A fényrács vektoregyenlete

The Vector Equation of the Diffraction Grating

Ecuația vectorială a rețelei optice

BÍRÓ Tibor

Sapientia Egyetem, Műszaki és Humán Tudományok Kar, Marosvásárhely biro17@freemail.hu

ABSTRACT

Any light ray, incident on a plain diffraction grating, produces a reflected and a transmitted system of light rays. As both incident and diffracted rays can be characterized by vectors, we will assign vectors to the diffraction grating as well. We are searching a vector equation whose solutions describe the rays diffracted on the grating. The obtained equation – that will be called the vector equation of the diffraction grating – can be directly applied for any plain – both linear and crossed – grating, and for incident rays of any direction.

ÖSSZEFOGLALÓ

Egy síkrácsra eső fénysugár létrehozza a visszaverődéses, valamint az átmenő elhajlási sugarak rendszerét. Mivel, mind a beeső, mind az elhajlási sugarak irányához vektorokat használunk, vektorokat rendelünk a fényrácshoz is. Keresünk egy olyan vektoregyenletet, melynek megoldásai éppen a rácson diffraktált sugarak vektorai. A kapott egyenlet – a fényrács vektoregyenlete – közvetlenül használható bármely sík vonal-, illetve keresztrácsra eső, bárhonnan érkező beeső sugár esetére.

1. BEVEZETÉS

Ismert, hogy a fényvisszaverődés és -törés jelensége egységvektorokkal egyszerűen leírható [1],[2],[3]. Célunk, hogy ehhez hasonlóan alkalmazzuk a vektoros tárgyalásmódot, a fény rácson történő elhajlásánál is!

Essen az ismert jellemzőkkel rendelkező, egyszerre áteresztő és visszaverő fényrácsra, bármely szög alatt, egy λ hullámhosszú, sík, koherens, fényhullám, mely ezen elhajlást szenved. A fényrács lehet sík-, *vo-nalrács* vagy *keresztrács*.

Keressünk egy olyan *vektoregyenlet*et, amelyet az *összes* – átmenő és visszavert – elhajlási sugár *egy-ségvektor*a kielégít, tartalmazván a beeső sugár valamint a fényrács jellemzőit.

Ezt tekinthetjük a rácson létrejövő fényelhajlás vektoregyenletének.

A sík fényrácsok jellemzésére, és térbeli helyzetének megadására használjunk vektorokat!

- A fényrács síkjának helyzetét a rá merőleges, (*n*ormális) \vec{N} egységvektorával adjuk meg.
- Vezessük be, a *vonalrács* sűrűsége és egyúttal a vonalak térbeli iránya megadása céljából, az \vec{R} *rácsvektor*t (nevezzük így!). \vec{R} legyen párhuzamos a *r*ácsvonalakkal és nagysága $|\vec{R}| = R = 1/a$, ahol *a* a rács vonalainak távolsága: $[R_{SI}] = 1/m$, (1. ábra).
- A *keresztrács*ot pedig próbáljuk úgy elképzelni, mint két egymásra fektetett, vagyis azonos síkban fekvő, *a* valamint *b* állandójú "*a*" és "*b*" vonalrácsot (2. ábra). Az "*a*" és "*b*" vonalrácsokhoz viszont az $\vec{R}_a \, \acute{es} \, \vec{R}_b$ rácsvektorok tartoznak: $R_a = 1/a$, $R_b = 1/b$. Ezért a keresztrács az

 $\vec{R}_a \, \acute{es} \, \vec{R}_b$ rácsvektorok együttesével jellemezhető, melyek szöge γ .

– A rácsra eső, λ hullámhosszú fénysugár irányát a ráhelyezett \vec{e} egységvektorral adjuk meg, $|\vec{e}| = 1$

A térbeli rácsokra a diffrakciós irányok megkeresése jól kidolgozott [4], ezért ezt alkalmazni fogjuk a síkrácsok sajátos esetére.

1. ábra A vonalrácshoz rendelt egységvektorok

2. ábra A keresztrácshoz rendelt egységvektorok

2. A KERESZTRÁCS VEKTOREGYENLETE

Bármely sík-keresztrácshoz, az említett szerkezetnek megfelelően, választhatunk két elemi eltolási vektort, jelölje ezeket \vec{a}^* és \vec{b}^* . Ezekkel az \vec{a}^* és \vec{b}^* eltolási vektorokkal megadott sík-keresztrács segítségével, képezzünk egy tér-rácsot, úgy, hogy ennek síkját – normálisa mentén – önmagával párhuzamosan egy \vec{c}^* vektorral rendre eltoljuk (3. ábra).

3. ábra A keresztráccsal képezett térrács és eltolási vektorai

4. ábra A térrácshoz rögzített koordinátarendszer

Tételezzük fel, hogy az így szerkesztett tér-rács minden rácspontjához a beeső fény egyformán eljut és az általuk szórt fény (melyek interferenciája révén az elhajlási sugarak létrejönnek) λ' hullámhossza változatlan marad: $\lambda' = \lambda$.

Ehhez, a sajátosan szerkesztett, \vec{a}^* , \vec{b}^* , \vec{c}^* elemi eltolási vektorokkal rendelkező térrácshoz, rögzítsük az x, y, z, O koordináta-rendszert, melynek egységvektorai \hat{x}, \hat{y} , és \hat{z} (4. ábra).

Ebben felírható, hogy:
$$\begin{cases} \vec{a}^* = a^* \cdot \hat{x} \\ \vec{b}^* = b^* \cdot \hat{y}, \text{ és még} \\ \vec{c}^* = c^* \cdot \hat{z} \end{cases} \begin{cases} \hat{z} = \vec{N} \\ \vec{a}^* \perp \vec{N} \\ \vec{b}^* \perp \vec{N} \end{cases}$$

A térrácsra eső, valamint az ezt elhagyó elhajlási sugár egységvektorai \vec{e} és \vec{e} ', így a nekik megfelelő hullámvektorok $\vec{K} = (2\pi / \lambda).\vec{e}$ és $\vec{K}' = (2\pi / \lambda).\vec{e}$ '

A létrehozott térrács reciprok rácsának segítségével kapcsolatot teremtünk a \vec{K} és \vec{K} ' hullámvektorok között, amely elvezet az \vec{e} ' meghatározásához.

A rács $\vec{a}^*, \vec{b}^*, \vec{c}^*$ elemi eltolási vektoraival megszerkesztjük *reciprok rács*ának $\vec{A}, \vec{B}, \vec{C}$ alapvektorait; (nagyjából a [4] jelöléseit használjuk!):

$$\begin{cases} \vec{A} = 2\pi \frac{(\vec{b}^* \times \vec{c}^*)}{\vec{a}^* \cdot (\vec{b}^* \times \vec{c}^*)} = 2\pi \frac{b^* c^* (\hat{y} \times \hat{z})}{a^* b^* c^* \sin \gamma} = 2\pi \frac{(\hat{y} \times \hat{z})}{a^* \sin \gamma} \\ \vec{B} = 2\pi \frac{(\vec{a}^* \times \vec{c}^*)}{V} = 2\pi \frac{a^* c^* (\hat{x} \times \hat{z})}{a^* b^* c^* \sin \gamma} = 2\pi \frac{(\hat{x} \times \hat{z})}{b^* \sin \gamma} \\ \vec{C} = 2\pi \frac{(\vec{a}^* \times \vec{b}^*)}{V} = 2\pi \frac{a^* b^* (\hat{x} \times \hat{y})}{a^* b^* c^* \sin \gamma} = 2\pi \frac{1 \cdot 1 \cdot \hat{z} \sin \gamma}{c^* \sin \gamma} = 2\pi \frac{\hat{z}}{c^*} \end{cases}$$

V az elemi cella térfogata:

$$V = \vec{a}^* \cdot (\vec{b}^* \times \vec{c}^*) = a^* [\hat{x} \cdot (\hat{y} \times \hat{z})] b^* c^* = a^* b^* c^* \cdot 1 \cdot 1 \cdot \cos(90^\circ - \gamma) = a^* b^* c^* \sin \gamma .$$

Ezekkel az alapvektorokkal megadhatók a reciprokrács \vec{G} vektorai:

$$\vec{G} = n_a.\vec{A} + n_b.\vec{B} + n_c.\vec{C} \ .$$

Az n_a, n_b, n_c egész-szám értékeire, a \vec{G} , a reciprokrács csomópontjait határozza meg. Amennyiben a hullámvektor változása $\Delta \vec{K} = \vec{K}' - \vec{K}$ éppen egybeesik valamelyik reciprokrács csomópontot megadó \vec{G} reciprokrács-vektorral, akkor a diffrakció-maximum LAUE-féle feltételei teljesülnek: $\Delta \vec{K} = \vec{G}$. Részletesebben:

$$\Delta \vec{K} = \vec{K}' - \vec{K} = (2\pi/\lambda) \cdot \vec{e}' - (2\pi/\lambda) \cdot \vec{e}$$

és

$$\vec{G} = n_a \frac{2\pi(\hat{y} \times \hat{z})}{a^* \sin \gamma} + n_b \frac{2\pi(\hat{x} \times \hat{z})}{b^* \sin \gamma} + n_c \frac{2\pi \hat{z}}{c^*} \quad ,$$

vagyis:

$$(2\pi/\lambda)(\vec{e}'-\vec{e}) = n_a \frac{2\pi(\hat{y}\times\hat{z})}{a^*\sin\gamma} + n_b \frac{2\pi(\hat{x}\times\hat{z})}{b^*\sin\gamma} + n_c \frac{2\pi\hat{z}}{c^*}$$

és mivel $a^* \sin \gamma = a$, $b^* \sin \gamma = b$, $c^* = c$ (5. ábra):

$$\vec{e}' - \vec{e} = n_a \frac{\lambda(\hat{y} \times \hat{z})}{a} + n_b \frac{\lambda(\hat{x} \times \hat{z})}{b} + n_c \frac{\lambda \hat{z}}{c} \qquad \qquad \left| \left(\times \hat{z} \right) \right|$$

A fenti egyenlőséget \hat{z} -ral vektorosan szorozva a tér-rácsról visszatérünk a sík-keresztrácsra:

$$(\vec{e}'-\vec{e}) \times \hat{z} = n_a \frac{\lambda(\hat{y} \times \hat{z}) \times \hat{z}}{a} + n_b \frac{\lambda(\hat{x} \times \hat{z}) \times \hat{z}}{b} + n_c \frac{\lambda(\hat{z} \times \hat{z})}{c}$$

A 4. ábra alapján: $(\hat{y} \times \hat{z}) \times \hat{z} = -\hat{y}, (\hat{x} \times \hat{z}) \times \hat{z} = -\hat{x}, (\hat{z} \times \hat{z}) = 0$, így
 $(\vec{e}'-\vec{e}) \times \hat{z} = -n_a \frac{\lambda \hat{y}}{a} - n_b \frac{\lambda \hat{x}}{b}.$

De mivel: $\hat{z} = \vec{N}, \hat{y}/a = \vec{R}_a, \hat{x}/b = \vec{R}_b$, kapjuk, hogy:

$$(\vec{e}'-\vec{e}) \times \vec{N} = -n_a \lambda \vec{R}_a - n_b \lambda \vec{R}_b$$
.

Nyilván, minden egyes egész-számok alkotta (n_a, n_b) számpárnál, amelyre az egyenlet megoldható, létezik egy bizonyos \vec{e}' elhajlási sugár, ezt *megfelelőbb*, ha $\vec{e}_{n_a n_b}$ -vel jelöljük, $(n_a \text{ és } n_b \text{ a megfelelő diffraktált sugár rendszámai).$

Így, a sík-keresztrács keresett vektoregyenlete:

5. ábra A keresztrács eltolási vektorai és rácsállandói

6. ábra Átmenet keresztrácsról vonalrácsra

3. A VONALRÁCS VEKTOREGYENLETE

Keresztrácsból vonalrácsot kaphatunk, ha ennek egyik összetevő vonalrácsát, például a "b" rácsot anynyira összesűrítjük, hogy a \vec{b}^* irányú fényt szóró rácspont-sorai tulajdonképpen vonalakká álljanak össze (6. ábra). Ez bekövetkezik, ha $\vec{b}^* \rightarrow 0$, illetve ha $b \rightarrow 0$, de, mivel $|\vec{R}_b| = 1/b$ következik, hogy ekkor $|\vec{R}_b| \rightarrow \infty$.

Látható, hogy ezen elfajult keresztrács vektoregyenletének csak az $n_b = 0$ értékre van értelme, így a vonalrácsra: $(\vec{e}_{n_a 0} - \vec{e}) \times \vec{N} + n_a \lambda \vec{R}_a = 0$.

Ez egyszerűbben is felírható, mivel most csak egy vonalrács van. Ennél az elhajlási sugár rendszáma $n_a = n$, $\vec{e}_{n_a 0} = \vec{e}_n$ és $\vec{R}_a = \vec{R}$, ezért a sík-vonalrács vektoregyenlete:

$$(\vec{e}_n - \vec{e}) \times \vec{N} + n\lambda \vec{R} = 0$$
.

4. A KERESZTRÁCS VEKTOREGYENLETÉNEK MEGOLDÁSA

Célunk:

- Megvizsgálni a vektoregyenlet megoldásai által szolgáltatott elhajlási sugáregyüttest;
- ezek közül néhányat kísérletileg is kivitelezni;
- majd összehasonlítani.

Az irányok rögzítése céljából helyezzük a keresztrácsot egy *újan felvett x, y, z, O derékszögű* koordinátarendszer (*O*) kezdőpontjához, úgy, hogy az összetevő rácsok egyike (például most az "**a**" rács, vagyis az \vec{R}_a) az Ox, és normálisa (\vec{N}) az Oz irányba mutasson!

Jelölje $\vec{i}, \vec{j}, \vec{k}$ az i koordinátarendszer tengelyirányú egységvektorait. Mivel az \vec{R}_a az Ox tengelyen fekszik, és \vec{R}_b vele – az xyO síkban – γ szöget alkot (7. ábra), ezek vektorösszetevői:

$$\vec{R}_{a} \begin{cases} R_{ax} = R_{a} = 1/a \\ R_{ay} = 0 \\ R_{az} = 0 \end{cases}, \ \vec{R}_{b} \begin{cases} R_{bx} = R_{b} \cos \gamma = \cos \gamma/b \\ R_{by} = R_{b} \sin \gamma = \sin \gamma/b \\ R_{bz} = 0 \end{cases}, \ \vec{N} \begin{cases} N_{x} = 0 \\ N_{y} = 0 \\ N_{z} = 1 \end{cases}$$

A rácsra eső \vec{e} , valamint az n_a, n_b -rendű $\vec{e}_{n_a n_b}$ elhajlási sugár egységvektorának összetevői viszont:

$$\vec{e} \begin{cases} e_x = \sin \alpha . \cos \beta \\ e_y = \sin \alpha . \sin \beta \\ e_z = -\cos \alpha \end{cases} \stackrel{\acute{e}s}{=} \vec{e}_{n_a n_b} \begin{cases} e_{n_a n_b x} = ? \\ e_{n_a n_b y} = ? \\ e_{n_a n_b z} = ? \end{cases}$$

A keresztrács vektoregyenlete általában:

$$(\vec{e}_{n_a n_b} - \vec{e}) \times \vec{N} + n_a \lambda \vec{R}_a + n_b \lambda \vec{R}_b = 0 ,$$

melynek megoldása:

$$\vec{e}_{n_a n_b x} = \sin \alpha . \cos \beta + \lambda . n_b . R_b . \sin \gamma$$

$$e_{n_a n_b y} = \sin \alpha . \sin \beta - \lambda . (n_a . R_a + n_b . R_b \cos \gamma) .$$

$$e_{n_a n_b z} = \pm \sqrt{1 - e_{n_a n_b x}^2 - e_{n_a n_b y}^2}$$

Ha az elhajlási sugár:

$$- \text{visszaverődő (reflektált r): } e_{n_a n_b z} = +\sqrt{1 - e_{n_a n_b x}^2 - e_{n_a n_b y}^2} > 0 ,$$

- átmenő (transzmissziós t): $e_{n_a n_b z} = -\sqrt{1 - e_{n_a n_b x}^2 - e_{n_a n_b y}^2} < 0 .$

A keresztrácshoz rögzített koordinátarendszer és a beeső sugár irányát meghatározó α és β szögek

A fényrácsos kísérleteknél használt egyszerű berendezés

5. A VONALRÁCS VEKTOREGYENLETÉNEK MEGOLDÁSA

Amint a vonalrács vektoregyenletének levezetésénél láttuk az $n_b = 0$, amelyet behelyettesítve a keresztrácsnál kapott megoldásba, azonnal adódik a vonalrácsé is:

$$\vec{e}_{nx} = \sin \alpha . \cos \beta$$

$$e_{nx} = \sin \alpha . \sin \beta - \lambda nR$$

$$e_{nz} = \pm \sqrt{\cos^{2} \alpha + 2\lambda nR \sin \alpha . \sin \beta - \lambda^{2}R^{2}n^{2}}$$

6. AZ ELHAJLÁSI SUGARAK IRÁNYÁNAK VIZSGÁLATA

6.1. Keresztrács esete

Mekkora szöget alkot az n_a, n_b rendszámú elhajlási sugár a keresztrács \vec{R}_a és \vec{R}_b vektoraival? Az elhajlási sugár egységvektorának a rácsvektorral való skaláris szorzatát képezve,

$$\vec{e}_{n_a n_b} \cdot \vec{R}_a = \left| \vec{e}_{n_a n_b} \right| \left| \vec{R}_a \right| \cdot \cos \rho_{n_a n_b \vec{R}_a} = e_{n_a n_b x} \cdot R_{ax}$$

amiből szögük meghatározható:

$$\cos \rho_{n_{-}n_{+}\bar{R}_{-}} = \sin \alpha . \cos \beta + \lambda n_{b} R_{b} \sin \gamma$$

 $\cos \rho_{n_a n_b \vec{R}_a} = \sin \alpha . \cos \beta + \lambda n_b R_b \sin \gamma$ Teljesen hasonlóan: $\cos \rho_{n_a n_b \vec{R}_b} = \sin \alpha . \cos(\beta - \gamma) - \lambda n_a R_a \sin \gamma$.

Következtetés:

- Amint látható, a $\rho_{n_a n_b \bar{R}_a}$ szög nem függ az n_a -tól, így adott n_b rendszám esetén az összes n_a rendszámú $\vec{e}_{n_a n_b}$ elhajlási sugár az \vec{R}_a rácsvektorral (esetünkben az θx tengellyel is) azonos $\rho_{n_b \bar{R}_a}$ szöget alkot. Ezért ezek egy \vec{R}_a tengelyű körkúp felületén (mint alkotók) vannak.
- Hasonlóan, a $\rho_{n,n_b\bar{R}_b}$ szög független az n_b -től, amiért adott n_b esetén az $\vec{e}_{n_a n_b}$ az \vec{R}_b -vel, minden n_a -ra, azonos szöget zár be, így ezek az \vec{R}_b tengelyű körkúp felületének az alkotói.
- Így, általánosan kijelenthető, hogy az elhajlási sugarak az \vec{R}_a , valamint az \vec{R}_b tengelyű, közös O csúcspontú, két körkúp-rendszer felületeinek a metszésvonalain fekszenek! (Egyaránt, ha ezek transzmissziós, vagy akár reflexiós sugarak.)
- Helyezzünk az elhajlási sugarak útjába egy vetítőernyőt. Az ernyő síkjával metszve a két körkúp rendszerét, rajta két kúpszeletsort kapunk. Ezen kúpszeletek metszéspontjaiban jelennek meg az interferencia fényfoltjai.

6.2. Vonalrács esete

Jelölje $\rho_{n\bar{R}}$ a vonalrács \bar{R} vektorának az *n*-ed rendű, \vec{e}_n , elhajlási sugárral alkotott szögét. Ezt, azonnal megkapjuk, ha a $\rho_{n_a n_b \bar{R}_a}$ kifejezésébe az $n_b = 0$ értéket behelyettesítjük. Így: $\cos \rho_{n\bar{R}} = \sin \alpha . \cos \beta$.

Következtetés:

- Mivel a ρ_{nk̄} szög kizárólag a beeső sugár rácshoz viszonyított (α, β) beállításától függ, bármely rendű rácson elhajlott sugár, az k̄ rácsvektorral azaz a rács vonalaival azonos szöget alkot! Így nyilvánvaló, a diffraktált sugarak az k̄ tengelyű, ρ_{nk̄} = ρ nyílásszögű körkúp palástjának al-kotói lesznek.
- Belátható még, hogy ez a ρ szög éppen a beeső (\vec{e}) sugárnak az Ox tengellyel alkotott szögével egyenlő.

7. KÍSÉRLETEK FÉNYRÁCSOKKAL

Következtetéseink helyességének igazolására világítsunk meg néhány kereszt-, illetve vonalrácsot egy P=10mW-os félvezetőlézer elég erős, keskeny, koherens, vörös sugarával (λ =655nm). A kísérlet könnyebb kivitelezhetősége kedvéért a 8. ábra szerint összeállított *egyszerű* berendezést használjuk. A rácson elhajlott visszatérő (**r**), valamint áthaladó (**t**) sugárkévék létrehozta fényfoltok – ugyanazon a vetítőernyőn történő – felfogására, helyezzük ennek *O'y'z'* síkját merőlegesen az *Ox* tengelyre. (A fényrácshoz továbbra is az előző-ekben használt *Oxyz derékszögű* koordinátarendszer van rögzítve.)

Megjegyzés:

- Szokványosan, a fényfelfogó ernyőt, vagy a beeső sugárra, vagy ennek a rácssíkról visszatükrözött irányára, *merőlegesen* helyezik el. Nyilván vektoregyenletünkkel tanulmányozható az így kivetített diffrakciós kép is.
- A rács vektoregyenlete csak az elhajlási sugarak irányára vonatkozik, nem ad tájékoztatást azok viszonylagos fényerősségéről, amely – egyébként – a rendszám növekedésével csökken.

8. AZ ERNYŐRE KIVETÍTETT FÉNYFOLTOK HELYZETÉNEK MEGHATÁROZÁSA

Határozzuk meg az ernyőn (az O'y'z' síkban) az "F" fényfolt (r,θ) polár koordinátáit. Az Ox tengelyre merőleges síkú vetítőernyő rácstól mért távolsága legyen d (d=OO').

8.1. Keresztrács esete

Az n_b -hez tartozó körkúpnak a tengelyére merőleges ernyő-síkkal való metszésvonala egy $r_{n_a n_b} = r_{n_b}$ suga-

rú kör. Mivel ismert az $F_{n_a n_b}$ fényfolthoz mutató $\vec{e}_{n_a n_b}$ egységvektor Ox tengellyel (az \vec{R}_a -val) alkotott

 $\rho_{n_b \bar{R}_a} = \rho_{n_b x}$ szöge, az r_{n_b} sugár kiszámítható (9. ábra): $r_{n_b} = d.tg\rho_{n_b \bar{R}_a}$.

Az $F_{n_a n_b}$ fényfolthoz tartozó $\overrightarrow{O'F_{n_a n_b}}$ helyzetvektor O'z' tengellyel – a normális irányával – alkotott szögét jelölje $\theta_{n_a n_b}$. Ezt, az ábra alapján, mind az átmenő (t) mind a visszaverődéses (r) sugarak esetére kiszámítva, kapjuk:

$$\sin \theta_{n_a n_b(r)} = \sin(-\theta_{n_a n_b(r)}) = \frac{\lambda(n_a R_a + n_b R_b \cos \gamma) - \sin \alpha \sin \beta}{\sqrt{1 - (\sin \alpha \cos \beta + n_b \lambda R_b \sin \gamma)^2}}.$$

9. ábra A fényfoltok polár-koordinátái (r,θ) a vetítőernyőn

10. ábra Fényelhajlás vonalrácson: $\alpha=60^{\circ}$ -nál $\beta=0^{\circ}$, 30°, 60°

8.2. Vonalrács esete

A vonalrács összefüggéseihez az $n_b = 0$ esetén jutunk. Ennél $R = R_a$. Jelölje a fényfoltot: $F_n = F_{n_a(n_b=0)}$ amely az $r = r_{n_b=0} = d.tg\rho$ sugarú körön van és a normálissal alkotott szöge legyen $\theta_n = \theta_{n_a,n_b=0}$.

$$\sin \theta_{n(r)} = \sin(-\theta_{n(t)}) = \frac{\lambda n R - \sin \alpha . \sin \beta}{\sqrt{1 - \sin^2 \alpha . \cos^2 \beta}}$$

9. FÉNYELHAJLÁSI KÍSÉRLETEK EGY VONAL- ÉS EGY KERESZTRÁCSON

Kísérleteinket, a már említett, egyszerű berendezéssel végezzük. Amennyiben a beeső-, vöröslézersugár irányát meghatározó α és β szögek értékét a 0°, 30°, 45°, 60°, 90°-ra korlátozzuk, akkor ezeket néhány derékszögű vonalzó megfelelő elhelyezésével könnyen beállíthatjuk.

A kivetített fényfoltokat papírra rajzolásuk után azonosítjuk rendszámaikkal, majd *lemérjük* az r és θ polár koordinátáit. Ezt követően, az összehasonlítás céljából, e fényfoltoknak a koordinátáit *ki* is *számítjuk*.

9.1. Vonalrács esete

A plexi lapra karcolt, 119,3 *vonal/mm*–es, didaktikai célra készült vonalrács állandója $a = 10^{-3} m/119,3 = 8,382 \mu m$, rácsvektora $|\vec{R}| = 1/a = 1,193.10^5 m^{-1}$.

A fényrácsot három különböző irányból "ferdén" (tehát nem a vonalakra merőlegesen) megvilágító sugár diffrakciós ábráját ugyanarra a papírlapra rajzolva láthatjuk (10. ábra). Mindháromnál a rács-ernyő távolság d = 14cm és a beeső sugárnak a rács normálisával alkotott szöge $\alpha = 60^{\circ}$. A β viszont rendre 0°, 30°, és 60°. A fény hullámhossza $\lambda = 655nm$.

Kiszámítjuk, és le is mérjük az ernyőn az interferencia létrehozta fényfoltok ($\approx pontok$) r és θ koordinátáit, majd ezeket összehasonlítjuk. *Jó az egyezés*, bármely diffraktált sugárnál a megfelelő mért és számított értéknél a hiba úgy 1% körüli, amely ennél a mérési eljárásnál nyilván nem veendő figyelembe.

9.2. Keresztrács esete

Keresztrácsként szolgáljon egy nagyon vékony *fém-rostalemez*, mely tulajdonképpen egy vidikoncső szitája. Ez egy *négyzetes* ($\gamma = 90^{\circ}$) keresztrács, mért rácsállandói $a = b = 34 \mu m$, rácsvektorai $R_a = R_b = 1/34 \mu m = 2,94.10^4 m^{-1}$.

Kísérletünkhöz továbbra is az előbbi berendezést használjuk, és:

- a keresztrács elhelyezésénél \vec{R}_a mutasson az Ox tengely irányába;
- az ernyő síkja legyen merőleges az Ox tengelyre;

- az általánosság megszorítása nélkül, a könnyebb beállítás kedvéért, a beeső sugár alkosson a normálissal állandóan $\alpha = 60^{\circ}$ -os szöget, míg a β szöget állítsuk sorra $\beta = 0^{\circ}$, 30°, 60°, 90°-os értékekre (α, β, γ értelmezése a 7. ábra szerint).

A kivetített interferencia fényfoltokat papírlapra rárajzolva láthatjuk a 11. és a 12. ábrákon. A fényerősebb (r), valamint a (t) interferencia fényfoltok közül néhányat találomra kiválasztunk és azonosítjuk az $n_a n_b$ rendszám-párjával. Ezeknél, az $F_{n_a n_b}$ foltoknál, lemérjük, valamint ki is számítjuk az r_{n_b} , $\theta_{n_a n_b}$ koordinátáik értékét.

Példa legyen erre az $\alpha = 60^{\circ}$, $\beta = 60^{\circ}$ beállítás mellett felvett rajz (12. ábra). A szemléletességért az ábrára az $r_{n_b számított}$ sugarú köröket is feltüntettük. A fényfoltok polár-koordinátáinak a *mért* és a *számított* értékei *jól egyeznek*. Ez látható több, találomra kiválasztott fényfolt mért és számított adatait tartalmazó 1. táblázatban.

11. ábra Fényelhajlás keresztrácson: $\alpha = 60^{\circ}$ -nál $\beta = 0^{\circ}$, 30°

12. ábra Fényelhajlás keresztrácson: $\alpha = 60^{\circ}$ -nál $\beta = 60^{\circ}$, 90°

l. táblázat: A keresztrács néhány diffrakciós sugara, ernyőn mért és a számított, polár-koordinátájának táblázata

n_a n_b	-5		-2		0		+2		+5		+9		+13		+22		r_{n_b} (cm) számított
-6			+56,26	+55,5	+52,27	+51,8	+48,61	+48,0									73,78
-2	+67,50	-66,0	+59,10	+58,4 -58,2	+54,70	+54,6	+50,74	+50,1	+45,34	+45 -44,9	+38,87	+38,6					57,55
-1	+68,38	+67,0 -67,2	+60,01	+59,5 -59,3	+55,47	+55,0 -55,0	+51,40	+51,2	+45,89	+45,4 -45,7	+39,30	+39,2	+33,28	+32,7			54,89
0	+69,87	+69,0 -68,7	+61,00	+60,8	+56,31	+56,3	+52,12	+52,2 -51,9	+46,49	+46,2	+39,77	+39,5 -40,0	+33,66	+33,8	+21,22	+20,5	51,41
+1	+71,61	+70,7 -70,8	+62,14	+61,5 -61,8	+57,23	+56,8 -57,2	+52,91	+52,5 -52,8	+47,13	+46,9 -46,8	+40,28	+39,7	+34,06				48,70
+2			+63,40	+63,0	+58,26	+58,1	+53,78	+53,8	+47,84	+47,8 -47,8	+40,83	+40,6					46,20
+4				+66,3	+60,69	+60,6	+55,81	+55,9	+49,46	+49,5		$\theta_{tranzv(n_a,n_b)}$		θ_{tranz}	$tranzv(n_a, n_b)$		41,65
+8				-00,0	+67,89	-68,1	+61,51	+61,6				szár ($ heta_{tranzv}$	$\begin{array}{c} \text{mitott} \\ = -\theta_{refl} \end{array} \\ \end{array} \\ \begin{array}{c} \theta_{refl} \\ \text{mitott} \end{array}$		nért (n_a, n_b) nért		34,05

 $\alpha = 60^{\circ} | \beta = 60^{\circ} | d = 24,7 \text{ cm} | \lambda = 655 \text{ nm} | a = b = 34 \mu\text{m} | \text{fémszita} | a \theta \text{ szög fokban mérve}$

Következtetés: Mind a vonal-, mind a keresztrácsnál, az elhajlási sugarak egyenletből számított iránya egyezik a kísérletivel. Ez nyilván vektoregyenleteik *helyes*ségét igazolja.

10. KÉT FELADAT A FÉNYRÁCSRA VISSZATÜKRÖZÖTT ELHAJLÁSI SUGARAKKAL

10.1. Első feladat

Egy áteresztő-visszaverő vonalrácsra eső \vec{e} egységvektorú lézersugár beesési pontjába, a T' és T'' tükrökkel, tükrözzük vissza az n' és n'' rendű $\vec{e}_{n'}$, $\vec{e}_{n''}$ elhajlási sugarakat! Mindkét visszatérített sugár a rácson újból diffraktál, létrehozván az m', valamint m'' rendű $\vec{e}_{m'}$ és $\vec{e}_{m''}$ sugár-rendszereiket.

Mi a feltétele annak, hogy ezekből a másodszori elhajlási sugarakból, egy-egy sugár egymásra tevődjön?

Megoldás:

- Alkalmazzuk a vonalrács vektoregyenletét a tetszőleges irányból érkező-beeső, és a rá visszatükrözött, két elhajlási sugárra. Kapjuk, hogy a sugár egymásra-tevődés feltétele:
- $m''-m' = n''-n', \text{ vagyis ha } n''-n' = \Delta n_{t\bar{u}kr\bar{o}k} \text{ akkor } m'' = m' + \Delta n_{t\bar{u}kr\bar{o}k}.$
- Nyilván, az n és m lehet bármely transzmissziós-, illetve reflexiós-sugár rendszáma egyaránt.
- A másodszori elhajlási sugarak egymásra tevődésének a feltétele *független* a beeső sugár (α, β) irányától és hullámhosszától!
- Az is belátható, hogy az összes másodszori elhajlási sugár az Ox tengellyel $\rho_{mx} = \pi \rho$ szöget zár be.

10.2. Második feladat

Egy áteresztő-visszaverő vonalrácsra eső \vec{e} sugár elhajlási sugarai n, \vec{e}_n . Ezek közül a T' tükörrel, a rácsra, visszafordítjuk az $n', \vec{e}_{n'}$ diffraktált sugarat, mely létrehozza az $m', \vec{e}_{m'}$ elhajlási sugarait.

Mi lesz a *feltétele* annak, hogy a másodszori, valamint az egyszeri diffrakció során keletkező sugarak közül, egy-egy sugár egymásra tevődjön?

Megoldás: Alkalmazzuk a rács vektoregyenletét a beeső és a visszatükrözött sugárra. Innen következik, hogy az először- és a másodszorra diffraktált sugarak egymásra tevődnek ha a rácsra beeső sugár merőleges a

rács vonalaira, és akkor is csak bizonyos $\alpha = \alpha_E$ értékű szögekre. Ezek a szögek: $\alpha_E = \arcsin(E.\lambda/2.a)$, ahol $E \in [0, \pm 1, \pm 2, ...]$, amely a létező *n*, *n*', *m*' elhajlási rendszámokból képezhető (n + n' - m') = E egész szám valamelyike.

Számpéldák: Mekkora az egyszeres, és a kétszeres elhajlási sugarak egymásra-tevődését lehetővé tevő α_E beesési szögek értéke, amennyiben a fényrácsként használt **CD**, illetve **DVD** korongdarabkát egy félvezető-lézer vörös fényével világítjuk meg?

Mindkét "fényrács" esetén a kiszámított α_E értékeket táblázatba foglaltuk (2. táblázat).

Megjegyzés: Az előbbi két feladat megfogalmazható és megoldható keresztrács esetére is!

2. táblázat:

Az előszöri és a másodszori elhajlási sugarak egymásra-tevődését megengedő beesési szögek táblázata

fényrács	<i>a</i> (µm)	λ (nm)	α_E	β
CD	1,50	655	$0^{0};\pm 12,5^{0};\pm 25,7^{0};\pm 40,5^{0};\pm 60,1^{0}$	90 ⁰
DVD	0,74	655	0^{0} ; ± 26,1 ⁰ ; ± 61,5 ⁰	90 ⁰

HIVATKOZÁSOK

- [1.] Ábrahám György (Ed.): Optika. Panem Mc. Graw-Hill, 1998.
- [2.] Uliu Florea: *Utilizarea calcului vectorial în optică* (Vektorok alkalmazása a fénytanban), Revista de Fizică și Chimie no. 9 (1987)
- [3.] Bíró Tibor: A fényvisszaverődés és fénytörés törvénye vektorosan. *Firka* 3-6/2003-2004, 1/2004-2005.
- [4.] Charles Kittel: Introducere în Fizica Corpului Solid (Bevezetés a szilárdtest fizikába), 1971.