
HOW TO CLONE A LARGE NUMBER OF PCs

© András Keszthelyi
(Budapest Tech – Polytechnical Institution)

kea@turul.banki.hu

Computer sciences are taught in all kinds of schools from elementary
grade to universities both in theory and in practice. Schools usually
have computer labs to serve this education activity. The technical

management of these labs needs very different type of activities. One
of them is to install or re-install the computers, which can be a very

dully and time-consuming activity with the possibility of human
mistakes. In this article I show two methods for two different

situations to automate this process.

Keywords: Linux, computer lab management

In our school, the Budapest Polytechnic, there is a department computer lab
with 20 identical personal computers in it, and only one additional cd/dvd
rom in the 20th machine. Sometimes it is necessary to install or re-install an
operating system and its applications on these machines. Istalling
individually on each of twenty machine is not only a very slow and dull
process but can result in less or more differencies among the computers. So
the task is to install these machines with the simplest possible way, i.e. with
the least human interaction by "copying" the installed system from one
machine to another. This is the so-called cloning. There are some softwares
to manage this task but I would like to solve the problem without any special
softwares with only the standard utilites of the operating system. My
solution is based on Linux.

Our computers are set up with Linux operating system. This decision has
some advatages in our situation. Our students can not only see but try it out
personally. From the point of view of the maintainer of the computer lab the
possibility of the remote and batch mode maintaining is an important
circumstance as well as the stability of the system (in an environment full of
students:). Having lawful softwares in the whole lab is also very important.
It is not widely known that the Microsoft Campus Licence is an upgrade
licence so it needs a legal copy of a previous Windows version.

The hardware configuration is the following: P-IV processors of 1,5 GHz
clock speed, 256 MB RAM, hard drives of 40 GB in each computer. The
hard drives are divided into two partitions: the first (/dev/hda1) is a six GB
partition for the operating system and the applications while the rest for the
working place. The local network is a 100 Mbit/sec ethernet.

At this point two cases can be distinguished. We are in a lucky situation
with the totally identical hardwares but the method to be made known later is
good to handle the case of different hardwares, too.

73

First case: Absolutely identical hardware and Windows
If we have the very same hardware configuration even Windows operating
systems can be cloned as well. This method needs more time than the other.
The basics of the method is to make a disk-copy between two computers, i.e.
to make a sector by sector copy of the system (boot) partition.

The first step is to make the source. Operating system must be installed
and prepared (e.g. with sysprep) on one computer. Suppose that the primary
master hard disk is used. The free space on the system partition should be
zeroed in order to have better compression rate. This can be done by writing
zero bytes (or spaces) to a file until the disk is full then by deleting this file.

The second step is to prepare the second partition. Boot Linux from CD
on the newly installed Windows machine. The second partition is now empty
yet. Make a suitable filesystem (e.g. Reiser journalling filesystem) on it:

mkreiserfs /dev/hda2

Mount the second (writeable by Linux) partition to an existing mount point:

mount /dev/hda2 /mnt/hda2 -t reiserfs

At this point we have a fully prepared, ready to clone Windows partition
(/dev/hda1 under Linux) and a Linux partition which is able to store the
partition image.

Third step: to make the partition image. This will take some time,
because the whole partition should be read and compressed into one (huge)
file. To guarantee the identical (free of human mistakes) partitioning of the
other computers we save the master boot record as well. Be careful and do
remember the difference between hda, hda1 and hda2.

dd if=/dev/hda1 bs=512 | gzip -c9 > /mnt/hda2/winimage.gz

dd if=/dev/hda of=/mnt/hda2/mbr.dat bs=512 count=1

The two files in /mnt/hda2/ can be saved for later use, of course. For the
following step suppose that they are on an nfs-capable Linux box, either on
the original, cd-booted machine or on a real Linux server. The Linux
machine should be configured to export /mnt/hda2 for nfs (network file
system). Because of the large amount of data it is better to have our Linux
nfs server on the same subnet as the machines to be cloned. The very basics
of making nfs server and client under Linux is described later.

Fourth step: cloning the other machines. Supposing that the other
machines have no CD/DVD drives boot Linux on them one by one from
floppy disk(s). If one has CD/DVD-ROM or a USB-boot-capable BIOS in
each machine that makes the situation more comfortable. The very basics of
making boot floppies under Linux is discussed later. After the machine to be
cloned has been booted it must be act as an nfs-client and the following
commands must be performed:

ifconfig eth0 a.b.c.d

where a.b.c.d is the IP address of the floppy-booted machine (e.g.
192.168.88.19). At this point the portmapper program should be able to start:

rpc.portmap

74

Supposing that a.b.c.e is the IP address of the Linux nfs server machine
(e.g. 192.168.88.2) the directory containing the partition image can be
mounted via nfs:

mount a.b.c.e:/mnt/hda2 /mnt -t nfs

Next we must make the needed partitions on the new machine by the help
of the saved mbr data:

dd if=/mnt/mbr.dat of=/dev/hda

After this we should run the fdisk program manually and quit with the
"w" command in order to force the system to re-read the partition table. At
this point we have the two partitions we need, the two partitions with the
very same size as that of the original, source machine. Of course these are
empty partitions even without a filesystem. We do not need to create any
filesystems on the first partition because the partition image contains that as
well. The second partition is not needed for the cloning itself, after the first
boot of the cloned machine it can be formatted and used as needed.

The command

gzip -dc /mnt/winimage.gz | dd of=/dev/hda1 bs=512

copies the pre-installed system to the first partition. It takes some (long) time
depending the size of the image, the network bandwidth and the processor
performance (because all the data should not only be transferred via the
network but be decompressed as well) and the performance of the hard
drives. In the case of an old 10 Mbit/sec network the limit is the bandwidth
while in the case of a 100 Mbit/sec network the the limit may be the hard
drive performance. In the latter case the hdparm utility can help (see
forward).

When the last gzip command finishes the newly cloned computer is ready
to reboot. Do not forget to remove the floppy disk! After rebooting the
sysprep-ed Windows must start. I successfully used this method for cloning
the computers of my colleagues before.

Second case: Different hardware and Linux

If we use Linux operating system we are in a better situation because a
quicker cloning method can be used even if our computer hardwares are
different. The absolutely minimal requirement is to have a kernel that can
boot on all our machines to be cloned.

We can clone Linux even by copying filesystem itself. This solution takes
less time than the first because there is no need to write the whole partition
to the end.

We must install Linux on the first computer, of course. There is no need
to make other pre- or post-install steps. Then rebooting this machine from
CD we can make the "image" file for the cloning. Supposing the same
partition scheme as in the first case we have our newly installed Linux
operating system and its applications on /dev/hda1 while we have /dev/hda2
as an empty (and large enough) partition for the "image" file.

We can make a compression of the whole system partition by the
commands:

75

cd /mnt/hda1

tar -czf /mnt/hda2/hda1files.tgz ./*

Since we put (and compress) together all the files of the system partition
we ought not to care about the occupied and free disk space. We prepare the
nfs-export and boot the other machines just as the same manner as in the first
case, but we need three more things to care about.

We must be able to make the empty filesystem on the machines to be
cloned because we copy not a whole partition but a filesystem hierarchy. We
should run lilo after the decompression but we have no guarantee that the
files needed for booting the kernel are in the same sectors as in the source
machine. The third thing is to run hdparm at the beginning to improve the
speed.

These programs can not be placed on the rootfs floppy because there is
not enough space on it. Having placed them on the nfs-exported /mnt/hda2
directory I got only error messages about different or unlocatable dynamic
system libraries. I could solve this problem by compiling and linking these
utilities from source statically. To make static executables I appended
"-static" to the CFLAGS and LDFLAGS variables in the Makefile of each
utility. The statically linked programs can be placed in the nfs-exported
directory and they run without any problems (at least without problems of
the dinamically linked libraries).

The first steps are the same as in the first case. Booting from floppies,
setting up the network card, starting the portmapper and mounting our
source via nfs.

After completed these steps we should improve the hard disk
performance by the hdparm utility. In my case:

/mnt/hdparm_static -c1 -d1 -u1 /dev/hda

ATTENTION! BE CAREFUL! It must be tested previously what
parameters our hard drives can tolerate.

After partitioning the local hard disk just in the same mode as in the first
case we must make the filesystem on it:

/mnt/mkreiserfs_static /dev/hda1

where mkreiserfs_static is the name of the statically linked mkreiserfs utility
given by me.

Mount the new partition to a new mount point then decompression can be
started:

mkdir /mnt1

mount /dev/hda1 /mnt1

cd /mnt1

tar -xzps --same-owner -f /mnt/hda1files.tgz

Lilo should be run at the end (lilo_static is the name of the statically
linked lilo utility given by me):

/mnt/lilo_static -v -r /mnt1

Unmount /dev/hda1 and the remote nfs export, reboot the machine

76

(remove floppy!) and after some little corrections the newly cloned Linux
computer is ready to use. These corrections are the following: changing the
hostname in /etc/HOSTNAME, the IP-address in /etc/rc.d/inet1.conf (in my
case, Slackware distro, so the path and name of this file may vary).

I used this method in our computer lab the other day, also successfully.
My situation in the field of the hardware differencies can be considered very
good, for I have only two differencies: one of the computers has a ps/2
mouse instead of an usb one and another machine has a different kind of
monitor than the others. So after a full re-install I should change some (little)
configuration settings only on two pc-s.

Basics of nfs
I think that if one feels himself or herself capable of trying out these methods
he or she must have at least a little Linux experience. Supposing this little
experience I will not discuss all the aspects of making nfs servers and clients
as I did not discuss all the possible problems of the above methods. A brief
summary may give the main guidelines.

Kernel must be able to handle nfs file system. On the nfs server at least
the following commands must be run:

exportfs -r

rpc.portmap

rpc.nfsd

rpc.mountd

and the contents of the /etc/exports file is the following:

/mnt/hda2/kalyha

192.168.88.0/255.255.255.0(ro,no_subtree_check)

/mnt/hda2/kalyha 127.0.0.1(ro,no_subtree_check)

Because the floppy-booted small system has very few tools for tracing
possible errors one can try out the nfs-export on the nfs-server (mount
localhost:/mnt/hda2 /mnt/aux -t nfs) or at least the command "rpcinfo -p"
should produce a list -- or error messages. The possible warning message
"mount version older than kernel" on the client machines can be disregarded.

Basics of boot-floppies

We need two error-free floppy disks. One for the kernel and the other for the
minimal root filesystem. If we compiled our own kernel before the kernel
floppy is not a serious exercise. Simply say "no" in the kernel config for all
unnecessary options (sound, video, etc.). The options must be compiled in:
support for nfs and for the filesystem of the root fs in our example for
reiserfs. In addition the appropriate driver for our network card(s) and initrd
support is needed as well.

After having compiled the kernel (make menuconfig; make -s dep; make
-s bzImage) we have a bzImage in the [kernel source]/arch/i386/boot
directory. If the size of this file is bigger than the size of the floppy we are
wrong and must repeat the compilation without more unnecessary options.

Kernel should "know" that the root filesystem must be loaded from
floppy disk and that it should prompt for floppy change.

77

rdev bzImage /dev/fd0

rdev -R bzImage 0

rdev -r bzImage 49152

After this step the newly compiled kernel can be copied onto the first
floppy disk which can be formatted and verified before:

fdformat /dev/fd0

dd if=bzImage of=/dev/fd0 bs=512

For the second floppy we can find a root fs image on the Linux install CD
or somewhere on the web. The content of a root floppy can be modified in a
very simple way. Mount the rootfs image file via the loopback device:

mount rootfs.img /mnt/aux -o loop

In /mnt/aux one will see the content of the root filesystem. One can copy
extra files on to it if necessary and if there is enough free space on it. After
umounting the image file must be compressed:

gzip -c9 rootfs.img > rootfs.img.gz

and the size of the compressed file must be within the floppy size. It can be
copied on to the second floppy just as the kernel image on to the first one.

Floppy disk drive should be set as the first boot device in CMOS setup.
We start with the first (kernel) floppy. When it asks for the second one
("Insert floppy with root fs and press ENTER") change the floppy. After
loading the root filesystem the second floppy can be taken out as well.

Remarks
Booting a PC from floppy disk(s) is the absolutely minimal requirement. If
we have a CD/DVD in each computer or their BIOS can be boot from pen-
drive we are in a more comfortable position.

In my case (configuration is at the top) the filesystem transfer (second
method, about 1 GB image size) takes up about 3 (three) minutes which is
not enough to boot the following machine and make the corrections of the
previous one.

In the second case the hardware configuration of the computers may vary
in a wide range. The only criterium is that we must produce a kernel on the
source machine which is able to boot on each cloned machine as well. If a
cloned machine can boot all the other necessary configuration steps can be
achieved in batch mode from a remote computer via ssh.

References

PETRELEY, N. & BACON, J. (2006). Linux asztali gépen. Budapest: O'Reilly &
Kiskapu.
HAGEN, B. VON & JONES BRIAN, K. (2006). Linux bevetés közben. Második
küldetés. Budapest: O'Reilly & Kiskapu.

78

