedance, FTIR, and UV-visible reflectance.	Weight loss, polarization curves, and electrochemical impedance spectroscopy	Electrochemical studies, gravimetry, potentiodynamic polarization, weight loss method	Weight loss method, X-ray photoelectron spectroscopy (XPS)	Weight loss method, electrochemical polarization, and AC impedance measurements.	Weight loss method, energy-dispersion x-ray analysis (EDX), and electrochemical tests	Polarization study, AC impedance and FTIR spectroscopy	Weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques.	Potentiodynamic polarization study and FTIR spectroscopy.	Potentiodynamic polarization and impedance studies, X-ray photoelectron spectroscopy (XPS), FTIR, and scanning electron microscopy (SEM).	Potentiodynamic polarization studies, impedance studies, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrum.	Gravimetry, electrochemical impedance and potentiodyna-mic polarization studies, X- ray photoelectron and reflection absorption FTIR spectroscopy.
Additive		50 ppm of Zn ²⁺	cetyltrimethyl- ammonium bro- mide (CTAB)	1	zinc(II) ions (14, 20, and 30 ppm)	calcium gluconate		5 ppm Zn ²⁺		50 ppm of sodium tungsta- te and 10 ppm of Zn^{2+}	tungstate and zine ions	ascorbate and Zn^{2+}	Zn ²⁺
Inhibitor	hexamethylene diaminetetramethyl- phosphonic acid (HMDTMP)	250 ppm of ethylphosphonic acid (EPA)	7.5 • 10 ⁻⁵ to 1.10 ⁻³ phosphonate (PHOS)	piperidin-1-yl-phosphonic acid (PPA) and (4-phosphonopipera-zin- 1-yl)phospho-nic acid (PPPA)	50 ppm of HEDP	1-hydroxyethane-1,1-diphosphonic acid (HEDP)	Low phosphonic multipolymer	250 ppm of amino (trimethylenephos-phonic acid) (ATMP)	amino(trimethylene phosphonic acid) (ATMP)	250 ppm of ATMP	N.Nbis(phospho-nomethyl)glycine (BPMG)	2-phosphonobutane-1,2,4- tricarboxylic acid (PBTC)	ascorbic acid, 2-phos-phonobutane- 1,2,4-tri-carboxylic acid (PBTC), 1- hydroxy-ethane-1,1-diphosphonic acid (HEDP) and nitrilotris-(methy
Medium	0.5 M HCI	120 ppm of Cl ⁻ and 73.58 ppm of sulphate ion	Simulated cooling water	3% NaCl	30 ppm of chloride	Tap water	Cooling water	Rain water collected from roof top	I M HCI		Low chloride aqueous medium	Low chloride environment	Low chloride aqueous medium
Metal	Carbon steel	Carbon steel	Ordinary steel	Iron	Carbon steel	Mild steel	Brass	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel
No.	-i	5	ы	4	Ś	.0		∞i	o.	10.	11.	12.	13.

Table 1. The use of various phosphonic acids as corrosion inhibitors

Ref	14	15	16	17	18	19	20	21	22	23	24
Findings	Anodic inhibitor. Surface films formed on mild steel exhibit high charge transfer resistance and low double layer capacitance, which suggests that the film is non-porous and hence protective.	Mixed inhibitor. Protective film consists of Fe ²⁺ -DTPMP complex, Fe ²⁺ -SG complex, and Zn(OH) ₂	A simple oxide- hydroxide/diphosphonate model of the interface is proposed.	It shows that the addition of these molecules decreases the corrosion current density and the corrosion rate.	Synergistic effect exists between Zn^{2+} and PPA. Surface film analysis showed that in the absence of Zn^{2+} , the protective film consists of Fe^{2+} - PPA complex formed on the anodic sites of the metal surface, whereas in the presence of Zn^{2+} , the protective film consists of Fe^{2+} -PPA complex and $Zn(OH)_2$.	A mixture of PBTCA and PVP acts as a synergic inhibitor and found to increase the inhibition efficiency to 96.7% .	Co-addition of 15 ppm HEDP and 15 ppm silicate has shown antagonistic behaviour. The surface homogeneity increases in case of inhibitors mixture application and this provides good protection to carbon steel against corrosion in soft water solution.	Addition of molybdate increases the inhibition efficiency of triazole in a synergistic manner. VATP as a better corrosion inhibitor for mild steel in aqueous solution. Additionally the formulation consisting of VATP, sodium molybdate, and CTAB offered good corrosion inhibition efficiency.	The corrosion resistance of the carbon steel coated by the epoxy resin containing ATMP-modified clay was higher than that obtained for the system containing non-treated clay. Local electrochemical measurements performed on scratched samples revealed the inhibitive role of ATMP at the carbon steel/coating interface.	Presence of EDTPO promotes the repairing of the passive film defects on the Al surface through a sealing process, which increases the stability of the oxide film layer. The film shows greater uniformity, lesser porosity, and remains stable for longer immersion periods as compared to those grown in the absence of EDTPO.	A combined inhibition effect was achieved by adding both ATMP and Zn^{24} along with Tween 80. The formulation functioned as a mixed-type inhibitor.
Method	AC impedance studies, potentiodynamic polarization studies, and reflection- absorption spectroscopy.	Weight loss method, polarization study, AC impedance spectrum, atomic force micrographs, and FTIR spectra.	EIS, XPS, and GD-OES data.	Potentiodynamic polarization study, FT-IR spectroscopy, scanning electron microscope, and energy dispersive X-ray analysis.	Weight loss method, surface analysis, potentiodynamic polarization study, and Fourier transform infrared (FTIR) spectrum.	Weight loss method, open circuit potential measurements, and potentiodynamic techniques.	Electrochemical impedance spectroscopy, scanning electron microscopy (SEM), Tafel polarization techniques.	Weight loss measurement, potentiodynamic polarization, AC impedance measurement, FTIR, XRD, and EDXA.	X-ray diffraction, electrochemical impedance spectroscopy (EIS) and local electrochemical impedance spectroscopy (LEIS).	Electrochemical and atomic force microscopy measurements.	Luminescence spectra, FTIR spectra, XRD, XPS, and scanning electron microscopic studies.
Additive	sodium tungstate, Zn ²⁺	sodium gluconate, Zn ²⁺			Zn ²⁺	Polyvinylpyrro- lidone (PVP)	silicate	cetyltrimethyl ammonium bromide (CTAB), sodium molybdate			Zn ²⁺ and polyoxyethylene sorbitan monooleate (Tween 80)
Inhibitor	1-hydroxyethane-1,1-diphosphonic acid (HEDP)	Diethylenetriamine- pentamethylenephos-phonic acid (DTPMP)	1,5-diphosphono-pentane	thiomorpholin-4-yl-methyl- phosphonic acid (TMPA) and morpholin-4-methyl-phosphonic acid (MPA)	piperidin-1-yl-phosphonic acid (PPA)	2-phosphonobutane-1,2,4- tricarboxylic acid (PBTCA)	1-hydroxyethylidene-1,1- diphosphonic acid (HEDP)	3-vanillideneamino-1,2,4-triazole phospho-nate (VATP), 3-anisali- deneamino-1,2,4-triazole phosphonate (AATP) and 3-(p- nitrobenzyli-dene)amino-1,2,4- triazole phosphonate (PBATP)	montmorillonite clay (MMT) with aminotrimethylphos-phonic acid (ATMP)	Ethylenediaminetetra-phosphonic acid (EDTPO)	aminotrimethylidene- phosphonic acid (ATMP)
Medium	Well water	60 ppm of Cl ⁻	Na ₂ SO ₄ Solution	Natural seawater	3% chloride solution	Cooling water	Soft water	Natural aqueous environment	Epoxy resin	ethyleneglyco l-water mixtures	Ground water
Metal	Mild steel	Carbon steel	Polished zinc substrates	Carbon steel	Armco iron	Carbon steel	Carbon steel	Mild steel	Carbon steel	Aluminium	304 stainless steel
No.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23	24.

+	rporation of the 25 ads. The sement of	hibition was	hibition was muirs isotherm. 26										
be due to the incorporation	silicate gel-like network through organic phosphorous bonds. The hydrodynamic condition of the electrolyte leads to enhancement of inhibition efficiency, which indicates that the corrosion inhibition was		Adsorption of the inhibitors was found to follow the Langmuir's isotherm.	Adsorption of the inhibitors was found to follow the Langmuir's isothern Adsorption of the inhibitors was found to follow the Langmuir's isothern CT resistance has been found to increase with time due to passivation of steel by PANI-ATMP pigment, indicating the protective nature of the coating.	Adsorption of the inhibitors was found to follow the Langmuir's isotherrr Adsorption of the inhibitors was found to follow the Langmuir's isotherrr CT resistance has been found to increase with time due to passivation of steel by PANI-ATMP pigment, indicating the protective nature of the coating. Mixed inhibitor. Protective film consists of $Fe^{2^{2k}}$ -2-CIEPA complex and Zn(OH) ₂ .	Adsorption of the inhibitors was found to follow the Langmuir's isothe Adsorption of the inhibitors was found to follow the Langmuir's isothe CT resistance has been found to increase with time due to passivation of the coating. Mixed inhibitor. Protective film consists of Fe ²⁺ -2-CIEPA complex ar Zn(OH) ₂ . Temary inhibitor system. The film consists of Fe ²⁺ -2-CIEPA complex an molybalate] complex, [Fe(III), Zn(II)-HEIBMPA- molybalate] complex, [Fe(III), Zn(II)-HEIBMPA- [Fe(III)-HEIBMPA- [Fe(III)-HEIBMPA- [Fe(III)-HEIBMPA- [Fe(III)-HEIBMPA- [Fe(III)-HEIBMPA- [Fe(III)-HEIBMPA- [Fe(I	Adsorption of the inhibitors was found to follow the Langmuir's isother Adsorption of the inhibitors was found to follow the Langmuir's isother CT resistance has been found to increase with time due to passivation of steel by PANI-ATMP pigment, indicating the protective nature of the coating. Mixed inhibitor. Protective film consists of Fe ²⁴⁺ -2-CIEPA complex an Zn(OH) ₂ . Ternary inhibitor system. The film consists of Fe ²⁴⁺ -2-CIEPA complex, molybdate] complex, [Fe(III), Zn(II)-HEIBMPA-molybdate] complex, oxides and hydroxides of iron and Zn(OH) ₂ . Anodic inhibitor. The inhibition effects were due to the formation of a protective film of the multipolymer inhibitor on the metal surface.	Adsorption of the inhibitors was found to follow the Langmuir's isotherr Adsorption of the inhibitors was found to increase with time due to passivation of steel by PANI-ATMP pigment, indicating the protective nature of the coating. Mixed inhibitor. Protective film consists of Fe ²⁺ -2-CIEPA complex and Za(OH) ₂ . Termary inhibitor system. The film consisted of [Fe(III)-HEIBMPA- molybdate] complex, [Fe(III), Za(II)-HEIBMPA-molybdate] complex, molybdate] complex, [Fe(III), Za(II)-HEIBMPA-molybdate] complex, oxides and hydroxides of iron and Zn(OH) ₂ . Anodic inhibitor. The inhibition effects were due to the formation of a protective film of the multipolymer inhibitor on the metal surface. Mixed inhibitor. Surface film also supported the formation of insoluble complexes of phosphonate and ascorbate with metal ions as well as presence of Zn(OH) ₂ on the metal surface.	Adsorption of the inhibitors was found to follow the Langmuir's isotherm. Adsorption of the inhibitors was found to increase with time due to passivation of tetel by PANI-ATMP pigment, indicating the protective nature of the coating. Mixed inhibitor. Protective film consists of Fe ²⁺ -2-CIEPA complex and Zn(OH) ₂ . Ternary inhibitor system. The film consists of Fe ²⁺ -2-CIEPA complex, molybdate] complex, [Fe(III), Zn(II)-HEIBMPA- molybdate] complex, [Fe(III], Zn(II)-HEIBMPA- molybdate] complex, [Fe(III], Zn(II)-HEIBMPA- molybdate] complex, [Fe(III], Zn(II)-HEIBMPA- molybdate] complex, [Fe(II], Zn(II)-HEIBMPA- mo	Adsorption of the inhibitors was found to follow the Langmuir's isotherm. Adsorption of the inhibitors was found to increase with time due to passivation of steel by PANI-ATMP pigment, indicating the protective nature of the coating. Mixed inhibitor. Protective film consists of Fe ²⁺ -2-CIEPA complex and Za(OH) ₂ . Ternary inhibitor system. The film consisted of [Fe(III)-HEIBMPA- molybdate] complex, [Fe(III), Zn(II)-HEIBMPA- molybdate] complex, [Fe(III], Zn(II]-HEIDP mixture was on the anotic (metal dissolution) reaction. The effectiveness of the content of the mixture.	Adsorption of the inhibitors was found to follow the Langmuir's isotherm. Adsorption of the inhibitors was found to increase with time due to passivation of steel by PANI-ATMP pigment, indicating the protective nature of the coating. Mixed inhibitor. Protective film consists of Fe ²⁺ -2-CIEPA complex and Zn(OH) ₂ . Termary inhibitor system. The film consists of Fe ²⁺ -2-CIEPA complex and Zn(OH) ₂ . Termary inhibitor system. The film consists of the ²⁺ -2-CIEPA complex and molybdate] complex, [Fe(III), Zn(II)-HEIBMPA-molybdate] complex, molybdate] complex, [Fe(III), Zn(II)-HEIBMPA-molybdate] complex, oxides and hydroxides of iron and Zn(OH) ₂ . Anodio inhibitor. The inhibition effects were due to the formation of a protective film of the multipolymer inhibitor on the metal surface. Mixed inhibitor. The inhibition effects were due to the formation of a protective film of the multipolymer inhibitor on the metal surface. Mixed inhibitor. The inhibition effects were due to the formation of a protective film of the multipolymer inhibitor on the metal surface. Mixed inhibitor. Surface film also supported the formation of insoluble complexes of phosphorate and ascorbate with metal ions as well as presence of Zn(OH) ₂ on the metal surface. Mixed inhibitor. Surface coverage degrees indicate that the adsorption pattern is consistent with the Tomkin isotherm The predominant corrosion control mechanism of the zinc-HEDP mixture was on the anodic (metal dissolution) reaction. The effectiveness of the zinc-HEDP mixtures can enhance inhibitor by increasing the zinc content of the mixture. The presence of biocide CTAB with inhibitor gives the inhibiton act as an inhibitor for copper (73%), which shows that the inhibitor for copper or act as an inhibitor for copper (73%), which shows that the inhibitor might	Adsorption of the inhibitors was found to follow the Langmuir's isother Adsorption of the inhibitors was found to increase with time due to passivation o steel by PANI-ATMP pigment, indicating the protective nature of the coating. Mixed inhibitor. Protective film consists of Fe ²⁺ -2-CIEPA complex an Zn(OH) ₂ . Ternary inhibitor system. The film consists of Fe ²⁺ -2-CIEPA complex, molybdate] complex, [Fe(III), Zn(II)-HEIBMPA- molybdate] complex, [Fe(III], Zn(II], Pater the 2:1 complex as well as Zn(OH), or the zinc alto the complex.	Adsorption of the inhibitors was found to follow the Langmuir's isotherm Adsorption of the inhibitors was found to increase with time due to passivation of steel by PANI-ATMP pigment, indicating the protective nature of the coating. Mixed inhibitor. Protective film consists of Fe ²⁺ -2-CIEPA complex and Zn(OH) ₂ . Ermary inhibitor system. The film consists of Fe ²⁺ -2-CIEPA complex and Zn(OH) ₂ . Termary inhibitor system. The film consists of Fe ²⁺ -2-CIEPA complex and Zn(OH) ₂ . Anodic inhibitor. Frotective film consists of Fe ²⁺ -2-CIEPA complex, with of the multipolymer inhibitor on the metal surface. Anodic inhibitor. The inhibition effects were due to the formation of a protective film of the multipolymer inhibitor on the metal surface. Mixed inhibitor. Surface film also supported the formation of insoluble complexes of phosphonate and ascorbate with metal ions as well as presence of Zn(OH) ₂ on the metal surface. Mixed inhibitor. Surface film also supported the formation of insoluble complexes of phosphonate and ascorbate with metal ions as well as presence of Zn(OH) ₂ on the metal surface. The predominant corrosion control mechanism of the zinc-HEDP mixture was on the arodic (metal dissolution) reaction. The effectiveness of the zinc-HEDP mixtures can enhance inhibitor by increasing the zinc- content of the mixture. The predominant corrosion control mechanism of the zinc-HEDP mixture was on the arodic (metal dissolution) reaction. The effectiveness of the zinc-HEDP mixtures can enhance inhibitor, whereas CPB alone is found t act as an inhibitor for copper (73%), which shows that the inhibitor might interfere in the biocidel action on copper. The presence of biocide CTAB with inhibitor, whereas CPB alone is found therefere in the surface of the material by affecting the early stage of film formation.
The observed synergistic behaviour can be due to the incorporation of the silicate gel-like network through organic phosphorous bonds. The hydrodynamic condition of the electrolyte leads to enhancement of	dicates that the corrosion	as found to follow the La		to increase with time due t, indicating the protective	to increase with time due to indicating the protective in consists of Fe^{2+} -2-CIE	 indicating the protective indicating the protective m consists of Fe²⁺-2-CIE film consisted of [Fe(III] Zn(II)-HEIBMPA-molyt and Zn(OH)2. 	 indicating the protective indicating the protective m consists of Fe²⁺-2-CIE film consisted of [Fe(III) Zn(II)-HEIBMPA-molyt and Zn(OH)₂. on effects were due to the ymer inhibitor on the met 	o increase with time due , indicating the protective m consists of Fe^{2*} -2-CIE film consisted of [Fe(III) Zn(II)-HEIBMPA-molyb and Zn(OH) ₂ . on effects were due to the ymer inhibitor on the mel ymer inhibitor on the mel also supported the forma also supported the forma etal surface.	o increase with time due , indicating the protective m consists of Fe ²⁺ -2-CIE film consisted of [Fe(III) Zn(II)-HEIBMPA-molyb and Zn(OH) ₂ . on effects were due to the ymer inhibitor on the met also supported the forma also supported the forma also supported the forma cate that the adsorption pi cate that the adsorption pi	o increase with time due , indicating the protective m consists of Fe ²⁺ -2-CIE film consisted of [Fe(III) Zn(II)-HEIBMPA-molyb and Zn(OH) ₂ . on effects were due to the ymer inhibitor on the met also supported the forma also supported the forma inter also and also the adsorption pi cate that the adsorption pi cate that the adsorption pi nitrol mechanism of the zi olution) reaction. The effi ne inhibition by increasi	o increase with time due , indicating the protective m consists of Fe ²⁺ -2-CIE film consisted of [Fe(III) Za(II)-HEIBMPA-molyb and Zn(OH) ₂ . The film consisted of the (III) and Zn(OH) ₂ . The film constant of the the symer inhibitor on the met also supported the forma also supperton purcless of the zi of the zi of the zi of the shows that on copper.	o increase with time due , indicating the protective m consists of Fe ²⁺ -2-CIE film consisted of [Fe(III) Zn(II)-HEIBMPA-molyb and Zn(OH) ₂ . on effects were due to the yrmer inhibitor on the met also supported the forma also further the 2:1 cor complex.	o increase with time due , indicating the protective m consists of Fe ²⁺ -2-CIE film consists of Fe ²⁺ -2-CIE and Zn(U)-HEIBMPA-molyb and Zn(U)2. Tan(U)-HEIBMPA-molyb and Zn(U)2. Tan(U)-HEIBMPA-molyb and Zn(U)2. Tan(T)-HEIBMPA-molyb and Zn(U)2. Tan(T)-HEIBMPA-molyb and Zn(U)2. Tan(T)-HEIBMPA-molyb and Zn(U)2. Tan(T)-HEIBMPA-molyb and Zn(U)2. Tan(T)-HEIBMPA-molyb and Zn(U)2. Tan(T)-HEIBMPA-molyb and Zn(U)2. Tan(T)-HEIBMPA-molyb and Zn(U)-HEIBMPA-molyb and zn(HeZZ) and
d synergistic behaviour ike network through or nic condition of the elec Ticiency, which indicate ar controlled. of the inhibitors was fou	of the inhibitors was for			ce nas ocen round to me NI-ATMP pigment, indi	ce nas ceen tound to ind NI-ATMP pigment, indi itor. Protective film co	CI resistance has been tournd to increase with the coating. It is the pANI-ATMP pigment, indicating the steel by PANI-ATMP pigment, indicating the steel by PANI-ATMP pigment, indicating the steel indicating the consists of Zn(OH)2. Termary inhibitor system. The film consisted molybedate] complex, [Fe(III), Zn(II)-HEIBM oxides and hydroxides of iron and Zn(OH)2.	ce has eeen tourd to me VI-ATMP pigment, indi itor. Protective film co bitor system. The film complex, [Fe(III), Zn(II yydroxides of iron and Z bitor. The inhibition eff hin of the multipolymer	CI resistance has been round to increase we the pressure has been round to indicating steel by PANI-ATMP pigment, indicating for acting. Mixed in: PANI-ATMP pigment, indicating Carding the consists of Zn(OH) ₂ . Zn(OH) ₂ . Ternary inhibitor system. The film consists of Zn(OH) ₂ . molybdate] complex, [Fe(III), Zn(II)-HEII oxides and hydroxides of firon and Zn(OH) Anodie inhibitor. The inhibition effects with protective film of the multipolymer inhibit protective film of the multipolymer inhibit ecomplexes of phosphonate and ascorbate v presence of Zn(OH) ₂ on the metal surface.	vil-ATMP pigment, indi itor. Protective film co bitor system. The film complex, [Fe(III), Zn(II ydroxides of iron and Z bitor. The inhibition eff lm of the multipolymer for Surface film also of phosphonate and asc Zn(OH) ₂ on the metal s Zn(OH) ₂ on the metal s rage degrees indicate ti nkin isotherm	vir-ATMP pigment, indi itor. Protective film co bitor system. The film co bitor system. The film 2. Nythoxides of iron and 2 bitor. The inhibition eff lm of the multipolymer film of the multipolymer film soften and asc 2. Zn(OH)2 on the metal s film isotherm and soften the metal s inter corrosion control inter corrosion control mixtures can enhance in mixtures can enhance in mixtures.	vir-ATMP pigment, indi itor. Protective film co- bitor system. The film complex, [Fe(III), Zn(II ydroxides of iron and Z bitor. The inhibition eff lm of the multipolymer bitor. Surface film also of phosphonate and asco Zn(OH) ₂ on the metal s film isotherm nition: isotherm nikin isotherm inant corrosion control modic (metal dissolution mixtures can enhance in e of biocide CTAB with f about 80% for mild st between biocide and in the biocidal action on co he biocidal action on co	CI resistance has ocen round to increase setel by PANI-ATMP pigment, indicating coating. Mixed inhibitor. Protective film consists Zn(OH) ₂ . Temary inhibitor system. The film consist molybdate] complex, [Fe(III), Zn(II)-HE] oxides and hydroxides of iron and Zn(OE Anodic inhibitor. The inhibition effects v protective film of the multipolymer inhib molybdate] complexes of phosphonate and ascorbate presence of Zn(OH) ₂ on the metal surface presence of Zn(OH) ₂ on the metal surface film are on the anodic (metal dissolution) read with the Tomkin isotherm was on the anodic (metal dissolution) read zinc-HEDP mixtures can enhance inhibit content of the mixtures. The presence of bioocide and inhibito interference between biocide and inhibito interfere in the biocidal action on cooper The amount of zinc in the surface layer in ratio, which suggests the formation of eith Zn(OH) ₂ or the zinc salt of the complex.	vll-ATMP pigment, indi itor. Protective film oo uitor. Protective film oo uitor system. The film complex, [Fe(III), Zn(I) yydtoxides of iron and Z bitor. The inhibition eff lm of the multipolymer film of the multipolymer itor. Surface film also. Zn(OH) ₂ on the metal s Zn(OH) ₂ on the metal s Zn(OH) ₂ on the metal s itor. Surface film also. areage degrees indicate this inter corrosion control mixin isotherm inter corrosion control mixines can enhance i between biocide action on oc of zinc in the surface la suggests the formation the Zinc salt of the com the Zinc salt of the com
			CT resistance ha steel by PANI-A coating.										
Electrochemical impedance, Tafel polarization measurements, scarning electron microscopy (SEM) and EDAX analysis. Micro-wave technique, 1H-NMR, 13C- NMR, 31P-NMR, Tafel polarization curves, weight loss techniques, and Fourier	-NMR, 13C- larization curves, 1 Fourier	copy (FTIR).	sscence, XRD, ential		edance spectra,	bedance spectra, study, reflection- and X-ray	edance spectra, study, reflection- and X-ray , electrochemical nization, and alysis (EDX).	edance spectra, study, reflection- and X-ray electrochemical irization, and alysis (EDX). studies, AC shotoelectron shotoelectron	edance spectra, study, reflection- and X-ray , electrochemical alysis (EDX). studies, AC hotoelectron ssorption FTIR polarization ential curves	edance spectra, study, reflection- and X-ray , electrochemical irization, and atlosis (EDX). atlosis (EDX). atlosis (EDX). atlosis (EDX). polarization sorption FTIR polarization ential curves	edance spectra, study, reflection- and X-ray , electrochemical alysis (EDX). studies, AC alotoelectron scorption FTIR polarization ential curves	edance spectra, and X-ray , electrochemical uization, and alysis (EDX). studies, AC hotoelectron sorption FTIR polarization ential curves ential curves ential curves spy (SEM) and oscopy (XPS).	edance spectra, study, reflection- and X-ray electrochemical urization, and atudies, AC shotoelectron sorption FTIR polarization ential curves apy (SEM) and oscopy (XPS).
Electrochemical impedance, Tafel polarization measurements, scanning electron microscopy (SEM) and EDAX analysis. Micro-wave technique, 1H-NMR, 13C- MMP 31D MMP 7561 solarization curr	e technique, 1H-N	weight loss techniques, and Fourier transform infrared spectroscopy (FTIR)	FTIR, UV and X-ray fluorescence, XRD, salt spray, open circuit potential	it and EIS	mesurement and EIS Polarization study, AC impedance spectra, and FTIR spectra.	mesurement and EIS Polarization study, AC impedance spectra, and FTIR spectra. Potentiostatic polarization study, reflection- absorption FTIR spectrum, and X-ray photoelectron spectra.	mesurement and EIS Polarization study, AC impedance spectra, and FTIR spectra. Potentiostatic polarization study, reflection- absorption FTIR spectrum, and X-ray photoelectron spectra. Weight loss measurements, electrochemical tests, potentiodynamic polarization, and energy-dispersive X-ray analysis (EDX).	mesurement and EIS Polarization study, AC impedance spectra and FTR spectra. Potentiostatic polarization study, reflectio absorption FTR spectrum, and X-ray photoelectron spectra. Weight loss measurements, electrochemic Weight loss measurements, electrochemic entegy-dispersive X-ray analysis (EDX). Potenthostatic polarization studies, AC impedance studies, X-ray photoelectron spectrum, and reflection-absorption FTIR spectrum.	mesurement and EIS Polarization study, AC impedance spect and FTIR spectra. Potentiostatic polarization study, reflect absorption FTIR spectrum, and X-ray photoelectron spectra. Weight loss measurements, electrochen tests, potentiodynamic polarization, and energy-dispersive X-ray analysis (EDX Potentiostatic polarization studies, AC impedance studies, X-ray photoelectron peterum, and reflection-absorption FTI spectrum. Tafel extrapolation, linear polarization techniques and eurrent-potential curves	tt and EIS n study, AC imped pectra. tic polarization stu FTR spectrum, at n FTR spectrum, at the polarization stu tic polarization stu studies, X-ray phc und reflection-abso olation, linear potent and current-potent	tt and EIS n study, AC imped pectra. frTR spectrum, at on spectra. s measurements, el tiodynamic polariz- tic polarization stu persive X-ray phc nd reflection-abso odation , linear pc and current-potent and current-potent and current-potent n studies.	mesurement and EIS Polarization study, AC impedance spectra. and FTIR spectra. Potentiostatic polarization study, reflection absorption FTIR spectrum, and X-ray photoelectron spectra. Weight loss measurements, electrochemic tests, potentiodynamic polarization, and energy-dispersive X-ray analysis (EDX). Potentiostatic polarization studies, AC impedance studies, X-ray photoelectron spectrum. Tafel extrapolation , linear polarization techniques and current-potential curves echniques and current-potential curves Polarization studies.	tt and EIS n study, AC imped pectra. FTR spectrum, at on spectrum, at on spectra, el tio polarization stu tio polarization stu tic polarization stu persive X-ray analy tic polarization stu persive X-ray pho and reflection-abso ordation , linear pc and current-potent and current-potent and current-potent effection studies.
Electrochemics polarization m electron micro- analysis. Micro-wave te. NMR, 31P-NM weight loss tec transform infra	Micro-wave te NMR, 31P-NM weight loss tec transform infra		FTIR, UV and X-ray 1 salt spray, open circui mesurement and EIS	Polarization str	and FTIR spectra.	and FTIR spectra. Potentiostatic polariza absorption FTIR spectra. photoelectron spectra.	and F1IR spec Potentiostatic I absorption F71 photoelectron i Weight loss mo tests, potentiod energy-dispers	and F/IR spec Potentiostatic J absorption F/IT photoelectron is Weight loss mu tests, potentiod energy-dispers Potentiostatic J impedance stutu spectrum, and spectrum.	and F/IIK spec Potentiostatic J Potentiostatic J absorption F/TJ photoelectron is weight loss mu tests, potentiod energy-dispersion potentiostatic J impedance atu spectrum. and spectrum. Tafel extrapola techniques and	and F/IIR spec Potentiostatic J absorption F/T photoelectron is Weight loss min tests, potentioci energy-dispers Potentiostatic J impedance stuu spectrum. Tafel extrapola techniques and -	and FTIR spectra. Potentiostatic polari absorption FTIR spe photoelectron spectr Weight Joss measuru tests, potentiodynam tests, potentiodynam energy-dispersive X Potentiostatic polari impedance studies, spectrum, and reflec spectrum. Tafel extrapolation. techniques and curr echniques and curr Polarization studies.	and FTIR spec Potentiostatic J Potentiostatic J absorption FTI photoelectron in Veight loss main tests, potentios energy-dispers energy-dispers potentiostatic J impedance stu spectrum. Tafel extrapola techniques and techniques and Polarization stu Polarization stu Scanning elect	and F1IK spect Potentiostatic p absorption FTIH photoelectrons. Weight loss me tests, potentiodid energy-dispersi Potentiostatic p impedance stud spectrum. Tafel extrapolat techniques and techniques and Polarization stu Polarization stu Polarization stu Immersion test Immersion test
sodium silicate				72+	711	zar ⁻ Zn ²⁺ and molybdate	کیا گیا ²⁺ and molybdate	Zn ²⁺ and Zn ²⁺ and molybdate - Zn ²⁺ and ascorbate	لالم Zn ²⁺ and molybdate - Zn ²⁺ and ascorbate -	Zn ²⁺ and molybdate - Zn ²⁺ and ascorbate - zinc	Zn ²⁺ and molybdate - Zn ²⁺ and ascorbate ascorbate - - zinc cetyltrimethyl ammonium and cetyl pyridimium bromide (CTA and CPB)	Zn ²⁺ and molybdate - - Zn ²⁺ and ascorbate ascorbate - - zinc zinc cetyl pyridinium and CPB) bromide (CTA and CPB)	Zn ²⁺ and molybdate - - Zn ²⁺ and ascorbate ascorbate ceryltrimethyl ammonium and cetyl pyridinium bromide (CTA and CPB) arite sulfate
	id (PO) and	dine))- osphonic	acid										-2- ario
1-hydroxyethylidene 1,1- diphosphonic acid (HEDP) diphosphonic acid (HEDP) 1-(4-methylpiperidine) methylenephosphonic acid (PO) and (1-(2)-aminoethylpiperidine))- 2.2.4-tristmethylene-phosphonic	hylpiperidine) ephosphonic ac iinoethylpiperid (methylene-phc	0)	polyaniline-amino trimethylenephosphonic acid (PANI-ATMP)	2-chloroethylphospho-nic acid (2-		CIEPA) N-(2-hydroxyethyl) imino- bis(methylphos-phonic acid) [HEIBMPA]	CIEPA) N-(2-hydroxyethyl) imino- bis(methylphos-phonic acid) [HEIBMPA] Low phosphonic multipolymer	CIEPA) N-(2-hydroxyethyl) imino- bis(methylphos-phonic acid) [HEIBMPA] Low phosphonic multipolymer nitrilotris(methylene-phosphonic acid) (NTMP)	CIEPA) N-(2-hydroxyethyl) imino- bis(methylphos-phonic acid) [HEIBMPA] Low phosphonic multipolymer mitrilotris(methylene-phosphonic acid) (NTMP) acid) (NTMP) acid armonium salts (MTPA, ETPA and IPTPA, resp.)	CIEPA) CIEPA) N-(2-hydroxyethyl) imino- bis(methylphos-phonic aci [HEIBMPA] Low phosphonic multipoly Low phosphonic multipoly acid) (NTMP) acid) (NT	raxyethyl) imin. ylphos-phonic ar PA] sphonic multipo sphonic multipo (methylene-pho (mPT) -, o-ethyl and o- yethylidene 1,1 ionic acid (HED	roxyethyl) imin ylphos-phonic ac PA] sphonic multipo sphonic multipo (methylene-pho (MP) , o-ethyl and o y-phenyldithioj w-phenyldithioj (HED) yethylidene 1,1 onic acid (HED)	CIEPA) N-(2-hydroxyethyl) imino- bis(methylphos-phonic acid) [HEIBMPA] Low phosphonic multipolymer mitrilotris(methylene-phosphonic acid) (NTMP) acid) (NTMP) -methyl-, o-ethyl and o-isoprop p-methoxy-phenic math (MTPA, erryA and IPTPA, resp.) 1-hydroxyethylidene 1, 1 diphosphonic acid (HEDP) ATMP ATMP ATMP
1-hydroxye diphosphon 1-(4-methy methylenep (1-(2 ⁻ amin 2,2,4-tris(m acid) (3P0))	1 -(4-meth methylens (1-(2'-am) (2,2,4-tris) acid) (3P(polyaniline-amino trimethylenephosp (PANI-ATMP)	2-chloroet CIEPA)		N-(2-hydrox bis(methylph [HEIBMPA]	N-(2-hydr bis(methy [HEIBMF Low phos	N-(2-hydroxy bis(methylphc [HEIBMPA] Low phosphon nitrilotris(met acid) (NTMP)	N-(2-hydr bis(methy [HEIBMP Low phos nitrilotris(acid) (NT p-methox acid amm ETPA an	N-(2-hydr bis(methyd HEIBMP Low phos acid) (NT acid) (NT p-methox p-methox p-methox p-methox 1-hydroxp diphosph	N-(2-hydr bis(methy [HEIBMP Low phos nitrilotis(acid) (NTI acid) (NTI acid) (NTI acid amm acid amm horthoxy diphospho diphospho ATMP ATMP	N-(2-hydr bis(methy IHEIBMP Low phos acid) (NTI acid) (NTI acid) (NTI p-methoxy acid amm- acid amm- diphospho diphospho diphospho HEDP HEDP	N-(2-hydr bis(methy Low phos Low phos acid) (NTT acid) (NTT acid) (NTT acid antin P-methory p-methory p-methory diphospho diphospho ATMP ATMP ATMP
Soft water 3% NaCl	3% NaCl		Epoxy resin	60 ppm of Cl ⁻	_	Neutral aqueous environment	Neutral aqueous environment Synthetic water	Neutral Neutral aqueous Synthetic Water Neutral aqueous environment	Neutral aqueous environment Synthetic water Neutral aqueous environment 1 M HCl	Neutral aqueous environment Synthetic water Neutral aqueous environment 1 M HCl 1 M HCl Neutral oxygen- containing chloride solutions	Neutral aqueous environment Synthetic water Neutral aqueous environment 1 M HCl N HCl N HCl N Neutral oxygen- containing chloride solutions Cooling water	Neutral aqueous environment Synthetic water Neutral aqueous environment 1 M HCl 1 M HCl Neutral oxygen- containing chloride solutions Cooling water Zinc ions	Neutral aqueous environment Synthetic water Neutral aqueous environment 1 M HCl 1 M HCl Neutral oxygen- containing chloride solutions Cooling water Cooling water findustrial water
Carbon steel pipelines Iron	Iron		Steel	Carbon	steel	steel Carbon steel	steel Carbon steel Brass	steel Carbon steel Brass Brass Carbon steel	steel Carbon steel Brass Brass Carbon steel Steel	steel Carbon steel Brass Steel Steel Steel Carbon steel	steel Carbon Steel Brass Steel Steel Steel Mild steel and copper	steel Carbon Steel Brass Steel Steel Mild steel and copper Mild steel	
25.	-	26.	27.	38	.07	29.	^{20.} 30.	^{20.} 30.	^{20.} 30. 32.	^{20.} 33. 33. 33.		29. 30. 31. 30. 32. 33. <td>29. 29. 30.</td>	29. 29. 30.

Ref	38	39	40	41	42	43	44	45	46	47	48	49
Findings	The protective film consists of Fe ²⁺ -SDS complex, Fe ²⁺ -HEDP complex, and Zn(OH) ₂ . The HEDP-Zn ²⁺ system shows good IE. The protective film consists of Fe ²⁺ -HEDP complex and Zn(OH) ₂ .	The protective film formed on the metal surface.	Low stability of calcium complexes compared with ferrous complexes, which facilitates the displacement of calcium ions from their complexes by ferrous ions forming soluble, unprotective, ferrous complexes. The zino-HEDP mixtures give effective inhibition at zino.	phenyltrimethoxysilane (PTMOS) based sol-gel film due to π -interactions, the organic phosphonate adds to the protection efficiency of the sol-gel film	The mixture $(1.7\times10^{-5}$ M HEDP + 2.6×10^{-3} M SiO ₃) in the Ca ²⁺ containing electrolyte is shown to be able to inhibit efficaciously the corrosion of iron at room temperature, considering uniform corrosion at pH 7 or pitting corrosion at pH 11.	Films consisted of hydrous ferric oxides (Fe(OH) ₃ and FeOOH) with small amounts of Fe-NPMG complex, ZnO, and corrosion products.	VATP showed better protection over the other inhibitors used. The dissolution of copper in presence of VATP and AATP with biocide mixture is negligible compared to blank.	SATP was found to be the best corrosion inhibitor compared to the other compounds.	The formulation consisting of AATP, Mo and CTAB offered good corrosion inhibition efficiency	PPPA has a strongly inhibitive effect on chloride pitting corrosion. It seems that the addition of the NCH ₂ PO ₃ H group (center adsorption) in the PPA para-position, giving PPPA, reinforces the active sites of this molecule and consequently increases its inhibition efficiency.	Mixed-type inhibitors. Langmuir adsorption isotherm.	At the corrosion potential, electrochemical impedance diagrams exhibited a high frequency loop, which was ascribed to the charge transfer process, and a low frequency loop that was related to diffusion across the protective film. Analysis of impedance spectra in terms of an equivalent circuit model showed that the corrosion behaviour of the metal - layer solution system was strongly dependent on the physicochemical properties of the corrosion products - corrosion inhibitor porous layer
Method	Weight loss method and FTIR spectroscopy.	Polarization, impedance measurements, FTIR, XRD, and EDXA	Electrochemical study.	Potentiodynamic polarization and electrochemical noise measurements, scanning electron microscopy (SEM) and Auger electron spectroscopy (AES).	Electrochemical measurements, mass-loss measurements, SEM, and EDX.	Polarization, electrochemical impedance measurements, XPS, and AES spectra.	Potentiodynamic polarization measurement and electrochemical impedance spectroscopy (EIS).	Weight loss, potentiodynamic polarization, and AC impedance methods.	Weight loss and electrochemical polarization techniques.	Electrochemical measurements and potentiodynamic polarization studies.	Weight loss and polarization measurements.	Electrochemical impedance measurements.
Additive	Zn ²⁺	biocide	zine and calcium		sodium metasilicate pentahydrate Na ₂ SiO ₃ ·5H ₂ O	Zn^{2+}			Mo and CTAB			Zn ²⁺
Inhibitor	sodium dodecyl sulphate (SDS) and 1-hydroxyethane-1,1-diphosphonic acid (HEDP)	3-benzylideneamino-, 3- cinnamalideneamino-, 3- salicylideneamino-, and 3-(p- nitro)benzyli-deneamino-1,2,4- triazole phosphonate (BATP, CATP, SATP and PBATP)	1-hydroxyethylidene-1,1- diphosphonic acid (HEDP)	phenylphosphonic acid (PPA)	HEDP	N -phosphonomethyl-glycine (NPMG)	3-vanillideneamino and 3- anisalideneamino- 1,2,4-triazole phosphonate (VATP and AATP)	3-salicylidenearnino-1,2,4-triazole phosphonate (SATP)	3-benzylideneamino, 3-cinnamy- ledeneamino and 3-anisalideneami- 1,2,4-triazole phospho-nate (BATP, CATP and AATP, resp.)	piperidin-1-yl-phosphonic acid (PPA) and (4-phosphono-piperazin- 1-yl) phosphonic acid (PPA)	3-benzylideneamino-and 3-cinnamy- lidene-amino-1,2,4 triazole phos- phonate (BATP and CATP, resp.)	N-phosphonomethyl-glycine (NPMG)
Medium	Rain water	Neutral aqueous solution	Neutral oxygen- containing solutions	Organic anions	Industrial hard water containing 3 · 10 ^{·3} M Ca ²⁺ ions	Chloride solution	Neutral aqueous environment	Natural aqueous environment	Natural aqueous environment	NaCl	0.1 M HCI	Chloride solutions
Metal	Carbon steel	Copper	Mild steel	Sol-gel film on aluminium	Mild steel	Carbon steel	Copper	Mild steel	Mild steel	Iron	Mild steel	Carbon steel
, N	38.	39.	40.	41.	42.	43.	44.	45.	46.	47.	8	49.

Ref	50	51	52	53	54	55	56	57	58	59	60	. 61	62	63
Findings	The protective film consists of ${\rm Fe}^{24}\text{-}{\rm HEDP}$ complex and Zn(OH)_2.	The corrosion inhibition efficiency of DTPMP+ Zn^{2+} is found to be 80% after 24 hours.	Presence of Zn^{2+} facilitates the transport of HEDP from the bulk of the solution to the metal surface; both the anodic reaction and cathodic reaction are controlled effectively.	Presence of more than 1,200 ppm of chloride ions, temperatures greater than or equal to 42.5°C, the combination of HEDP, molybdate and zinc could not control the corrosion in a cooling water system	Inhibition efficiency increases when the phosphonate- Zn^{2*} complex remains in solution in soluble form. Inhibition efficiency decreased when the phosphonate- Zn^{2*} complex was precipitated in the bulk of the solution.	A qualitative model is proposed, which entails passivation of the metal surface through anoclization of the metal by PANI and formation of an insoluble iron-dopant salt at the metal surface.	Anodic inhibitor. The film was composed of an iron oxide/hydroxide mixture incorporating the organic compounds. The inhibitive molecules interact with the iron oxides.	Mixed inhibitor.	The nature of the film formed and the mechanistic aspects of film formation has been analysed.	The protective film consists of ${\rm Fe}^{24}$ - HEDP complex, ${\rm Fe}^{24}$ -CMC complex, and $Zn({\rm OH})_2.$	Anionic complex can behave as an anodic, passivating inhibitor at a concentration as low as 0.00015M (20 ppm zinc-32 ppm HEDP mixture).	The adsorption of MMPA on aluminum oxide (Al_2O_3) prevents the adsorption of chloride ions and leads to the formation of an insoluble aluminum complex of MMPA, which explains the significant decrease of the aluminum dissolution rate in the aggressive medium.	The protective film has been analysed.	The surface layer was composed of a mixture of slightly soluble $Zn^{2+}/DPMG$ and zine hydroxide.
Method		Voltammetric, gravimetric, and electrochemical methods.	UV-visible, FTIR, and huminescence spectroscopy.		Polarization and weight loss method.	Scanning reference electrode technology (SRET).	Steady-state current-voltage curve, electrochemical impedance measurement, and x-ray photoelectron spectros-copy (XPS).	Luminescence, XRD , FTIR spectra, pit morphology, and scanning electron microscopy.	Open circuit potential-time, polarization, impedance, and luminescence measurements.	Weight loss study, X-ray diffraction (XRD), FTIR and polarization study.		Direct current and alternating current techniques.	Weight change method, polarization, AC impedance technique, UV-VIS reflectance, UV-VIS luminescence, and ESCA techniques	Atomic force microscopy and X-ray photoelectron spectroscopy (XPS).
Additive	Zn ²⁺	Zn ²⁺	Zn ²⁺	sodium molybdate and zinc	Zn^{2+}	1	,	50 ppm of Zn ²⁺	Zn ²⁺	cCarboxymethyl cellulose (CMC) and Zn ²⁺	Zn ²⁺		zinc	bivalent cations (Ba ²⁺ , Sr ²⁺ ,
Inhibitor	HEDP	DTPMP	sodium salt of HEDP	НЕДР	phosphonates	sulfonic acid and phosphonic acid	fatty amines in association with phosphonocarboxylic acid	100 ppm of 3-phospho-nopropionic acid and 150 ppm of Tween 80 (polyoxyethylene sorbitan monooleate)	 phosphonopropionic acid (3- PPA) and Triton X-100. 	1-hydroxyethane-1,1-diphosphonic acid (HEDP)	НЕДР	morpholinemethylene-phosphonic acid (MMPA)	tartrate with organophosphonic acid (2-carboxyethylphos-phonic acid)	N,N-di(phosphono-methyl)glycine (DPMG)
Medium	Chloride solution	Neutral medium	60 ppm chloride	Chloride ions	60 ppm chloride ion	polyaniline (PANI)	200 ppm NaCl	Ground water	Ground water	60 ppm Cl ⁻	Oxygen containing aqueous solutions	Neutral aqueous chloride solutions	Oxygen saturated environment	1
Metal	Carbon steel	Carbon steel	Mild steel	Carbon steel	Carbon steel	Mild steel	Carbon steel	304 stainless steel	304 stainless steel	Mild steel	Mild steel	Aluminum	Steel	Iron
No.	50.	51.	52.	53.	54.	55.	56.	57.	58.	59.	60.	61.	62.	63.

Table 1 (cont.). The use of various phosphonic acids as corrosion inhibitors

Ref	64	65	66	67	68	69	70	71	72	73	74	75
Findings	The protective film is found to consist of Fe^{24} -phosphonate complex and $Zn(OH)_{2}$; it is found to be luminescent.	Mixed inhibitor.	Mixed inhibitor.	The protective film consists of Fe ^{2*-2-CI} EPA complex and $Zn(OH)_2$.	Langmuir adsorption isotherm.	Mixed inhibitor	Langmuir adsorption isotherm.	Mixed inhibitor. The protective film consisted of Fe^{2*} -2-Cl EPA complex, $Zn(OH)_2$ and oxides of iron. The film was found to be semiconducting in nature.	The inhubition efficiency of aminophosphonic acids can be increased by halide ions. In the presence of aminophosphonic acids, the anomalous behavior of halide ions can be eliminated during anodic polarization.	Film showed the presence of the elements iron, phosphorns, nitrogen, oxygen, carbon, and zino. Deconvolution spectra of these elements in the surface film showed the presence of oxides/hydroxides of iron(III), $Zn(OH)_{25}$ and $[Zn(II)-BPMG]$ complex.	Langrnuir's adsorption isotherm.	Langmuir's isotherm.
Method	Weight loss method, X-ray diffraction, Fourier transform infrared, and luminescence spectroscopy.	Weight loss method, polarization study, and X-ray diffraction.	Polarization study and fluorescence Spectra.	UV-luminescent.	Linear polarization and anodic polarization curve methods.	Weight-loss study, UV-visible reflectance spectroscopy and X-ray diffraction.	Polarization measurement, Fourier transform infra-red spectroscopy, and X-ray photoelectron spectroscopy	Weight-loss, electrochemical methods, polarization study, UV-visible absorption, and reflectance spectra.	Polarization measurement, scanning electron microscopy, FTIR reflection- absorption and X-ray photoelectron spectroscopy techniques.	Potentiodynamic polarization, X-ray photoelectron spectroscopic analysis (XPS), dDeconvolution and FTIR spectroscopy, SEM.	Weight loss measurement, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) techniques, and scanning electron microscope (SEM)	NMR and IR spectroscopy, Tafel polari- zation curve, weight loss technique, and FTIR spectroscopy
Additive	Zn ²⁺	Zn ²⁺	Zn ²⁺	Zn ²⁺		Zn ²⁺		Zh ²⁺	halide ions	zinc		
Inhibitor	Carboxymethylphos-phonic acid (CMPA) and 2-carboxyethyl- phosphonic acid (2-CEPA)	ethylphosphonic acid (EPA)	ethyl and 2-carboxy-ethyl phosphonic acid (EPA and 2-CEPA, resp.)	2-ehloroethyl phospho-nic acid (2- Cl EPA)	N-sulfonated amino-dimethylene- phosphonic acid (SADP) compared with HEDP (1-hydroxy-ethylidene- 1,1-diphos-phonic acid and amino- trimethylenephosphonic acid (ATMP)	HEDP	nitrilotnis(methylene-phosphonic acid) (NTMP)	2-chloroethyl phosphonic acid (2-Cl EPA)	aminophosphonic acids	N,N-bis(phosphono-methyl)glycine (BPMG)	hexamethylenediamine tetra(methylene phosphonic acid) (HMDTMPA)	thiomorpholin-4-yl-methylphos- phonic acid (TMPA) and morpho- lin-4-yl-methyl-phosphonic acid (MPA)
Medium	60 ppm Cl [−]	60 ppm Cl⁻	60 ppm Cl ⁻	60 ppm Cl ⁻	H ₂ SO ₄ solutions	60 ppm Cl ⁻	saturated Ca(OH) ₂ solution	60 ppm Cl ⁻	H ₂ SO ₄	low chloride aqueous environment	1.0 M HCl solution	3% sodium chloride
Metal	Carbon steel	Mild steel	Mild steel	Carbon steel	0Crl3 stainless steel	Mild steel	Steel	Carbon steel	Armeo iron	Carbon steel	Carbon steel	Iron
No.	64.	65.	66.	67.	68.	69.	70.	71.	72.	73.	74.	75.

Table 1 (cont.). The use of various phosphonic acids as corrosion inhibitors

Section D - Review

directed to the development of efficient synthetic methods for their preparation, with particular attention to stereoselective synthesis. Phosphonic acids are also used as corrosion inhibitors in concrete, coatings, rubber blends, anti-freeze coolants, ship ballest compartments, preservation of organic products, coal slurries, etc⁷⁷. Phosphonic acids are also good complexing agents. Among other phosphonic acids, diethylene triamine penta methylene phosphonic acids in particular can be used as scale and corrosion inhibitor in circulating cool water system and boiler water, and especially good in alkali circulating cool water system without additional pH regulation. It can also be used as scale and corrosion inhibitor in oilfield refill water, cool water and boiler water with high concentration of barium carbonate. It can also be used as peroxide stabilizer, chelating agent in weaving and dyeing industry, pigment dispersant, microelement's carrying agent in fertilizer and concrete modifier. In addition, DTPMPA is used in papermaking, electroplating, acid cleaning and cosmetics. Various phosphonic derivatives are widely used chemicals for corrosion inhibition in neutral aqueous solutions. Phosphonic acids find wide application in the corrosion protection of various metals in different environment.

Review and Discussion

The use of phosphonic acids as corrosion inhibitors are discussed in the following section.

Metals

Phosphonic acids have been used to control the corrosion of various metals such as mild steel¹⁻⁶, brass^{7,30}, copper^{34,39,44}, aluminium^{23,61}, stainless steel^{24,57,58,68}, sol-gel film on aluminium⁴¹, Armco iron^{18,72}, and zinc¹⁶.

Medium

The inhibition efficiency of phosphonic acids in controlling corrosion of metals in various environments has been investigated. Acidic medium^{1,9,32,48,68,72,74}, alkaline medium^{2,4,5,11-13,15,16,18}, and neutral medium^{3,6-8,14,17,19-21} have been used for this purpose.

Inhibitor

Phosphonic acids have been used alone or in combination with other inhibitors such as $Zn^{2+2,5,8,14,15,18}$, $CTAB^{3,21,34,46}$, calcium gluconate⁶, tungstate¹¹, ascorbate¹², silicate^{20,25}, sodium molybdate^{21,29,31,53}, and trisodium citrate³⁷.

Methods

Various methods have been used to evaluate the inhibition efficiency of phosphonic acids. Weight-loss method²⁻⁷, Electrochemical studies (polarization and AC impedance)¹⁻⁴, ⁶⁻¹², FTIR spectra^{2,8,10-13}, UV-visible reflectance spectra^{2,14,24}, XPS^{5,11-13} and surface analysis by SEM^{11,20,24,25}, AFM⁶³, and EDX^{7,21,25,30}.

Findings

Using phosphonic acids as inhibitor, above studies have been conducted and following findings were reported:

Isotherm: Generally, the adsorption of phosphonic acids on metal surface obey Langmuir adsorption isotherm as supported by the studies of Laamari et al, Touir et al, and Amar et $al^{1,3,4,26}$; and Temkin isotherm as supported by Karakus et al^{32} . Adsorption of phosphonic acids on metals like iron, carbon steel obey adsorption isotherm.

Type of inhibitor: Phosphonic acids have been used as mixed inhibitor^{1, 8, 9, 11, 12} and anodic inhibitor^{2, 10, 14, 30}.

Nature of protective film: The protective films formed on metal surface when phosphonic acids are used as corrosion inhibitors have been analyzed by FTIR, UV, SEM, AFM, and XPS. It is observed that the protective films consists of Fe^{2+} inhibitor complex is formed on anodic sites of the metal surface and Zn(OH)₂ formed on the cathodic sites of the metal surface^{2, 10, 12}.

The use of various phosphonic acids as corrosion inhibitors are summarized in Table 1 above.

References

- ¹ Laamari, R., Benzakour, J., Berrekhis, F., Abouelfida, A., Derja, A, Villemin, D., *Arab. J. Chem.*, **2011**, *4*(3), 271.
- ² Nithya, A, Rajendran, S., Bulg. Chem. Commun., 2010, 42(2), 119.
- ³ Touir, R., Dkhireche, N., Ebn Touhami, M., Sfaira, M., Senhaji, O., Robin, J.J., Boutevin, B., Cherkaoui, M., *Mat. Chem. Phys.*, **2010**, *122*(1),1.
- ⁴ Amar, H., Benzakour, J., Derja, A., Villemin, D., Moreau, B., Braisaz, T., *Appl. Surf. Sci.*, **2006**, 252(18), 6162.
- ⁵ Reznik, L.Y., Sathler, L., Cardoso, M.J.B., Albuquerque, M.G., *Mater. Corros.*, **2008**, 59(8), 685.
- ⁶ Sreevalsan, K., Anithakumary, V., Shibi, I.G., Orient. J. Chem., 2008, 24(2), 669.
- ⁷ Wang, C., Li, T., Li, S., Song, C., *Huagong Xuebao/J. Chem. Ind.* Eng. (China), **2007**, 58(1), 190.
- ⁸ Selvi, J.A., Amalraj, A.J., Rajendran, S., Bull. Electrochem., 2006, 22(3), 123.
- ⁹ Labjar, N., Lebrini, M., Bentiss, F., Chihib, N.E., Hajjaji, S.E., Jama, C., *Mater. Chem. Phys.*, **2010**, *119*(1-2), 330.
- ¹⁰ Kanimozhi, S.A., Rajendran, S., Arab. J. Sci. Eng., 2009, 34(2 C), 37.
- ¹¹ Rao, B.V.A., Rao, M.V., Rao, S.S., Sreedhar, B., J. Chem. Sci., 2010, 122(4), 639.
- ¹² Rao, B.V.A., Rao, S.S., *Mater. Corros.*, **2010**, *61*(4), 285.
- ¹³ Rao, B.V.A., Rao, S.S., *EUROCORR*, **2009**, (2), 1133.
- ¹⁴ Kanimozhi, S.A., Rajendran, S., Int. J. Electrochem. Sci., 2009, 4(3), 353.
- ¹⁵ Manjula, P., *E-J. Chem.*, **2009**, *6*(3), 887.
- ¹⁶ Pilbath, A., Nyikos, L., Bertoti, I., Kalman, E., Corros. Sci., 2008, 50(12), 3314.
- ¹⁷ Amar, H., Braisaz, T., Villemin, D., Moreau, B., *Mater. Chem. Phys.*, **2008**, *110*(1), 1.
- ¹⁸ Amar, H., Benzakour, J., Derja, A., Villemin, D., Moreau, B., Braisaz, T., Tounsi, A., *Corros. Sci.*, **2008**, *50*(1), 124.

- ¹⁹ Abulkibash, A., Khaled, M., El Ali, B., Emad, M., Arab. J. Sci. Eng., **2008**, 33(1 A), 29.
- ²⁰ Salasi, M., Shahrabi, T., Roayaei, E., Aliofkhazraei, M., *Mat. Chem. Phys.*, **2007**, *104*(1), 183.
- ²¹ Gopi, D., Govindaraju, K. M., Manimozhi, S., Ramesh, S., Rajeswari, S., *J. Appl. Electrochem.*, **2007**, *37*(6), 681.
- ²² Thi Xuan Hang, T., Truc, T.A., Nam, T.H., Oanh, V.K., Jorcin, J.B., Pebere N, Surf. Coat. Technol., 2007, 201(16-17), 7408.
- ²³ Holzle, L.R.B., Azambuja, D.S., Piatnicki, C.M.S., Englert, G.E., *Mat. Chem. and Phys.*, **2007**, *103*(1), 59.
- ²⁴ Gopi, D., Manimozhi, S., Govindaraju, K.M., Manisankar, P., Rajeswari, S., J. Appl. Electrochem., 2007, 37(4), 439.
- ²⁵ Salasi, M., Shahrabi, T., Roayaei, E., Anti-Corros. Methods Mater., 2007, 54(2), 82.
- ²⁶ Amar, H., Benzakour, J., Derja, A., Villemin, D., Moreau, B., Braisaz, T., Annales de Chimie: Science des Materiaux, 2006, 31(5), 597.
- ²⁷ Azim, S. S., Sathiyanarayanan, S., Venkatachari, G.K., Prog. Org. Coat., **2006**, 56(2-3), 154.
- ²⁸ Amalraj, A.J., Rajendran, S., Sundaravadivelu, M., Regis, A.P.P., Sahayaraj, J.W., *Bullet. Electrochem.*, **2006**, 22(7), 311.
- ²⁹ Rao, B.V.A., Christina, K., Indian J. Chem. Technol., 2006, 13(3), 275.
- ³⁰ Wang, C., Wang, L., Song, C., Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 2006, 13(2), 164.
- ³¹ Rao, B.V.A., Rao, S.S., Babu, M.S., *Indian J. Chem. Technol.*, **2005**, *12*(6), 629.
- ³² Karakuş, M., Şahin, M., Bilgic, S., Mater. Chem. and Phys., 2005, 92(2-3), 565.
- ³³ Awad, H.S., Anti-Corros. Methods Mater. 2005, 52(1), 22.
- ³⁴ Mohanan, S., Maruthamuthu, S., Kalaiselvi, N., Palaniappan, R., Venkatachari, G., Palaniswamy, N., Raghavan, M., *Corros. Rev.*, **2005**, *23*(4-6), 425.
- ³⁵ Awad, H.S., Corros. Eng. Sci. Technol., 2005, 40(1), 57.
- ³⁶ Yabuki, A., Kunimoto, H., Zairyo to Kankyo/Corrosion Engineering, 2005, 54(2), 74.
- ³⁷ Gunasekaran, G., Dubey, B.I., Rangarajan, J., *Def. Sci. J.*, **2005**, 55(1), 51.
- ³⁸ Rajendran, S., Amalraj, A.J., Sahayaraj, J.W., Rathish, R.J., Anthony, N., Palaniswamy, N., *Transactions of the SAEST* (Society for Advancement of Electrochemical Science and Technology), 2005, 40(1), 35.
- ³⁹ Ramesh, S., Rajeswari, S., Corros. Sci., **2005**, 47(1), 151.
- ⁴⁰ Awad, H.S., Turgoose S, *Corrosion*, **2004**, *60*(12), 1168.
- ⁴¹ Sheffer, M., Groysman, A., Starosvetsky, D., Savchenko, N., Mandlr, D., *Corros. Sci.*, **2004**, *46*(12), 2975.
- ⁴² Mohammedi, D., Benmoussa, A., Fiaud, C., Sutter, E.M.M., *Mater. Corros.*, **2004**, *55*(11), 837.
- ⁴³ Pech-Canul, M.A., Bartolo-Perez, P., Surf. Coat. Tech-nol., 2004, 184(2-3), 133.
- ⁴⁴ Ramesh, S., Rajeswari, S., Maruthamuthu, S., Appl. Surf. Sci., 2004, 229(1-4), 214.
- ⁴⁵ Ramesh, S., Rajeswari, S., *Electrochim. Acta*, **2004**, *49*(5), 811.
- ⁴⁶ Ramesh, S., Rajeswari, S., Maruthamuthu, S., *Mater. Lett.*, **2003**, 57 (29), 4547.
- ⁴⁷Amar, H., Benzakour, J., Derja, A., Villemin, D., Moreau, B., J. *Electroanal. Chem.*, **2003**, 558(1-2), 131.
- ⁴⁸ Ramesh, S., Rajeswari, S., Can. Metall. Q., 2003, 42(3), 377.

- ⁴⁹ Pech-Canul, M.A., Echeverria. M., Corros. Eng. Sci. Technol., **2003**, 38(2), 135.
- ⁵⁰ Rajendran, S., Peter, B.R.E.J., Regis, A.P.P., Amalraj, A.J., Sundaravadivelu, M., *Transactions of the SAEST (Society for Advancement of Electrochemical Science and Technology)*, **2003**, 38(1), 11.
- ⁵¹ Rai, V., Pitre, K.S., Indian J. Chem. Sec A: Inorganic, Physical, Theoretical and Analytical Chemistry, 2003, 42(1), 106.
- ⁵² Rajendran, S., Joany, R.M., Rao, B.V.A., Palaniswamy, N., *Indian J. Chem. Technol.*, **2002**, 9(3), 197.
- ⁵³ Mosayebi, B., Kazemeini, M., Safekordi, A., Badakhshan, A., Anti-Corros. Methods Mater., 2002, 49(6), 426.
- ⁵⁴ Rajendran, S., Rao, B.V.A., Palaniswamy, N., Amalraj, A.J., Sundaravadivelu, M., Anti-Corros. Methods Mater., 2002, 49(3), 205.
- ⁵⁵ Kinlen, P.J., Ding, Y., Silverman, D.C., Corrosion, **2002**, 58(6), 490.
- ⁵⁶ Ochoa, N., Baril, G., Moran, F., Pebere, N., J. Appl. Electrochem., **2002**, 32(5), 497.
- ⁵⁷ Gopi, D., Rajeswari, S., J. Solid State Electrochem., 2002, 6(3), 194.
- ⁵⁸ Gopi, D., Bhuvaneswaran, N., Rajeswari, S., Bullet. Electrochem., 2002, 18(1), 29.
- ⁵⁹ Rajendran, S., Joany, R.M., Rao, B.V.A., Palaniswamy, N., Bullet. Electrochem., 2002, 18(1), 25.
- 60 Awad, H.S., Turgoose, S., Br. Corros. J., 2002, 37(2), 147.
- ⁶¹ Stefenel, M.M., Vuano, B.M., Mayer, C.E., Corrosion, 2001, 57(10), 898.
- ⁶² Gunasekaran, G., Natarajan, R., Palaniswamy, N., *Corros. Sci.*, 2001, 43(9), 1615.
- ⁶³ Hilden, J., Virtanen, J., Forsen, O., Aromaa, J., *Electrochim. Acta*, **2001**, *46*(24-25), 3791.
- ⁶⁴ Rajendran, S., Rao, B.V.A., Palaniswamy, N., Periasamy, V., Karthikeyan, G., *Corros. Sci.*, **2001**, *43*(7), 1345.
- ⁶⁵ Rajendran, S., Rao, B.V.A., Palaniswamy, N., Bullet. Electrochem., 2001, 17(4), 171.
- ⁶⁶ Rajendran, S., Rao, B.V.A., Palaniswamy, N., Anti-Corros. Methods Mater., **2000**, 47(6), 359.
- ⁶⁷ Rajendran, S., Rao, B.V.A., Palaniswamy, N., Anti-Corros. Methods Mater., 2000, 7(5), 294.
- ⁶⁸ Yang, W.Z., Zhou, B.S., Journal of the Chinese Society of Corrosion and Protection, 2000, 20(2), 110.
- ⁶⁹ Rajendran, S., Rao, B.V.A., Palaniswamy, N., Anti-Corros. Methods Mater., 2000, 47(2), 83.
- ⁷⁰ Nakayama, N., Corros. Sci., **2000**, 42(11), 1897.
- ⁷¹ Rajendran, S., Rao, B.V.A., Palaniswamy, N., Anti-Corros. Methods Mater., 2000, 47(3), 147.
- ⁷² Horvath, T., Kalman, E., Russ. J. Electrochem., 2000, 36(10), 1085.
- ⁷³ Rao, B.V.A., Rao, M.V., Rao, S.S., Sreedhar, B., Chem. Eng. Comm., **2011**, 198(12), 1505.
- ⁷⁴ Laamari M. R., Benzakour J., Berrekhis, F., Deria A., Villemin, D., Arab. J. Chem., **2011**, doi: 10.1016/j.arabjc.2011.03.018.
- ⁷⁵ Amar, H., Benzakour, J., Derja, A., Villemin, D., Moreau, B., Braisaz, T., *Corros. Eng. Sci. Technol.*, **2006**, *41*(4), 291.
- ⁷⁶ Frank, S., Prog. Surf. Sci., 2000, 65, 151.
- ⁷⁷ Gunasekaran, G., Natarajan, R., Muralidharan, V.S., Rao, B. V.A., Anti-Corros. Methods Mater, **1997**, 44 (4), 248.

Received: 16. 10. 2012. Accepted: 29. 10. 2012.