

COMPOSITION OF HYDROCARBON TYPE FUELS FORMED IN THERMAL DECOMPOSITION OF MUNICIPAL SOLID WASTE PLASTICS AND CALCIUM CARBONATE

Moinuddin Sarker^{[a]*}, Mohammad Mamunor Rashid^[a], Muhammad Sadikur

Keywords: waste plastics, thermal degradation, hydrocarbon, fuel, municipal, conversion, calcium carbonate, GC/MS

Random mixtures of waste plastics raw materials were thermolysed into liquid hydrocarbons at laboratory scales in a batch process by using a stainless steel reactor. Two series of experiments were carried out with random mixtures of waste plastics such as low and high density polyethylene, polypropylene, and polystyrene in the presence of 10 and 20 % calcium carbonate, respectively, at temperatures between 100 and 430 °C. Four types of randomly mixed waste plastics were used in each series of experiments. The hydrocarbon oils formed were analyzed by using a gas chromatography and mass spectrometer (GC/MS) to determine the amounts and types of hydrocarbons. By using 10% calcium carbonate, the formed hydrocarbon mixture contained C4 to C40 compounds while, in the presence of 20% calcium carbonate, the product consists of C₃ to C₂₇ hydrocarbons determined by GC/MS analysis. Due to the high number of hydrocarbons in the oils formed in each series of thermal decomposition experiment, the oily products can be used as fuels for internal combustion engines or electric power plants.

* Corresponding Authors

Fax: (203) 406-9852

E-Mail: msarker@naturalstateresearch.com Natural State Research, Inc., Department of Research and Development, 37 Brown House Road (2nd Floor), Stamford, CT-06902, USA

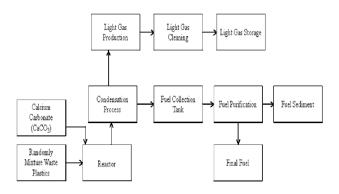
Introduction

In 1993, waste plastics accounted for roughly 10% of all municipal solid waste (MSW) in the USA 1 with percentages in land filled MSW ranging from 15 to 25% depending upon location. The energy demand continuously increases and market structures evolve² as well, thus utilization of renewable energy sources such as wind and solar power has gained considerable importance since the oil crisis in the 1970s.³ Europe's total energy consumption is expected to be covered by renewable energy sources in up to 10% by 2020², the remaining 90% still being dependent on fossil energy sources. Total waste production increased by about 10% in Europe between 1990 and 1995, with the annual amount estimated at 1.3 billion tons in 1995. The annual amount of hazardous waste was about 36 million tons. In 2010, the amount of paper, glass, and plastic waste was expected to be about 60% higher than the 1990 levels, and the number of scrapped cars was expected to have grown 35% higher.⁴ Landfill and incineration are common modes of waste treatment in most European countries⁴ and co-incineration is commonly used particularly in the cement industry. 5,6

The European waste directive called for a 30% reduction of waste amount land filled by 2010. Land filling of plastic wastes is undesirable due to poor biodegradability of polymer materials and, on the other hand, these plastic wastes can be regarded as a potentially cheap source of chemicals and energy. The destruction of waste plastics by incineration, however, often generates problems with unacceptable emissions.

Chemical recycling proved to be a possible alternative strategy, when waste plastics are used as feedstock in various technologies, e.g. in converting them into basic petrochemicals used as chemical feedstock or fuels in a variety of downstream processes. There are two main chemical recycling routes, namely the thermal and the catalytic degradation.8 Thermal cracking is a well-known technique and is often used in petrochemical processes. Thermal decomposition of waste plastics in the absence of oxygen can be carried out in various types of reactors such as shaft kilns, rotary kilns, screw conveyors, autoclaves, or fluidized beds. 9-12

Including waste-to-energy (WTE) methods, only about 20% of all MSW was recovered in various recycling technologies, and only 15% of the plastics occurred in MSW were recovered in melting ("primary") and feedstock ("secondary" and "tertiary") type recycling methods. Secondary recycling can be defined as conversion to monomers or other building blocks, whereas, tertiary recycling means conversion to other chemical feedstock or fuels. Waste-to-energy methods (sometimes referred to as "quaternary recycling") are relatively cheap. Recently, another 20% of plastics occurred in MSW have been utilized in this way, however, it requires burning a large amount of nonrenewable resources as well. Public perceptions regarding safety of incineration techniques prompted us and other researchers to collaborate under the auspices of the Consortium for Fossil Fuel Liquefaction Science (CFFLS), to investigate the feasibility of coal/waste plastics processing to liquid fuels or chemical feedstock. Obviously, dominant components of MSW-type waste plastics (mainly polyethylene, polystyrene, polyethylene terephthalate and polypropylene) are rich in carbon and hydrogen – basic building elements of petroleum – thus, searching possibilities to convert the waste plastics into liquid fuels seems to be a logical alternative of plastic recycling. 13,14


Experiments

Materials

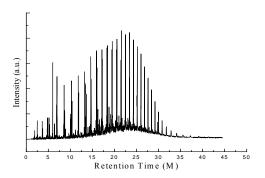
Random mixtures of waste plastic samples were collected in a local grocery store at Stamford City which consisted of low and high density polyethylene (HDPE and LDPE), polypropylene (PP) and polystyrene (PS). The samples were contaminated with foreign materials such as food particles, paper, dust, sand. Foreign components were separated out manually and the samples were washed with periodical adding of liquid soap into the washing water. Washing of plastics is not an essential step in our plastic-to-fuel process developed, but the laboratory scale process was performed with washed samples. Random mixtures of waste plastics containing both hard and soft plastic components were prepared by cutting the soft plastics and grinding the hard ones into pieces down to size 2-3 mm. Reagent grade anhydrous calcium carbonate powder was provided by AMRESCO Co.

Process Description

Grounded random mixtures of waste plastics were transferred into the reactor chamber together with calcium carbonate additive in amount of 10% or 20 % in each experiment, respectively. The weight of every mixture was controlled to be 1000 g. The reactor chamber and its cover were tightened with a screw system to prevent from gas leaking. A condensation unit and a fuel purification device were connected to the reactor and the fuel collection tanks, respectively. The upper outlet of the condensation unit was connected to a gas cleaning system. Light gases formed were transferred into a storage system and the sediment separated by the fuel purification device was recycled to the reactor as raw material. The heating temperature was controlled between 100 and 430 °C, respectively.

Figure 1: Random mixtures of waste plastics and calcium carbonate in the fuel production process

Calcium carbonate was used as additive in the reaction, but some acceleration effect was also observed. Waste plastics start to melt at 100 °C and their melting was completed below 300 °C. Long hydrocarbon chains broke down into short chain hydrocarbon due to heat treatment. The liquid slurry turned into vapour which condensed into a liquid hydrocarbon mixture. The


reaction was not completed even at 300 °C, therefore, heating was continued until 430 °C. The liquid hydrocarbon mixture formed was purified with an RCI fuel filter. Sediment was removed and reused in the next experiment as raw material. The light gas generated contained methane, ethane, propane, and butanes. The light gas formed was washed with sodium hydroxide solution. The density of the liquid formed with using 10 % calcium carbonate additive was determined as 0.78 g cm⁻³. Yields of the products formed in the decomposition process carried out with 10 and 20 % calcium carbonate additive and 1 kg of plastics waste are shown in Table 1. When using 10% or 20 % calcium carbonate, 716.8 and 683.8 g liquid fuel, 155.1 and 98 g gas, and 128.1 and 218.2 g of solid residue were formed, respectively. It means that yields of liquid hydrocarbons, gases, and solid residues are 71,68 and 68.38 %, 15.51 and 9.8 %, 12.81 and 21.82 % in the experiments carried out with 10 and 20 % CaCO₃ content, respectively. The volumes of liquid phases were 922 ml and 870 ml starting form 1 kg of mixture, with 10 and 20 % of CaCO₃ content, respectively. Both experiments left back a black solid residue whose composition is under investigation.

Instrument

GC-MS analyses were performed on a Perkin-Elmer Clarus 500 instrument supplied with auto-sampler system. Elite-5 capillary column (30 meter length) and He as carrier gas were used. The injected volume was adjusted to be 5.0 μ L, the sample split flow and the initial set point were 101.0 mL min⁻¹ and 1.00 ml min⁻¹, respectively. The sample injector port temperature was adjusted to be 280 °C, with 40 °C initial value. The temperature holding and equilibration times were 1 and 0.5 minutes, respectively. The temperature ramping was 10 °C/ min up to 325 °C and there was a holding for 15 minute at 325 °C. The mass spectrometer was operated in EI+ mode, between 35.00 and 528.00 m/z units with 0.25 s scan and 0.15 s interscan times

Results and Discussion

GC-MS analyses of liquids formed in the reaction of randomly mixed waste plastics and 10% calcium carbonate (Fig. 2 and Table 2) showed the occurrence of a variety of components. Many compounds detected contained carbon atoms within the range between C₃ and C₂₇. Based on the retention times and fragmentation patterns, different types of compounds such as hydrocarbons, halogen compounds, oxygenated compounds, and nitrogen containing compounds were identified. The GC-MS analyses showed presence of such characteristic compounds as 3-butene-1-ol (C₄H₈O) (t=1.50, m/z=41), cis-1,2-dimethylcyclopropane (C₅H₁₀) m/z=55), cis-1-ethyl-2-methylcyclopropane (t=2.02, (C_6H_{12}) (t=2.50, m/z=41), Z,Z-2,4-hexadiene (C_6H_{10}) (t= 2.96, m/z= 67), 4-methyl-1,4-hexadiene (C_7H_{12}) (t=3.77, m/z=81), 2-methyl-1,4-hexadiene (C_7H_{12}) (t=3.95, m/z=81), norbornane (C₇H₁₂) (t=4.44, m/z=81), 3methylcyclohexene (C_7H_{12}) (t=4.86, m/z=81), 1α , 3α , 5α - 1,3,5-trimethylcyclohexane (C_9H_{18}) (t= 5.92, m/z= 69), styrene (C_8H_8) (t=6.95, m/z=104), 3-decyn-2-ol ($C_{10}H_{18}O$) (t=7.92, m/z=57), 4-methyldecane ($C_{11}H_{24}$) (t=8.85, m/z=43), cis-1,4-dimethylcyclooctane ($C_{10}H_{20}$)

Figure 2: GC/MS chromatogram of the liquid product formed in the presence of 10 % CaCO3 containing random waste plastics in the mixture

(t=9.99, m/z=41), 1R-cis-1-(1,2,2,3-tetramethylcyclopentyl)-ethanone ($C_{11}H_{20}O$) (t=10.74, m/z=43), dodecane ($C_{12}H_{26}$) (t=11.91, m/z=57), N-[4-bromo-n-butyl]-2-piperidinone ($C_{9}H_{16}BrN$) (t=12.50, m/z=41), 4,6,8-

trimethyl-1-nonene ($C_{12}H_{24}$) (t=13.63, m/z=43), 7tetradecene ($C_{14}H_{28}$) (t=14.78, m/z=41), 1-hexadecene $(C_{16}H_{32})$ (t=15.93, m/z=41). Different kinds of hydrocarbons were formed containing aliphatic and rings, single and double bonds such as aromatic octadecane ($C_{18}H_{38}$) (t=20.56, m/z=85), octadecene $(C_{18}H_{38})$ (t=23.44, m/z=85), isomeric octadecanes $(C_{18}H_{38})$ (t=24.33, 25.19, 26.83, 28.41, m/z=57), heptacosanes $(C_{27}H_{56})$ (t=30.82, 32.87, m/z=57, and t=35.56, m/z=44), benzene (C₆H₆), toluene (C₇H₈), styrene (C₈H₈), 1-methylethylbenzene (C₉H₁₂), 1-ethyl-3methylbenzene (C_9H_{12}), α -methylstyrene (C_9H_{10}), 1ethenyl-2-methylbenzene (C₉H₁₀) etc..

Some alcoholic groups containing products such as 1-eicosanol ($C_{20}H_{42}O$) (t= 21.75, m/z=55) could also be detected. Dyes and additives occurring in the raw waste plastics had no influence on quality of the produced fuel-like liquid products.

The experiments were carried out without evacuation of the reactor space, thus the humidity as oxygen source might be responsible for the formation of some oxygen—containing products.

Table 1: Product yields in thermal decomposition of waste plastics in the presence of calcium carbonate

Sample weight (g.)	CaCO ₃ % (m/m)	Fuel weight (g)	Fuel volume (ml)	Residue weight (g.)	Sample as light gas weight (g.)	Fuel Yield % (m/m)	Light gas Yield % (m/m)	Residue Yield % (m/m)
1000	10	716.8	922	128.1	155.1	71.68	15.51	12.81
1000	20	683.8	870	218.2	98	68.38	9.8	21.82

Table 2: GC/MS chromatogram compound list of liquid product formed in thermal decomposition of random waste plastics and 10% calcium carbonate mixture

No. of	Retention	Trace	Compound	Compound	Molecular	Probability	NIST Library
Peak	Time	Mass	Name	Formula	Weight	%	Number
	(min.)	(m/z)					
1	1.50	41	3-Buten-1-ol	C4H8O	72	17.7	114446
2	1.60	41	2-Butene	C ₄ H ₈	56	23.4	61292
3	1.64	41	1-Propene, 2-methyl-	C ₄ H ₈	56	19.3	61293
4	1.87	42	Cyclopropane, ethyl-	C_5H_{10}	70	23.2	19072
5	1.91	43	Pentane	C ₅ H ₁₂	72	88.0	114462
6	1.96	55	2-Pentene	C ₅ H ₁₀	70	15.0	19079
7	2.02	55	cis-1,2-dimethyl	C_5H_{10}	70	25.0	19070
			Cyclopropane				
8	2.06	67	1,3-Pentadiene	C ₅ H ₈	68	17.1	61941
9	2.13	67	1,4-Pentadiene	C ₅ H ₈	68	13.1	209
10	2.25	67	Cyclopentene	C ₅ H ₈	68	19.7	19032
11	2.32	43	Pentane, 2-methyl-	C ₆ H ₁₄	86	42.7	61279
12	2.50	41	cis-1-ethyl-2-methyl	C ₆ H ₁₂	84	18.9	113658
			Cyclopropane	·			
13	2.58	57	Hexane	C ₆ H ₁₄	86	67.2	61280
14	2.64	69	2-Pentene, 3-methyl-,	C ₆ H ₁₂	84	13.8	114483
			(Z)-	v 1 <u>-</u>			
15	2.68	41	3-Hexen-1-ol, (Z)-	C ₆ H ₁₂ O	100	6.68	114154
16	2.72	67	4-Penten-1-ol, 3-methyl-	C ₆ H ₁₂ O	100	15.5	113673
17	2.84	67	2,4-Hexadiene, (Z,Z)-	C ₆ H ₁₀	82	7.79	113646

Eur. Chem. Bull. 2012, 1(3-4), 114-123

18	2.90	56	Cyclopentane, methyl-	$C_{6}H_{12}$	84	59.9	114428
19	2.96	67	2,4-Hexadiene, (Z,Z)-	$C_{6}H_{10}$	82	13.1	113646
20	3.06	56	1-Pentene, 2,4-dimethyl-	C7H14	98	49.4	114435
21	3.14	67	Cyclopentene, 3-methyl-	C_6H_{10}	82	25.1	114408
22	3.27	78	Benzene	C ₆ H ₆	78	66.3	114388
23	3.38	79	1,3-Cyclohexadiene	C ₆ H ₈	80	23.0	118700
24	3.52	67	Cyclohexene	C ₆ H ₁₀	82	31.6	114431
25	3.57	56	1-Hexene, 2-methyl-	C7H14	98	35.9	114433
26	3.62	41	cis-1,2-dimethyl- Cyclopentane	C ₇ H ₁₄	98	26.8	114027
27	3.73	43	Heptane	C7H16	100	47.6	61276
28	3.77	81	1,4-Hexadiene, 4- methyl-	C7H ₁₂	96	14.4	113135
29	3.95	81	1,4-Hexadiene, 2- methyl-	C7H12	96	7.17	840
30	4.07	81	Cyclobutane, (1-methylethylidene)-	C7H ₁₂	96	6.41	150272
31	4.16	83	Cyclohexane, methyl-	C7H14	98	54.1	118503
32	4.30	69	Cyclopentane, ethyl-	C7H14	98	28.7	940
33	4.38	79	1-Cyclohexene-1- methanol	C ₇ H ₁₂ O	112	16.9	52048
34	4.44	81	Norbornane	C7H12	96	7.51	114371
35	4.51	56	2,4-Dimethyl-1-hexene	C ₈ H ₁₆	112	31.6	113443
36	4.55	81	Cyclobutane, (1- methylethylidene)-	C ₇ H ₁₂	96	13.8	150272
37	4.60	67	3-Heptene, 4-methyl-	C ₈ H ₁₆	112	7.60	114150
38	4.75	43	Heptane, 4-methyl-	C ₈ H ₁₈	114	62.3	113916
39	4.80	91	Toluene	C ₇ H ₈	92	41.5	291301
40	4.86	81	Cyclohexene, 3-methyl-	C ₇ H ₁₂	96	9.86	236066
41	5.06	56	1-Heptene, 2-methyl-	C ₈ H ₁₆	112	45.1	113675
42	5.15	41	1-Octene	C ₈ H ₁₆	112	16.9	1604
43	5.23	95	Cyclopropane, (2,2-dimethylpropylidene)-	C ₈ H ₁₄	110	8.35	60981
44	5.29	43	Octane	C8H18	114	36.7	229407
45	5.39	55	3-Octene, (Z)-	C ₈ H ₁₆	112	11.5	113895
46	5.46	41	4-Methyl-1,4-heptadiene	C ₈ H ₁₄	110	7.53	113473
47	5.55	69	cis-1,1,3,4-tetramethyl- Cyclopentane	C9H ₁₈	126	14.6	34789
48	5.65	43	Hexane, 3-ethyl-	C8H18	114	15.8	113940
49	5.80	67	1-Methyl-2-	C ₈ H ₁₄	110	26.7	113437
50	5.92	69	methylenecyclohexane Cyclohexane, 1,3,5-	С9Н18	126	24.4	114126
51		70	trimethyl-, $(1\alpha,3\alpha,5\alpha)$ -		126	49.5	113516
52	6.01	69	2,4-Dimethyl-1-heptene	C9H ₁₈	126	49.5 37.2	2480
	6.35		Cyclohexane, 1,3,5- trimethyl-, $(1\alpha,3\alpha,5\beta)$ -	C9H ₁₈			
53	6.40	91	Ethylbenzene	C_8H_{10}	106	66.0	114918
54	6.55	91	Cyclohexanol, 1- ethynyl-, carbamate	C9H ₁₃ NO ₂	167	35.5	313023
55	6.71	67	cis-1,4-Dimethyl-2- methylenecyclohexane	С9H ₁₆	124	12.2	113533
56	6.88	41	1-Nonene	C9H ₁₈	126	10.5	107756
57	6.95	104	Styrene	C_8H_8	104	33.8	291542
58	7.02	43	Nonane	C9H20	128	31.3	228006
59	7.10	55	4-Nonene	C9H ₁₈	126	8.07	113904
60	7.24	55	3-Octyne, 2-methyl-	C9H ₁₆	124	4.17	62452
61	7.44	67	Ethylidenecycloheptane	C9H ₁₆	124	5.69	113500
62	7.49	105	Benzene, (1- methylethyl)-	C9H ₁₂	120	22.7	228742
63	7.52	67	1-Cyclohexyl-1-pentyne	$C_{11}H_{18}$	150	5.42	114866
64	7.66	55	Cyclopentane, butyl-	C9H ₁₈	126	9.72	114172
65	7.86	67	Cyclopentene, 1-butyl-	C9H ₁₆	124	9.34	113491
66	7.92	57	3-Decyn-2-ol	$C_{10}H_{18}O$	154	8.40	53449
E. C	hom Bull 201	12 1/3 /1 11/	1 122				

67	8.01	91	Benzene, propyl-	C9H ₁₂	120	56.2	113930
68	8.07	57	Octane, 2,3-dimethyl-	C ₁₀ H ₂₂	142	17.3	114135
69	8.13	105	Benzene, 1-ethyl-3- methyl-	C ₉ H ₁₂	120	10.7	228743
70	8.43	41	E-1,6-Undecadiene	$C_{11}H_{20}$	152	11.7	245712
71	8.49	118	α-Methylstyrene	C9H ₁₀	118	31.4	30236
72	8.59	41	1-Decene	$C_{10}H_{20}$	140	16.6	118883
73	8.73	57	Decane	C ₁₀ H ₂₂	142	49.6	114147
74	8.85	43	Decane, 4-methyl-	C ₁₁ H ₂₄	156	15.8	113875
75	8.92	43	Octane, 3,3-dimethyl-	C ₁₀ H ₂₂	142	11.1	61706
76	9.27	117	Benzene, 1-ethenyl-2-methyl-	C9H ₁₀	118	10.6	118193
77	9.64	41	2-Undecanethiol, 2-methyl-	C ₁₂ H ₂₆ S	202	4.45	9094
78	9.74	91	2-Cyclohexen-1-ol, 2- methyl-5-(1- methylethenyl)-	C ₁₀ H ₁₆ O	152	16.3	114684
79	9.99	41	cis-1,4-dimethyl- Cyclooctane	C ₁₀ H ₂₀	140	3.73	61409
80	10.06	41	Diisoamylene	$C_{10}H_{20}$	140	4.19	3659
81	10.24	41	2-Undecene, (Z)-	$C_{11}H_{22}$	154	6.19	142596
82	10.37	43	Undecane	C ₁₁ H ₂₄	156	42.5	114185
83	10.43	55	5-Undecene, (E)-	C ₁₁ H ₂₂	154	10.0	114227
84	10.74	43	1R-cis- 1-(1,2,2,3-	$C_{11}H_{20}O$	168	5.54	186082
			tetramethylcyclopentyl)- Ethanone				
85	11.06	91	9-Hexadecenoic acid, phenylmethyl ester, (Z)-	C ₂₃ H ₃₆ O ₂	344	6.61	67839
86	11.12	69	1,12-Tridecadiene	$C_{13}H_{24}$	180	6.65	7380
87	11.16	41	Z-10-Pentadecen-1-ol	C ₁₅ H ₃₀ O	226	5.48	245485
88	11.67	41	6-Dodecene, (Z)-	$C_{12}H_{24}$	168	5.06	142611
89	11.78	41	3-Dodecene, (E)-	$C_{12}H_{24}$	168	9.21	113960
90	11.91	57	Dodecane	C ₁₂ H ₂₆	170	25.2	291499
91	12.38	43	Dodecane, 2,6,10-trimethyl-	C ₁₅ H ₃₂	212	6.60	68892
92	12.50	41	2-Piperidinone, N-[4-bromo-n-butyl]-	C9H ₁₆ BrNO	233	5.17	251632
93	13.14	41	Z-10-Pentadecen-1-ol	$C_{15}H_{30}O$	226	15.4	245485
94	13.25	41	2-Tridecene, (E)-	$C_{13}H_{26}$	182	8.35	142614
95	13.37	43	Hexadecane	C ₁₆ H ₃₄	226	9.77	114191
96	13.40	41	3-Tridecene, (Z)-	$C_{13}H_{26}$	182	2.47	142615
97	13.51	43	Trifluoroacetic acid, n- heptadecyl ester	C ₁₇ H ₃₁ F ₃ O ₂	324	2.78	216792
98	13.63	43	1-Nonene, 4,6,8- trimethyl-	C ₁₂ H ₂₄	168	2.61	6413
99	13.99	43	1-Tetracosanol	$C_{24}H_{50}O$	354	2.76	16001
100	14.36	55	1,12-Tridecadiene	$C_{13}H_{24}$	180	7.61	7380
101	14.52	41	Z-10-Pentadecen-1-ol	$C_{15}H_{30}O$	226	22.9	245485
102	14.63	41	1-Tetradecene	$C_{14}H_{28}$	196	5.12	34720
103	14.74	43	Tetradecane	$C_{14}H_{30}$	198	19.5	113925
104	14.78	41	7-Tetradecene	$C_{14}H_{28}$	196	4.34	70643
105	15.47	43	2-Piperidinone, N-[4-bromo-n-butyl]-	C9H ₁₆ BrNO	233	4.48	251632
106	15.70	43	7-Hexadecenal, (Z)-	$C_{16}H_{30}O$	238	6.85	293051
107	15.83	41	Z-10-Pentadecen-1-ol	$C_{15}H_{30}O$	226	22.7	245485
108	15.93	41	1-Hexadecene	$C_{16}H_{32}$	224	5.58	118882
109	16.02	43	Hexadecane	C ₁₆ H ₃₄	226	22.0	114191
110	16.07	41	10-Heneicosene (c,t)	$C_{21}H_{42}$	294	3.04	113073
111	16.25	43	Trichloroacetic acid, hexadecyl ester	C ₁₈ H ₃₃ Cl ₃ O 2	386	3.59	280518
112	16.71	43	2-Piperidinone, N-[4-bromo-n-butyl]-	C9H ₁₆ BrNO	233	3.16	251632
113	17.07	41	Z-10-Pentadecen-1-ol	$C_{15}H_{30}O$	226	14.0	245485
Eur. Che	rm. Bull. 2012	2, 1(3-4), 114	1-123				

114	17.16	55	1-Hexadecene	$C_{16}H_{32}$	224	6.90	118882	
115	17.25	43	Hexadecane	C ₁₆ H ₃₄	226	18.3	114191	
116	17.29	41	10-Heneicosene (c,t)	$C_{21}H_{42}$	294	3.40	113073	
117	17.44	41	E-2-Octadecadecen-1-ol	$C_{18}H_{36}O$	268	4.70	131102	
118	18.24	41	Z-10-Pentadecen-1-ol	$C_{15}H_{30}O$	226	14.8	245485	
119	18.33	55	1-Nonadecene	C ₁₉ H ₃₈	266	5.66	113626	
120	18.41	71	Nonadecane	$C_{19}H_{40}$	268	12.6	114098	
121	19.44	41	1-Nonadecene	C ₁₉ H ₃₈	266	6.60	113626	
122	19.51	43	Heneicosane	C ₂₁ H ₄₄	296	9.78	107569	
123	20.43	55	1-Docosanol	$C_{22}H_{46}O$	326	5.85	23377	
124	20.56	85	Octadecane	$C_{18}H_{38}$	254	9.09	57273	
125	21.50	55	1-Docosene	C ₂₂ H ₄₄	308	9.78	113878	
126	21.56	43	Octadecane	$C_{18}H_{38}$	254	7.19	57273	
127	21.70	43	Hexadecane, 1,1-	$C_{40}H_{82}O_{2}$	594	6.93	36104	
			bis(dodecyloxy)-					
128	21.75	55	1-Eicosanol	C ₂₀ H ₄₂ O	298	3.91	113075	
129	22.46	43	1-Docosene	C ₂₂ H ₄₄	308	17.5	113878	
130	23.39	55	1-Docosene	C ₂₂ H ₄₄	308	18.6	113878	
131	23.44	85	Octadecane	$C_{18}H_{38}$	254	8.86	57273	
132	24.28	55	1-Docosene	C ₂₂ H ₄₄	308	12.0	113878	
133	24.33	57	Octadecane	$C_{18}H_{38}$	254	7.39	57273	
134	25.14	55	1-Docosene	C ₂₂ H ₄₄	308	9.40	113878	
135	25.19	57	Octadecane	C ₁₈ H ₃₈	254	4.95	57273	
136	26.01	57	Hexacosane	C ₂₆ H ₅₄	366	4.48	107147	
137	26.83	57	Octadecane	C ₁₈ H ₃₈	254	5.08	57273	
138	27.62	57	Heptacosane	C ₂₇ H ₅₆	380	5.54	150574	
139	28.41	57	Octadecane	C ₁₈ H ₃₈	254	4.59	57273	
140	29.19	57	Heptacosane	$C_{27}H_{56}$	380	4.94	150574	
141	29.72	306	1,1':3',1"-Terphenyl, 5'-	$C_{24}H_{18}$	306	50.4	57402	
			phenyl-					
142	29.98	57	Heneicosane, 11-(1-	C ₂₆ H ₅₄	366	4.62	16318	
			ethylpropyl)-					
143	30.82	57	Heptacosane	C ₂₇ H ₅₆	380	7.17	79427	
144	31.77	57	Heptacosane	C ₂₇ H ₅₆	380	7.88	79427	
145	32.87	57	Heptacosane	$C_{27}H_{56}$	380	9.78	79427	
146	34.12	57	Heptacosane	C ₂₇ H ₅₆	380	10.9	79427	
147	35.56	44	Heptacosane	C ₂₇ H ₅₆	380	8.06	79427	

 $\textbf{Table 3:} \ GC/MS \ chromatogram \ compound \ list \ of \ liquid \ product \ formed \ in \ thermal \ decomposition \ of \ random \ waste \ plastics \ and \ 20\% \ calcium \ carbonate \ mixture$

No. of	Retention	Trace	Compounds	Compounds	Molecular	Probability %	NIST Library
Peak	Time (M)	Mass	Name	Formula	Weight		Number
		(m/z)					
1	1.49	41	Cyclopropane	С3Н6	42	50.1	18854
2	1.60	41	1-Propene, 2-methyl-	C_4H_8	56	23.3	61293
3	1.61	43	Butane	C4H ₁₀	58	18.2	61290
4	1.63	41	2-Butene	C ₄ H ₈	56	20.5	61292
5	1.83	67	1,4-Pentadiene	C ₅ H ₈	68	21.5	114494
6	1.87	42	2-Pentene, (E)-	C ₅ H ₁₀	70	21.1	291780
7	1.91	43	Pentane	C5H12	72	85.8	114462
8	1.95	55	cis-1,2-dimethyl-	C_5H_{10}	70	23.8	19070
			Cyclopropane				
9	2.07	67	1,4-Pentadiene	C ₅ H ₈	68	19.4	114494
10	2.26	67	Cyclopentene	C ₅ H ₈	68	15.8	19032
11	2.32	43	Butane, 2,3-dimethyl-	C ₆ H ₁₄	86	13.9	291518
12	2.50	41	1-Hexene	C_6H_{12}	84	15.3	500
13	2.58	57	Hexane	$C_{6}H_{14}$	86	68.7	61280
14	2.64	41	2-Pentene, 3-methyl-,	C_6H_{12}	84	12.5	114483
			(Z)-				
15	2.72	67	1,3-Butadiene, 2-ethyl-	$C_{6}H_{10}$	82	18.8	118159
16	2.84	67	2,4-Hexadiene, (Z,Z)-	C_6H_{10}	82	9.94	113646
Eur. Cher	n. Bull. 2012.	1(3-4), 114-1	123				

17 18	2.90 2.96	56 67	Cyclopentane, methyl- 1,3-Pentadiene, 2-	C ₆ H ₁₂ C ₆ H ₁₀	84 82	69.2 12.1	114428 113652
19	3.01	79	methyl-, (E)-	C.H.	80	13.3	214892
20	3.06	79 79	3-Vinyl-1-cyclobutene 1,3-Cyclopentadiene, 5-	С ₆ H ₈ С ₆ H ₈	80	13.9	419
21	3.15	67	methyl- Cyclopentene, 3-methyl-	C ₆ H ₁₀	82	18.8	114408
22	3.20	41	1-Hexene, 5-methyl-	C ₇ H ₁₄	98	9.13	918
23	3.27	78	Benzene	C ₆ H ₆	78	69.0	114388
24	3.32	67	Cyclobutene, 3,3-	C ₆ H ₁₀	82	7.04	62288
2 4	3.32	07	dimethyl-	C61110	62	7.04	02288
25	3.38	79	1,4-Cyclohexadiene	C ₆ H ₈	80	16.5	114497
26	3.42	43	Hexane, 3-methyl-	C ₇ H ₁₆	100	62.7	113081
27	3.45	81	Dihydromyrcene	C ₁₀ H ₁₈	138	5.24	292831
28	3.52	67	Cyclohexene	C ₆ H ₁₀	82	27.0	114431
29	3.58	56	1-Hexene, 2-methyl-	C ₇ H ₁₄	98	34.5	114433
30	3.62	41	1-Heptene	C7H14	98	28.1	107734
31	3.74	43	Heptane	C7H ₁₄ C7H ₁₆	100	46.5	61276
		81	-		96	9.46	63085
32	3.78		Cyclopropane, trimethylmethylene-	C7H ₁₂			
33	3.84	55	2-Heptene	C7H14	98	33.7	113119
34	3.89	41	2-Hexene, 3-methyl-, (Z)-	C ₇ H ₁₄	98	7.85	114046
35	3.96	81	2,3-Dimethyl-1,4- pentadiene	C7H12	96	8.68	113670
36	4.07	81	Cyclopentane, 1-methyl- 2-methylene-	C7H ₁₂	96	12.6	62523
37	4.17	83	Cyclohexane, methyl-	C7H14	98	60.0	118503
38	4.31	69	Cyclopentane, ethyl-	C ₇ H ₁₄	98	49.6	940
39	4.39	79	1-Cyclohexene-1-	C ₇ H ₁₂ O	112	18.5	52048
			methanol				
40	4.44	81	Norbornane	C ₇ H ₁₂	96	6.07	114371
41	4.50	79	1,3,5-Heptatriene, (E,E)-	C ₇ H ₁₀	94	15.3	118126
42	4.55	81	Cyclopentene, 4,4-dimethyl-	C ₇ H ₁₂	96	14.4	38642
43	4.61	67	Cyclopentane, ethylidene-	C ₇ H ₁₂	96	22.5	151340
44	4.76	43	Heptane, 4-methyl-	C_8H_{18}	114	59.6	113916
45	4.81	91	Toluene	C7H8	92	37.6	291301
46	4.87	81	Cyclohexene, 3-methyl-	C7H12	96	10.6	236066
47	4.96	67	Cyclopropane, (2-methylenebutyl)-	C ₈ H ₁₄	110	6.19	62733
48	5.01	41	1,4-Octadiene	C ₈ H ₁₄	110	26.5	113431
49	5.07	56	1-Heptene, 2-methyl-	C ₈ H ₁₆	112	27.3	113675
50	5.15	41	1-Octene	C ₈ H ₁₆	112	27.6	1604
51	5.23	55	2-Octyn-1-ol	C ₈ H ₁₄ O	126	12.2	113247
52	5.30	43	Octane	C ₈ H ₁₈	114	35.6	229407
53	5.39	55	3-Octene, (Z)-	C ₈ H ₁₆	112	12.3	113895
54	5.55	83	cis-1,1,3,4-tetramethyl- Cyclopentane	C9H ₁₈	126	12.4	34789
55	5.92	69	Cyclohexane, 1,3,5- trimethyl-, $(1\alpha,3\alpha,5\beta)$ -	C9H ₁₈	126	20.1	2480
56	6.00	43		СоЦто	126	55.7	113516
			2,4-Dimethyl-1-heptene	C ₉ H ₁₈			
57	6.35	69	Cyclohexane, 1,3,5- trimethyl-, $(1\alpha,3\alpha,5\beta)$ -	C9H ₁₈	126	31.6	2480
58	6.40	91	Ethylbenzene	C_8H_{10}	106	70.8	114918
59	6.55	91	Cyclohexanol, 1- ethynyl-, carbamate	C9H ₁₃ NO ₂	167	29.4	313023
60	6.70	41	Cyclohexane, 1- propenyl-	C9H ₁₆	124	11.0	26935
61	6.78	70	Heptane, 3-methylene-	C8H16	112	6.46	60836
O I			-				
	6.88	41	cis-2-Nonene	C9H18	126	11.0	113508
62 63	6.88 6.94	41 104	cis-2-Nonene Styrene	С9Н ₁₈ С8Н8	126 104	11.0 37.5	113508 291542

Eur. Chem. Bull. 2012, 1(3-4), 114-123

64	7.02	43	Nonane	C ₉ H ₂₀	128	29.7	228006
65	7.10	55	4-Nonene	C9H ₁₈	126	11.6	113904
66	7.24	55	2-Octyn-1-ol	C ₈ H ₁₄ O	126	10.5	113247
67	7.66	55	Cyclopentane, butyl-	C9H ₁₈	126	16.1	114172
68	7.87	67	Cyclopentene, 1-butyl-	C9H ₁₆	124	41.1	113491
69	8.43	41	1,9-Decadiene	$C_{10}H_{18}$	138	14.3	118291
70	8.49	118	Azetidine, 3-methyl-3- phenyl-	$C_{10}H_{13}N$	147	32.0	4393
71	8.59	41	1-Decene	$C_{10}H_{20}$	140	13.7	118883
72	8.73	57	Decane	$C_{10}H_{22}$	142	52.8	114147
73	8.81	55	2-Decene, (Z)-	$C_{10}H_{20}$	140	11.6	114151
74	8.85	43	Decane, 4-methyl-	$C_{11}H_{24}$	156	10.8	5261
75	8.92	43	Octane, 3,5-dimethyl-	$C_{10}H_{22}$	142	9.96	114062
76	9.39	41	2,4-Pentadien-1-ol, 3- pentyl-, (2Z)-	$C_{10}H_{18}O$	154	6.46	142197
77	9.75	91	Bicyclo[3.1.1]heptan-3- ol, 6,6-dimethyl-2- methylene-, [1S-	C ₁₀ H ₁₆ O	152	15.3	151861
70	0.00	41	$(1\alpha,3\alpha,5\alpha)$]-	Control	1.40	2 22	2652
78 70	9.99	41	1-Octene, 3,7-dimethyl-	C ₁₀ H ₂₀	140	3.22	3653
79	10.06	41	5-Tridecene, (Z)-	C ₁₃ H ₂₆	182	5.28	142618
80 81	10.24 10.30	41 41	1-Undecene E-10-Pentadecenol	C ₁₁ H ₂₂ C ₁₅ H ₃₀ O	154 226	7.34 4.48	5022 245484
82	10.30	43	Undecane	C ₁₅ H ₃₀ O C ₁₁ H ₂₄	156	48.2	114185
83	10.37	43	3-Undecene, (Z)-	C ₁₁ H ₂₄ C ₁₁ H ₂₂	154	9.86	142598
84	10.43	41	2-Decyn-1-ol	C ₁₀ H ₁₈ O	154	9.00	53366
85	11.06	41	4-Chloro-3-n-	C ₁₀ H ₁₈ G C ₁₁ H ₂₁ ClO	204	13.2	216835
			hexyltetrahydropyran				
86	11.12	69	2-Isopropenyl-5- methylhex-4-enal	$C_{10}H_{16}O$	152	6.71	191046
87	11.16	41	1b,5,5,6a-Tetramethyloctahydro-1-oxa- cyclopropa[a]inden-6- one	C ₁₃ H ₂₀ O ₂	208	6.62	194131
88	11.66	41	Z-1,8-Dodecadiene	$C_{12}H_{22}$	166	7.63	245715
89	11.79	41	3-Dodecene, (E)-	$C_{12}H_{24}$	168	9.43	113960
90	11.91	43	Dodecane	$C_{12}H_{26}$	170	22.1	291499
91	12.38	41	2-Piperidinone, N-[4-bromo-n-butyl]-	C9H ₁₆ BrNO	233	3.98	251632
92	12.49	41	Z-10-Pentadecen-1-ol	$C_{15}H_{30}O$	226	6.62	245485
93	12.62	41	1-Nonadecanol	$C_{19}H_{40}O$	284	4.45	13666
94	13.14	41	Z-10-Pentadecen-1-ol	C ₁₅ H ₃₀ O	226	8.47	245485
95	13.26	41	2-Tridecene, (E)-	$C_{13}H_{26}$	182	7.28	142614
96	13.37	43	Tetradecane	$C_{14}H_{30}$	198	13.6	113925
97	13.51	43	4-	$C_{15}H_{27}F_3O_2$	296	2.38	245473
			Trifluoroacetoxytridecan e				
98	13.63	43	1-Octanol, 2-butyl-	$C_{12}H_{26}O$	186	3.49	114639
99	14.36	41	1,12-Tridecadiene	$C_{13}H_{24}$	180	6.25	7380
100	14.53	41	Z-10-Pentadecen-1-ol	$C_{15}H_{30}O$	226	11.8	245485
101	14.64	41	7-Tetradecene, (E)-	$C_{14}H_{28}$	196	4.90	142631
102	14.74	43	Tetradecane	$C_{14}H_{30}$	198	18.4	113925
103	14.79	41	7-Tetradecene	$C_{14}H_{28}$	196	5.46	70643
104	15.48	41	1-Nonadecanol	C ₁₉ H ₄₀ O	284	8.74	13666
105	15.94	55 42	1-Hexadecene	C ₁₆ H ₃₂	224	6.29	118882
106	16.03	43	Hexadecane	C ₁₆ H ₃₄	226	21.5	114191
107 108	16.08	41 41	E-2-Hexadecacen-1-ol 1-Hexadecene	C ₁₆ H ₃₂ O	240 224	4.99 5.93	131101
108	17.17 17.26	41 41	Hexadecene Hexadecane	C ₁₆ H ₃₂	224	5.93 17.8	118882 114191
1109	17.29	41	1-Hexadecene	С ₁₆ H ₃₄ С ₁₆ H ₃₂	224	4.10	118882
110	17.29	41	10-Heneicosene (c,t)	C ₁₆ H ₃₂ C ₂₁ H ₄₂	294	3.10	113073
112	18.25	41	Z-10-Pentadecen-1-ol	C ₁₅ H ₃₀ O	226	13.1	245485
113	18.34	83	1-Nonadecene	C ₁₉ H ₃₈	266	5.65	113626
	m Rull 201			-1730		2.00	-12020

114	18.42	43	Octadecane	$C_{18}H_{38}$	254	11.2	57273
115	18.45	55	10-Heneicosene (c,t)	C ₂₁ H ₄₂	294	5.31	113073
116	18.76	43	Trichloroacetic acid,	C ₁₈ H ₃₃ Cl ₃ O	386	5.30	280518
			hexadecyl ester	2			
117	19.07	43	1-Docosanol	- С ₂₂ Н ₄₆ О	326	5.25	23377
118	19.44	55	1-Nonadecene	C ₁₉ H ₃₈	266	6.65	113626
119	19.52	43	Nonadecane	$C_{19}H_{40}$	268	12.2	114098
120	19.70	43	1-Decanol, 2-hexyl-	C ₁₆ H ₃₄ O	242	9.73	114709
121	20.43	55	E-2-Octadecadecen-1-ol	C ₁₈ H ₃₆ O	268	13.1	131102
122	20.50	55	1-Nonadecene	$C_{19}H_{38}$	266	10.1	113626
123	20.57	85	Heptadecane	C ₁₇ H ₃₆	240	9.96	107308
124	21.50	55	1-Docosene	C ₂₂ H ₄₄	308	9.51	113878
125	21.57	57	Nonadecane	C ₁₉ H ₄₀	268	10.3	114098
126	22.47	83	1-Docosene	C22H44	308	11.8	113878
127	22.52	57	Nonadecane	C ₁₉ H ₄₀	268	7.43	114098
128	23.39	55	1-Docosene	C ₂₂ H ₄₄	308	18.1	113878
129	23.44	43	Nonadecane	C ₁₉ H ₄₀	268	5.88	114098
130	24.29	55	1-Docosene	C22H44	308	14.8	113878
131	24.33	43	Eicosane	C ₂₀ H ₄₂	282	6.10	290513
132	25.14	43	1-Docosene	C ₂₂ H ₄₄	308	12.0	113878
133	25.19	57	Octadecane	C ₁₈ H ₃₈	254	5.34	57273
134	26.02	57	Hexacosane	C ₂₆ H ₅₄	366	5.27	107147
135	26.83	57	Nonadecane	C ₁₉ H ₄₀	268	4.38	114098
136	27.62	57	Eicosane, 2-methyl-	C ₂₁ H ₄₄	296	5.46	113884
137	28.40	57	Octadecane	C ₁₈ H ₃₈	254	5.41	57273
138	29.17	57	Heneicosane, 11-(1-	C ₂₆ H ₅₄	366	4.02	16318
			ethylpropyl)-				
139	29.95	57	Heptacosane	C27H56	380	4.35	79427
140	30.78	57	1-Decanol, 2-hexyl-	$C_{16}H_{34}O$	242	3.96	113815
141	31.72	57	1-Heptacosanol	C ₂₇ H ₅₆ O	396	4.82	16909
142	32.79	57	Heptacosane	C ₂₇ H ₅₆	380	6.95	79427
143	34.02	57	1-Heptacosanol	$C_{27}H_{56}O$	396	8.96	16909
144	35.45	57	10-Octadecenal	C ₁₈ H ₃₄ O	266	4.84	36160
145	37.09	57	1-Heptacosanol	C ₂₇ H ₅₆ O	396	9.81	16909

GC-MS results of the liquid product formed in thermal decomposition of the mixture containing 20 % CaCO₃ and waste plastics can be seen in Fig. 3 and Table 3.

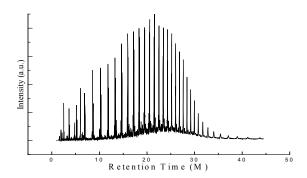


Figure 3: GC/MS chromatogram of liquid product formed in thermal decomposition of the mixture containing $10~\%~CaCO_3$ and random waste plastics

The analysis showed the presence of a variety of compounds formed with carbon atoms between C_3 and C_{27} . Based on the retention times and fragmentation patterns, hydrocarbons, as well as halogen, oxygen, or nitrogen containing organic compounds were detected.

The most important hydrocarbon constituents found were cyclopropane (C₃H₆) (t=1.49, m/z=41), 2-butene (C₄H₈) 1.63, m/z=41), cis-1,2-dimethylcyclopropane (C_5H_{10}) (t=1.95, m/z=55), hexane (C_6H_{14}) (t=2.58, m/z=57), methylcyclopentane (C₆H₁₂) (t=2.90, m/z=56), 2-methyl-1-hexene $(C7H_{14})$ (t=3.58,methylcyclohexane (C7H14) (t=4.17, m/z=83), 1-octene (C₈H₁₆) (t=5.15, m/z=41), $1\alpha, 3\alpha, 5\beta-1, 3, 5$ -trimethylcyclohexane(C9H₁₈) (t=5.92, m/z=69), decane (C₁₀H₂₂) (t=8.73, m/z=57), undecane $(C_{11}H_{24})$ (t=0.37, m/z=43), dodecane (C₁₂H₂₆) (t= 11.91, m/z=43), tetradecane $(C_{14}H_{30})$ (t=14.74, m/z=43), nonadecanes (C₁₉H₄₀) $(t=19.52 \text{ and } t=21.57, \text{ m/z}=43), \text{ eicosane } (C_{20}H_{42})$ m/z=43), (t=24.33,11-(1-ethylpropyl)-heneicosane (C₂₆H₅₄) (t=29.17, m/z=57). Different kinds of aromatic compounds such as benzene (C₆H₆) (t= 3.27, m/z=78), toluene (C7H8) (t=4.81, m/z=91), and styrene (C8H8) (t=6.94, m/z=104) were mainly found in the liquid products formed from wastes containing polystyrene. Oxygen-containing compounds such cyclohexenenylmethanol (C7H₁₂O) (t=4.39, m/z=79), Z-10-pentadecen-1-ol (C₁₅H₃₀O) (t=18.25, m/z=41), or 1heptacosanol (C₂₇H₅₆O) (t=34.02, m/z=57) could also

be detected. Some halogen containing products such as N-[4-bromo-n-butyl]-2-piperidinone (C9H₁₆BrNO) (t=12.38, m/z=41) were probably formed due to presence of additives or dyes in the waste plastics.

Conclusion

Thermal degradation of random mixtures of waste plastics containing low and high density polyethylene, polypropylene, and polystyrene, and 10% or calcium carbonate in a steel reactor at temperatures 100-430 °C resulted in a fuel-like liquid decomposition product. GC/MS studies showed that, in the presence of 10% or 20 % calcium carbonate, the fuel-like hydrocarbon ranges were found to be C₄-C₄₀ or C₃-C₂₇, respectively. Both liquid fractions contain mainly aromatic and aliphatic hydrocarbons such as benzene toluene(C_7H_8), ethylbenzene propylbenzene (C₉H₁₂), α-methylstyrene (C₉H₁₀), and 1ethenyl-2-methylbenzene (C₉H₁₀). When using a higher amount (20 %) of CaCO₃, the amount of residue increased and the amount of light gas and liquid products decreased, with the liquid seeming to be thicker.

Acknowledgements

The authors acknowledge for the support of Dr. Karin Kaufman, the founder and sole owner of Natural State Research, Inc. The authors also acknowledge for the valuable contribution of NSR laboratory team members during preparation of this manuscript.

References

- ¹ Characterization of Municipal Solid Waste in the United States, 1994, Update, EPA Report 530-R-94-042.
- ² Bailey, R. (ed.), European Energy to 2020, European Communities, Luxembourg, **1996**, Report No. 92/827/ 5226/7. Part 3.
- ³ Pereia, M. Energias renovaveis (Renewable energies), Sociedade Portuguesa de Energia Solar, Lisbon, 1998.
- ⁴ European Topic Center on Waste, Waste Generation and Management, European Environment Agency, Copenhagen, 1999, Chapter 3.
- ⁵ European Union's Framework Program-ENERGIE, The Use of Industrial Waste as Alternative Fuels in the Cement Industry, Institute for the Diversification and Saving of Energy, Madrid, 2000, Report No. DIS- 1289-97-ES.
- ⁶ Kikuchi, r., Sato, H., Matsukura, Y., Yamamoto, T. Fuel Process. Technol., 2005, 86, 1279.
- ⁷ Scott, G. Polymers and the environment. London: Royal Society of Chemistry, 1999.
- ⁸ Brandrup, J., Bittner, M., Michaeli, W., Menges, G. Recycling and recovery of plastics. Munich, New York: Carl Hanser Verlag, 1996.
- ⁹ Kaminsky, W., Schlesselmann, B., Simon, C. J Anal Appl Pyrolysis 1995, 32, 19.
- ¹⁰ Sodero S. F, Berruti F., Behie L. A. Chem. Eng. Sci. **1996**, *51*, 2805.
- ¹¹ Mastellone, M. L., Perugini, F., Ponte, M., Arena, U., Polym. Degrad. Stab., **2002**, *76*(3), 479.
- ¹² Yeuh-Hui Lin, Polym. Degrad. Stab., **2009**, *94*, 1924.
- ¹³ Huffman, G. P., Feng, Z., Mahajan, V., Sivakumar, P., Jung, H., Tiemey J. W. and Wender I. Am. Chem. Sot., Div. Fuel Chem., Prepr., 1995, 40(1), 34.
- ¹⁴ Liu, K., Meuzelaar, H. L. C. Fuel Process. Technol. **1996**, *49*, 1.

Received: 23.08.2012 Accepted: 01.09.2012.